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Abstract: Four new compounds were isolated from the Vietnamese marine sediment-derived
fungus Aspergillus flocculosus, one aspyrone-related polyketide aspilactonol G (2), one meroterpenoid
12-epi-aspertetranone D (4), two drimane derivatives (7,9), together with five known metabolites
(1,3,5,6,8,10). The structures of compounds 1–10 were established by NMR and MS techniques.
The absolute stereoconfigurations of compounds 1 and 2 were determined by a modified Mosher’s
method. The absolute configurations of compounds 4 and 7 were established by a combination of
analysis of ROESY data and coupling constants as well as biogenetic considerations. Compounds 7
and 8 exhibited cytotoxic activity toward human prostate cancer 22Rv1, human breast cancer MCF-7,
and murine neuroblastoma Neuro-2a cells.

Keywords: marine-derived fungi; secondary metabolites; polyketides; drimanes;
meroterpenoids; cytotoxicity

1. Introduction

Marine fungi are rich sources of new biologically active compounds [1]. Fungi of the genus
Aspergillus, section Circumdati (Aspergillus insulicola, Aspergillus flocculosus, Aspergillus ochraceus,
Aspergillus ochraceopetaliformis, and others) [2], are known to produce metabolites belonging to
various chemical classes: aspyrone-related pentaketides [3,4], meroterpenoids [5,6], diketopiperazine
alkaloids [7], drimane sesquiterpenoids and their nitrobenzoyl derivatives [8,9], steroids, and
cerebrosides [10]. Many of them possess antimicrobial [4,10], antiviral [11], cytotoxic [8,11], and
neuroprotective [12] activities.

Aspyrone-related pentaketides are polyketide metabolites commonly found in this fungal
group [13]. Usually, they are divided into three structural types: linear (aspinonene) [3], δ-lactones
(aspyrone) [3], and γ-lactones (iso-aspinonene, aspilactonols) [3,14]. Meroterpenoid metabolites
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of Aspergillus, section Circumdati fungi are represented mainly by triketidesesquiterpenoids with
rare α-pyrone-contained linear or angular skeleton. To date, only several representatives of this
chemical class belonging to the aspertetranones [5] and ochraceopones [6] series were reported.
Nitrobenzoyl derivatives of drimane-sesquiterpenoids were initially found in A. insulicola species
but can also be produced by other related fungi [15]. These compounds are characterized by a small
structural diversity with two isomeric backbones (cinnamolide- and confertifolin-based) and various
locations of acyl groups. A residue of p-nitrobenzoic acid usually can be found at positions 9-OH or
14-OH. Nitrobenzoyl derivatives are relatively unstable compounds that cannot be hydrolyzed to form
the corresponding sesquiterpenoids [8]. Acetylation of these compounds with acetic anhydride results
in rearrangement and formation of several products [16].

Recently, we have started a project focusing on the search for producers of novel bioactive
compounds among fungi isolated from various substrates found in the Vietnamese waters of the South
China Sea [17,18]. Thus, from a sediment sample collected in Nha Trang Bay, we have isolated a
strain of fungus A. flocculosus. Recently, we described the new neuroprotective alkaloid mactanamide
produced by this strain [12]. Herein, we report the isolation, structure elucidation and cytotoxic activity
of four new (2,4,7,9) and six known (1,3,5,6,8,10) metabolites produced by the same fungus (Figure 1).
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2. Results and Discussion

The molecular formula of compound 1 was determined as C9H14O4 by an HRESIMS peak at m/z
209.0785 [M + Na]+, which was supported by the 13C NMR spectrum.

A close inspection of the 1H and 13C NMR data of 1 (Table 1, Figures S1–S3) revealed the
presence of two methyls (δC 23.3, 18.8; δH 1.31, 1.25), one methylene (δC 34.9; δH 2.52, 2.45), three
oxygen-bearing sp3-methines (δC 84.9, 67.8, 66.2; δH 4.85, 4.08, 4.05) and one sp2-methine (δC 147.4; δH

7.27). Two remaining signals at δC 132.8 and 174.2 ppm corresponded to a quaternary sp2-carbon and a
carboxyl carbon, respectively.

The HMBC correlations (Figure 2 and Figure S6) from H-4 (δH 7.27) to C-2 (δC 174.2), C-3 (δC

132.8), and C-5 (δC 84.9) and from H-5 (δH 4.85) to C-2, C-3, and C-4 (δC 147.4) suggested the presence
of a dihydrofuran ring. The structure of the 1-hydroxyethyl side chain and its location at C-5 in 1 was
established by COSY correlations of H-6/H-5 and H-7 and HMBC correlations from H-6 (δH 4.05) to
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C-4, C-5, and C-7 (δC 18.8). The data of COSY spectrum (Figure S4) and HMBC correlations from H-10
(δH 1.25) to C-8 (δC 34.9), C-9 (δC 66.2), and from both H2-8 (δH 2.52, 2.45) to C-3, C-4, C-9, and C-10
(δC 23.3) determined the structure of the 2-hydroxypropyl side chain and its location at C-3.

Table 1. 1H and 13C NMR data (δ in ppm, CDCl3) for aspilactonols G (1) and F (2).

Position
1 2

δC, mult δH (J in Hz) δC, mult δH (J in Hz)

2 174.2, C 174.1, C
3 132.8, C 132.9, C
4 147.4, CH 7.27, d (1.4) 147.3, CH 7.25, d (1.2)
5 84.9, CH 4.85, dd (4.4, 1.4) 84.8, CH 4.86, dd (4.2, 1.4)
6 67.8, CH 4.05, qd (6.4, 4.4) 67.6, CH 4.08, qd (6.6, 4.2)
7 18.8, CH3 1.31, d (6.4) 18.8, CH3 1.31, d (6.6)

8 34.9, CH2
2.52, ddt (15.0, 3.8, 1.4)
2.45, ddt (15.0, 7.8, 1.4) 35.2, CH2

2.55, ddt (14.6, 3.6, 1.4)
2.40, dd (14.6, 8.5)

9 66.2, CH 4.08, m 65.8, CH 4.04, m
10 23.3, CH3 1.25, d (6.3) 23.2, CH3 1.25, d (6.2)

1H NMR and 13C NMR spectroscopic data were measured at 500 MHz and 125 MHz, respectively.
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Figure 2. The key HMBC correlations of 1.

The absolute configuration of the chiral centers C-6 and C-9 of 1 was established using a
modified Mosher’s method. Esterification of the C-6 and C-9 hydroxy moieties of 1 with (R)- and
(S)-MTPA chloride afforded the (S)- and (R)-bis-MTPA-esters, respectively. The observed chemical shift
differences ∆δ (δS − δR) (Figure 3A) indicated 6S, 9S configurations. The absolute configuration of C-5
stereocenter in 1 was proven as R on the basis of a characteristic Cotton’s effect at λ217 + 11.35 in the CD
spectrum (Experimental Section and Figure S8) and a coupling constant value 3JH5-H6 = 4.4 Hz [14,19].
Compound 1 was recently reported as aspilactonol F, that was a component of unseparated mixture of
epimers at C-9. Our study is the first determination of the absolute configurations of all stereocenters
of aspilactonol F.
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The molecular formula of compound 2 was determined as C9H14O4 (the same as 1) on the basis of
HRESIMS data and confirmed by 13C NMR. The NMR data of 2 were very similar to those of 1 (Table 1,
Figures S9–S16). Thus, the planar structure of 2 was suggested to be the same as that of aspilactonol
F (1).

Esterification of the C-6 and C-9 hydroxy moieties of 2 with (R)- and (S)-MTPA chloride afforded
the (S)- and (R)-bis-MTPA-esters, respectively. The observed chemical shift differences ∆δ (δS − δR)
(Figure 3B) indicated 6R, 9S configurations. The absolute configuration of the C-5 stereocenter in 2
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was suggested as S on the basis of a strong negative Cotton’s effect at λ216 –11.51 in the CD spectrum
(Experimental Section and Figure S17) [19]. Compound 2 was named aspilactonol G.

The molecular formula of compound 4 was established as C22H28O9 on the basis of HRESIMS,
containing a peak at m/z 459.1628 [M + Na]+, and was supported by the 13C NMR spectrum.

An analysis of NMR data of 4 (Table 2, Figures S20–S24) revealed the presence of six methyl groups
(δC 25.1, 24.0, 18.5, 17.3, 10.8, 9.5; δH 2.24, 1.89, 1.43, 1.41, 1.39, 1.31), one sp3-methylene group (δC

45.6; δH 2.86, 2.76), two sp3-methines (δC 39.5, 39.3; δH 2.32, 2.00), two oxygen-bearing ones (δC 75.15,
63.5; δH 4.63, 4.36), one quaternary sp3-carbon (δC 55.5), three oxygen-bearing quaternary sp3-carbons
(δC 83.0, 76.5, 75.07), two quaternary sp2-carbons (δC 107.3, 102.2), three oxygen-bearing quaternary
sp2-carbons (δC 164.4, 162.5, 157.9), and two ketone groups (δC 211.4, 209.1).

Table 2. 1H and 13C NMR data (δ in ppm, CDCl3) for 12-epi-aspertetranone D (4).

Position δC, Mult δH (J in Hz) HMBC

1 164.4, C
3 157.9, C
4 107.3, C
4a 162.5, C
5a 83.0, C
6 75.15, CH 4.36, s 5a, 6a, 7, 10a, 11a, 15
6a 76.5, C
7 211.4, C
8 55.5, C
9 209.1, C

10 45.6, CH2
2.86, d (17.7)

2.76, dd (17.7, 2.7)
6a, 9, 10a

9, 10a
10a 75.07, C
11 39.5, CH 2.00, dd (12.0, 6.8) 5a, 10a, 11a, 18

11a 39.3, CH 2.32, dd (12.0, 9.4) 5a, 6, 10a, 11, 12, 18
12 63.5, CH 4.63, d (9.4) 1, 4a, 11, 11a, 12a

12a 102.2, C
13 17.3, CH3 2.24, s 3, 4, 4a
14 9.5, CH3 1.89, s 3, 4, 4a
15 18.5, CH3 1.43, s 5a, 6, 11a
16 25.1, CH3 1.39, s 7, 8, 9, 17
17 24.0, CH3 1.41, s 7, 8, 9, 16
18 10.8, CH3 1.31, d (6.8) 10a, 11, 11a

6-OH 3.57, brs
6a-OH 3.12, brs

10a-OH 4.01, d (2.7) 10, 10a
12-OH 4.43, brs 11a, 12

1H NMR and 13C NMR spectroscopic data were measured at 500 MHz and 125 MHz, respectively.

The HMBC correlations of 4 (Figure 4 and Figure S25, Table 2) suggested the presence of a
linear tetracyclic backbone like in the recently reported merosesquiterpenoids aspetetranones A-D [5].
The general features of the 13C NMR spectrum of 4 (Table 2, Figures S21–S22) were similar to those of
aspertetranone D (5) [5], with the exception of the C-6, C-11, C-11a, C-12, C-15, and C-18 carbon signals.
The main patterns of the experimental CD spectrum of 4 in methanol (Experimental section, Figure S27)
matched well with those of aspertetranone D (5) [5]. The value of the vicinal coupling constant between
H-11a and H-12 (9.4 Hz) in 4 instead of 3JH11a-H12 = 3.9 Hz in aspertetranone D (5) indicated a β
orientation of the OH group at C-12 in 4. Thus, the absolute configurations of chiral centers in 4 were
suggested as 5aS, 6R, 6aR, 10aR, 11R, 11aS, 12S. Compound 4 was named 12-epi-aspertetranone D.
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2.76, dd (17.7, 2.7) 
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The molecular formula of compound 7 was established as C15H22O5 on the basis of an HRESIMS
peak at m/z 305.1361 [M + Na]+, which was supported by the 13C NMR spectrum and corresponded to
four double-bond equivalents.

A close inspection of the 1H and 13C NMR data of 7 (Table 3, Figures S30–S32) revealed the
presence of two methyl groups (δC 26.8, 20.8; δH 1.23, 1.15), three sp3-methylene groups (δC 42.0,
32.6, 17.6; δH 2.13, 1.63, 1.50 (2H), 1.38, 1.24), two oxygen-bearing sp3-methylene groups (δC 75.0,
68.4; δH 4.44, 4.41, 4.24, 3.42), two sp3-methine groups (δC 63.5, 47.1; δH 4.62, 2.00), including one
oxygen-bearing, one sp2-methine group (δC 139.1; δH 6.96), three quaternary sp3-carbons (δC 77.5, 39.0,
38.3), including one oxygen-bearing, and two quaternary sp2-carbons (δC 169.6, 130.1).

Table 3. 1H and 13C NMR data (δ in ppm) for 6β,9α,14-trihydroxycinnamolide (7) and
6β,7β,14-trihydroxyconfertifolin (9).

Position
7 a 9 b

δC, mult δH (J in Hz) HMBC δC, mult δH (J in Hz) HMBC

1 32.6, CH2
1.24, m

2.13, td (12.7, 5.7) 2, 3, 5, 9, 10, 15 37.8, CH2
1.59, m
1.54, m 2, 3, 5, 15

2 17.6, CH2 1.50, m 1, 3, 4 18.0, CH2
1.71, m
1.45, m 1, 3

3 42.0, CH2
1.38, td (12.9, 5.3)

1.63, m
2, 4, 13, 14

1, 2, 4, 5, 14 37.8, CH2
1.32, td (13.0, 3.8)
1.10, td (13.6, 4.3) 1, 2, 13, 14

4 38.3, C 38.3, C
5 47.1, CH 2.00, d (4.0) 4, 6, 9, 13, 14, 15 48.6, CH 1.57, brs 1, 6, 9, 10, 14, 15
6 63.5, CH 4.62, t (4.2) 7, 8, 10 70.0, CH 3.99, brs 5, 7, 8, 9, 10
7 139.1, CH 6.96, d (4.0) 5, 9, 12 64.1, CH 4.00, d (2.1) 5, 6, 12
8 130.1, C 122.1, C
9 77.5, C 173.1, C

10 39.0, C 36.3, C

11 75.0, CH2
4.24, d (9.8)
4.44, d (9.8) 8, 9, 12 68.1, CH2

4.94, dd (17.6, 1.7)
4.79, brd (17.6) 7, 8, 9

12 169.6, C 173.4, C
13 26.8, CH3 1.15, s 3, 4, 5, 14 27.9, CH3 0.97, s 3, 4, 5, 14

14 68.4, CH2
3.42, d (11.4)
4.41, d (11.4) 3, 4, 5, 13 65.6, CH2

3.94, dd (11.3, 3.8)
3.26, dd (11.3, 6.0) 3, 4, 5, 13

15 20.8, CH3 1.23, s 1, 5, 9, 10 21.6, CH3 1.40, s 1, 5, 9, 10
1H NMR and 13C NMR spectroscopic data were measured a in CDCl3 at 500 MHz and 125 MHz, respectively, and b

in DMSO-d6 at 700 MHz and 176 MHz, respectively.

The 13C NMR data of 7 were similar to those of the drimane moiety of insulicolide A (8) [15],
also reported as 9α-14-dihydroxy-6β-p-nitrobenzoylcinnamolide [8], with the exception of the C-3,
C-6, C-7, C-8, and C-14 carbon signals. The COSY spectrum data (Figure S33) and HMBC correlations
(Figure S35, Table 3) from H-6 (δH 4.62) to C-7 (δC 139.1), C-8 (δC 130.1), and C-10 (δC 39.0), from H-7
(δH 6.96) to C-5 (δC 47.1), C-9, and C-12 (δC 169.6), from H3-13 (δH 1.15) to C-3 (δC 42.0), C-4 (δC 38.3),
C-5 (δC 47.1), and C-14 (δC 68.4), and from H3-15 (δH 1.23) to C-1 (δC 32.6), C-5, C-9, and C-10 proved
the drimane framework of 7 the same as in insulicolide A (8).

The ROESY correlations (Figure S36) of H3-13 with H-5 (δH 2.00) and H-6, long-range COSY
correlation H3-15/H-5, together with the vicinal coupling constant 3JH5-H6 = 4.4 Hz established the
relative configurations of the C-4, C-5, C-6, and C-10 chiral centers. The absolute configurations of the
stereocenters in 7 were suggested as depicted in Figure 1 from CD spectra similarity (Figures S37 and
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S38) and biogenetic relationship with insulicolide A (8), whose absolute configurations were determined
previously by X-ray analysis [15]. Compound 7 was named 6β,9α,14-trihydroxycinnamolide.

The molecular formula of compound 9 was established as C15H22O5 on the basis of an HRESIMS
peak at m/z 305.1361 [M + Na]+, which was supported by the 13C NMR spectrum.

A close inspection of the 1H and 13C NMR data of 9 (Table 3, Figures S39–S41) revealed the
presence of two methyl groups (δC 27.9, 21.6; δH 1.40, 0.97), three sp3-methylene groups (δC 37.8 (2C),
18.0; δH 1.71, 1.59, 1.54, 1.45, 1.32, 1.10), two oxygen-bearing sp3-methylene groups (δC 68.1, 65.6; δH

4.94, 4.79, 3.94, 3.26), three sp3-methine groups (δC 70.0, 64.1, 48.6; δH 4.00, 3.99, 1.57), including two
oxygen-bearing, two quaternary sp3-carbons (δC 38.3, 36.3), and three quaternary sp2-carbons (δC 173.4,
173.1, 122.1).

The HMBC correlations (Table 3, Figure S42) from H-6 (δH 3.99) to C-5 (δC 48.6), C-7 (δC 64.1), C-8
(δC 122.1), C-9 (δC 173.1), and C-10 (δC 36.3), from H-7 (δH 4.00) to C-12 (δC 173.4), from H2-11 (δH 4.94,
4.79) to C-8, C-9, and C-12, from H3-13 (δH 0.97) to C-3 (δC 37.8), C-4 (δC 38.3), C-5, and C-14 (δC 65.6),
from H3-15 (δH 1.40) to C-1 (δC 37.8), C-5, C-9, and C-10 indicated the drimane moiety in 9 being the
same as in 7α,14-dihydroxy-6β-p-nitrobenzoylconfertifolin [8].

The ROESY correlations (Figure 5 and Figure S43) of H3-13 with H-5 (δH 1.57), H-6 (δH 3.99), and
H-7 (δH 4.00), of H3-15 with H2-14 (δH 3.94, 3.26), together with the coupling constant 3JH6-H7 = 2.1 Hz
indicated the related configurations of the chiral centers in 9 as depicted (Figure 1). Compound 9 was
named 6β,7β,14-trihydroxyconfertifolin.
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Besides the new compounds 1,2,4,7, and 9, the known dihydroaspirone (3) [14], aspertetranones
D (5) [5,6] and A (6) [5], insulicolide A (8) [15], and 7α,14-dihydroxy-6β-p-nitrobenzoylconfertifolin
(10) [8] were isolated from this fungal strain.

All isolated compounds were tested for cytotoxicity toward murine neuroblastoma Neuro-2a cells
(Table 4). Compound 7 demonstrated cytotoxic activity toward Neuro-2a cell, with the IC50 of 24.1
µM, while its analogue 9 was non-cytotoxic up to 100 µM. The highest activity was demonstrated for
9α,14-dihydroxy-6β-p-nitrobenzoylcinnamolide (8), with IC50 of 4.9 µM, while its analogue 10 did not
affect the viability of Neuro-2a cells. Compounds 1–6 were non-cytotoxic against Neuro-2a cells at
concentrations up to 100 µM.

Then, we investigated the effect of the compounds 1–10 on the viability and colony formation ability
of human drug-resistant prostate cancer 22Rv1 cells (Table 4). MTT assay revealed the compounds 7
and 8 to be cytotoxic in 22Rv1 cells, with IC50 values of 31.5 µM and 3.0 µM, respectively. Compounds
1–6, 9, and 10 were non-cytotoxic against these cells at concentrations up to 100 µM. In this model,
docetaxel (positive control) showed cytotoxicity, with IC50 of 0.02 µM. At the same time, compounds 4
and 9 were able to inhibit the colony formation of 22Rv1 prostate cancer cells (in vitro prototype of
in vivo anti-metastatic activity) for 41% and 36%, respectively, at 100 µM. It is known that 22Rv1 cells
are resistant to hormone therapy because they express the androgen receptor splice variant AR-V7 [20].
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The compounds which demonstrated cytotoxic activity toward AR-V7-positive 22Rv1 cells therefore
may be promising for the therapy of human drug-resistant prostate cancer.

Table 4. Cytotoxic effects of the isolated compounds 1–10.

Compounds Cytotoxicity IC50, µM Colony Formation, %

Neuro-2a 22Rv1 MCF-7 22Rv1

1 >100 >100 nt -
2 >100 >100 nt -
3 >100 >100 nt -
4 >100 >100 nt 41
5 >100 >100 nt -
6 >100 >100 nt -
7 24.1 31.5 >100 -
8 4.9 3.0 59.6 -
9 >100 >100 >100 36

10 >100 >100 >100 -
Docetaxel nt 0.02 nt nt

“nt”: compound was not tested; “-“: compound did not demonstrate any effect at the concentration of 100 µM.

Finally, the new compounds 7 and 9 were tested for cytotoxicity toward human breast cancer cells
MCF-7 and did not show any effect up to 100 µM (Table 4). Additionally, the known compounds 8 and
10 were examined in this experiment as reference substances. Compound 8 showed a weak cytotoxic
effect, with IC50 of 59.6 µM, whereas, previously, a higher cytotoxicity of 8 toward MCF-7 cells was
reported (IC50 = 6.08 µM) [11]. This could be explained by different treatment times used by us (24 h)
in comparison with those used by Fang and colleagues (72 h) [11]. Moreover, different amounts of cells
per well were used. Note, compound 10 was non-cytotoxic up to 100 µM.

The analysis of structure–activity relationships of compounds 7–10, together with literature data,
showed that these compounds have three relevant structural sites. First, a double bond at C7=C8 as
part of an α,β-unsaturated lactone. Previously, it was shown that the cytotoxicity of such moiety can
be explained by a nucleophilic Michael addition reaction with biological nucleophiles [8,21]. In the
case of the non-cytotoxic compounds 9 and 10, the double bond of the α,β-unsuturated lactone may be
inaccessible for a nucleophile attack because of steric obstacles. Second, a hydroxyl group at C-9 in the
drimane core is also essential for cytotoxicity. In fact, a recent report of a series of similar compounds
revealed the most pronounced cytotoxicity for compounds possessing a 9-OH group [9]. Finally,
our results strongly suggest that the presence of a p-nitrobenzoyl moiety significantly enhances the
cytotoxic activity. Previously, Tan et al. [9] demonstrated that the nitrobezoylation of 6-OH increased
the cytotoxicity of related compounds towards human renal cell carcinoma cells compared with that of
14-OH-derivatives. At the same time, it should be noted that another study of 6- and 14-nitrobenzoate
derivatives cytotoxicity toward other cancer cell lines did not support this observation [11].

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were measured on a Perkin-Elmer 343 polarimeter (Perkin Elmer, Waltham, MA,
USA). UV spectra were recorded on a Specord UV−vis spectrometer (Carl Zeiss, Jena, Germany) in
methanol. NMR spectra were recorded in CDCl3, acetone-d6 and DMSO-d6 with Bruker DPX-500
(Bruker BioSpin GmbH, Rheinstetten, Germany) and Bruker DRX-700 (Bruker BioSpin GmbH,
Rheinstetten, Germany) spectrometers, using TMS as an internal standard. HRESIMS spectra were
measured on a Maxis impact mass spectrometer (Bruker Daltonics GmbH, Rheinstetten, Germany).

Low-pressure liquid column chromatography was performed using silica gel (50/100 µm, Imid,
Russia). Plates (4.5 cm × 6.0 cm) precoated with silica gel (5–17 µm, Imid) were used for thin-layer
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chromatography. Preparative HPLC was carried out with a Shimadzu LC-20 chromatograph (Shimadzu
USA Manufacturing, Canby, OR, USA) using YMC ODS-AM (YMC Co., Ishikawa, Japan) (5 µm,
10 mm × 250 mm) and YMC SIL (YMC Co., Ishikawa, Japan) (5 µm, 10 mm × 250 mm) columns with a
Shimadzu RID-20A refractometer (Shimadzu Corporation, Kyoto, Japan).

3.2. Fungal Strain

The strain of A. flocculosus was isolated from a sediment sample (Nha Trang Bay, South China Sea,
Vietnam) and identified as described earlier [12]. The strain is stored at the collection of microorganisms
of Nha Trang Institute of Technology and Research Application VAST (Nha Trang, Vietnam) under the
code 01NT.1.12.3.

3.3. Cultivation of the Fungus

The fungus was cultured at 28 ◦C for three weeks in 50× 500 mL Erlenmeyer flasks, each containing
rice (20.0 g), yeast extract (20.0 mg), KH2PO4 (10 mg), and natural sea water from Nha Trang Bay
(40 mL).

3.4. Extraction and Isolation

The fungal mycelia of A. flocculosus with the medium were extracted for 24 h with 15 L of EtOAc.
Evaporation of the solvent, under reduced pressure, gave a dark brown oil (5.0 g), to which 250 mL
H2O–EtOH (4:1) was added, and the mixture was thoroughly stirred to yield a suspension. It was
extracted, successively, with hexane (150 mL × 2), EtOAc (150 mL × 2), and n-BuOH (150 mL × 2).
After evaporation of the EtOAc layer, the residual materials (3.36 g) were passed over a silica gel column
(35.0 cm × 2.5 cm), which was eluted with a hexane–EtOAc gradient (1:0–0:1). The n-hexane–EtOAc
(80:20, 1.3 g) fraction was purified by a Sephadex LH-20 column (80 cm × 2 cm, 50 g) with CHCl3 to
yield compound 8 (245 mg). The n-hexane–EtOAc (75:25) fraction AF-1-64 (393 mg) was purified by
HPLC on a YMC-SIL column eluting with CHCl3–MeOH–NH4OAc (97:3:1) to yield compounds 3
(220 mg) and 4 (11 mg). The n-hexane–EtOAc (75:25) fraction AF-1-67 (483 mg) was purified by HPLC
on a YMC-SIL column eluting with CHCl3–MeOH–NH4OAc (97:3:1) to yield compounds 5 (5.9 mg),
7 (9.0 mg), and 10 (3.1 mg). The n-hexane–EtOAc (75:25) fraction AF-1-88 (68.3 mg) was purified by
HPLC on a YMC-SIL column eluting with CHCl3–MeOH–NH4OAc (97:3:1) to yield compounds 1
(2.9 mg) and 2 (3.8 mg). The n-hexane–EtOAc (70:30) fraction AF-1-93 (784 mg) was purified by HPLC
first on a YMC-SIL column eluting with CHCl3–MeOH–NH4OAc (97:3:1) and then on a YMC ODS-AM
column, eluting with MeOH–H2O (55:45) to yield compound 9 (5.5 mg). The n-hexane–EtOAc (60:40,
282 mg) fraction was purified by Sephadex LH-20 column (80 cm × 2 cm, 50 g) with CHCl3-EtOH (3:1)
to yield compound 6 (68 mg).

Aspilactonol F (1): white powder; [α]20
D +98 (c 0.20, MeOH); UV (MeOH) λmax (log ε) 214 (4.03) nm;

ECD (0.9 mM, MeOH) λmax (∆ε) 217 (+11.35) nm; 1H and 13C NMR data see Table 1, Figures S1–S7;
HR ESIMS m/z 209.0785 [M + Na]+ (calcd. for C9H14O4Na, 209.0784, ∆ −0.1 ppm).

Aspilactonol G (2): white powder; [α]20
D –49 (c 0.49, MeOH); UV (MeOH) λmax (log ε) 214 (4.05) nm;

ECD (1.1 mM, MeOH) λmax (∆ε) 216 (–11.51) nm; 1H and 13C NMR data see Table 1, Figures S9–S16;
HRESIMS m/z 209.0782 [M + Na]+ (calcd. for C9H14O4Na, 209.0784, ∆ +1.1 ppm).

12-Epi-aspertetranone D (4): white powder; [α]20
D +78 (c 0.07, MeOH); UV (MeOH) λmax (log ε) 290

(3.93), 208 (4.53) nm; ECD (0.5 mM, MeOH) λmax (∆ε) 209 (+25.54), 284 (+1.86) nm; 1H and 13C NMR
data see Table 2, Figures S20–S26; HRESIMS m/z 459.1628 [M + Na]+ (calcd. for C22H28O9Na, 459.1626,
∆ −0.2 ppm).

6β,9α,14-trihydroxycinnamolide (7): white crystals; [α]20
D –7.3 (c 0.15, MeOH); UV (MeOH) λmax (log ε)

206 (3.61) nm; ECD (2.8 mM, MeOH) λmax (∆ε) 224 (–2.33) nm; 1H and 13C NMR data see Table 3,
Figures S30–S36; HRESIMS m/z 305.1361 [M + Na]+ (calcd. for C15H22O5Na, 305.1359, ∆ −0.5 ppm).
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6β,7β,14-trihydroxyconfertifolin (9): white crystals; [α]20
D +93.5 (c 0.36, MeOH); UV (MeOH) λmax

(log ε) 214 (4.00) nm; ECD (1.1 mM, MeOH) λmax (∆ε) 217 (+3.68), 243 (+1.51) nm; 1H and 13C NMR
data see Table 3, Figures S39–S47; HRESIMS m/z 305.1361 [M + Na]+ (calcd. for C15H22O5Na, 305.1359,
∆ −0.5 ppm).

3.5. Preparation of (S)-MTPA and (R)-MTPA Esters of Aspilactonol F (1)

The compounds 4-dimethylaminopyridine (a few crystals) and (R)-MTPA-Cl (4 µL) were added
to a solution of 1 (1.0 mg) in pyridine at room temperature and stirred for 5 h. After evaporation of the
solvent, the residue was purified by HPLC on a YMC SIL column (EtOAc–hexane, 20:80) to afford
the (S)-MTPA ester (0.5 mg). The (R)-MTPA ester (0.5 mg) was prepared in a similar manner using
(S)-MTPA-Cl.

(S)-MTPA ester of 1: 1H NMR (CDCl3, 500.13 MHz) δ: 6.88 (1H, brs, H-4), 5.28-5.34 (2H, m, H-6,
H-9), 4.84 (1H, dd, J = 3.9; 1.7 Hz, H-5), 3.48 (3H, s, OMe), 3.43 (3H, s, OMe), 2.56-2.60 (2H, m, H2-8),
1.26 (3H, d, J = 6.5 Hz, Me-7), 1.24 (3H, d, J = 6.3 Hz, Me-10), 7.39–7.48 (10H, m, 2Ph). HRESIMS m/z
641.1576 [M + Na]+ (calcd for C29H28F6Na, 641.1581, ∆ = 0.8 ppm).

(R)-MTPA ester of 1: 1H NMR (CDCl3, 500.13 MHz) δ: 6.52 (1H, brs, H-4), 5.25 (1H, m, H-9), 5.20
(1H, dd, J = 6.6, 4.3 Hz, H-6), 4.56 (1H, dd, J = 4.3, 1.6 Hz, Hz, H-5), 3.56 (3H, s, OMe), 3.50 (3H, s, OMe),
2.48-2.51 (2H, m, H2-8), 1.35 (3H, d, J = 6.2 Hz, Me-10), 1.29 (3H, d, J = 6.6 Hz, Me-7), 7.38–7.52 (10H, m,
2Ph). HRESIMS m/z 641.1577 [M + Na]+ (calcd for C29H28F6Na, 641.1581, ∆ = 0.6 ppm).

3.6. Preparation of (S)-MTPA and (R)-MTPA Esters of Aspilactonol G (2)

(R)-MTPA-Cl (9 µL) was added to a solution of 2 (1.9 mg) in pyridine at room temperature and
stirred for 2 h. After evaporation of the solvent, the residue was purified by HPLC on a YMC SIL
column (acetone–hexane, 25:75) to afford the (S)-MTPA ester (1.4 mg). The (R)-MTPA ester (1.5 mg)
was prepared in a similar manner using (S)-MTPA-Cl.

(S)-MTPA ester of 2: 1H NMR (CDCl3, 700 MHz) δ: 6.86 (1H, brs, H-4), 5.32 (1H, m, H-9), 5.23 (1H,
m, H-6), 4.81 (1H, brd, J = 5.0 Hz, H-5), 3.52 (3H, s, OMe), 3.47 (3H, s, OMe), 2.65 (1H, dd, J = 15.8;
6.9, H-8), 2.48 (1H, ddt, J = 15.9; 5.0; 1.5, H-8), 1.39 (3H, d, J = 6.5 Hz, Me-7), 1.29 (3H, d, J = 6.2 Hz,
Me-10), 7.38–7.50 (10H, m, 2Ph). HRESIMS m/z 641.1576 [M + Na]+ (calcd for C29H28F6Na, 641.1581,
∆ = 0.8 ppm).

(R)-MTPA ester of 2: 1H NMR (CDCl3, 700 MHz) δ: 6.68 (1H, brs, H-4), 5.30 (1H, m, H-9), 5.26 (1H,
m, H-6), 4.82 (1H, m, Hz, H-5), 3.53 (3H, s, OMe), 3.48 (3H, s, OMe), 2.61 (1H, dd, J = 15.9; 7.2, H-8),
2.46 (1H, dd, J = 15.9; 4.7, H-8), 1.33 (3H, d, J = 6.3 Hz, Me-10), 1.25 (3H, d, J = 6.7 Hz, Me-7), 7.37–7.52
(10H, m, 2Ph). HRESIMS m/z 641.1576 [M + Na]+ (calcd for C29H28F6Na, 641.1581, ∆ = 0.8 ppm).

3.7. Cell Culture

All cell lines used in this investigation were purchased from ATCC.
The neuroblastoma cell line Neuro-2a and the human breast cancer cell line MCF-7 were cultured

in DMEM medium containing 10% fetal bovine serum (Biolot, St. Petersburg, Russia) and 1%
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA).

The human prostate cancer cell line 22Rv1 was cultured according to the manufacturer’s
instructions in 10% FBS/RPMI medium (Invitrogen). Cells were continuously kept in culture for a
maximum of 3 months, were routinely inspected microscopically for stable phenotype, and regularly
checked for contamination with mycoplasma. Cell line authentication was performed by DSMZ
(Braunschweig, Germany) using highly polymorphic short tandem repeat loci [22].

All cells were incubated at 37 ◦C in a humidified atmosphere containing 5% (v/v) CO2.

3.8. Cytotoxicity Assay

The in vitro cytotoxicity of individual substances was evaluated using the MTT assay, which was
performed as previously described [23]. Docetaxel was used as a control.
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3.9. Colony Formation Assay

The colony formation assay was performed as described before with slight modifications [22].
22Rv1 cells were treated with the testing compounds for 48 h and then were trypsinized. The number
of alive cells was counted with the trypan blue exclusion assay as described before [24]. In total, 100
viable cells were plated into each well of six-well plates in complete fresh medium (3 mL/well) and
were incubated for 14 days. Then, the medium was aspirated, and the surviving colonies were fixed
with 100% MeOH, followed by washing with PBS, and air-drying at RT. Next, the cells were incubated
with a Giemsa staining solution was for 25 min at RT, the staining solution was aspirated, and the
wells were rinsed with dH2O and air-dried. The number of cell colonies was counted by naked eye.

4. Conclusions

A new aspyrone-related polyketide, aspilactonol G (2), a new meroterpenoid, 12-epi-aspertetranone
D (4), two new drimane derivatives (7,9), together with six known metabolites were isolated from
the Vietnamese marine sediment-derived fungus A. flocculosus. The structures of compounds 1–10
were established using spectroscopic methods. The absolute configurations of chiral centers were
determined using either a modified Mosher’s method (for compounds 1 and 2) or a combination
of ROESY data, coupling constants analysis and biogenetic considerations for compounds 4, 7 and
9. Drimane sesquiterpenoid derivatives 7 and 8 showed cytotoxicity toward human prostate cancer
22Rv1, human breast cancer MCF-7, and murine neuroblastoma Neuro-2a cells. The analysis of
structure–activity relationships of compounds 7–10 together with literature data showed that these
compounds have three sites in their structures related to cytotoxicity, i.e., a double bond at C7=C8, a
hydroxyl group at C-9, and a p-nitrobenzoyl moiety.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/10/579/s1,
Figures S1–S57: 1D and 2D NMR spectra and ECD spectra of compounds 1–10.
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