Cytotoxic Polyhydroxysteroidal Glycosides from Starfish *Culcita* novaeguineae

Yunyang Lu¹, Hu Li^{1,2}, Minchang Wang³, Yang Liu¹, Yingda Feng¹, Ke Liu³ and Haifeng Tang^{1,*}

- ¹ Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
- ² First Motorized Detachment of Shanghai Armed Police Corps, Shanghai 200126, China
- ³ Nuclear Magnetic Resonance Center, Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
- * Correspondence: tanghaifeng71@163.com; Tel.: +86-29-8477-4748

Table S1. The 13 C NMR data of compounds echinasteroside C (3), linckoside F (5) and linckoside L3 (6).

- Table S2. The inhibition ratio of the new compounds against glioblastoma cell lines at 24h.
- Table S3. The inhibition ratio of the new compounds against glioblastoma cell lines at 48h.
- Table S4. The inhibition ratio of the new compounds against glioblastoma cell lines at 72h.
- Figure S1. ¹H NMR (500 MHz, in C₅D₅N) spectrum of Culcinoside A (1)
- Figure S2. ¹³C NMR (125 MHz, in C₅D₅N) spectrum of Culcinoside A (1)
- Figure S3. HSQC spectrum of Culcinoside A (1)
- Figure S4. HMBC spectrum of Culcinoside A (1)
- Figure S5. ¹H-¹H COSY spectrum of Culcinoside A (1)
- Figure S6. NOESY spectrum of Culcinoside A (1)
- Figure S7. ¹H NMR (800 MHz, in C₅D₅N) spectrum of Culcinoside B (2)
- Figure S8. ¹³C NMR (200 MHz, in C₅D₅N) spectrum of Culcinoside B (2)
- Figure S9. HSQC spectrum of Culcinoside B (2)
- Figure S10. HMBC spectrum of Culcinoside B (2)
- Figure S11. ¹H-¹H COSY spectrum of Culcinoside B (2)
- Figure S12. ¹H NMR (500 MHz, in CD₃OD) spectrum of Culcinoside C (4)
- Figure S13. ¹³C NMR (125 MHz, in CD₃OD) spectrum of Culcinoside C (4)
- Figure S14. HSQC spectrum of Culcinoside C (4)
- Figure S15. HMBC spectrum of Culcinoside C (4)
- Figure S16. ¹H-¹H COSY spectrum of Culcinoside C (4)
- Figure S17. NOESY spectrum of Culcinoside C (4)
- Figure S18. ¹H NMR (500 MHz, in C₅D₅N) spectrum of Culcinoside D (7)
- Figure S19. ¹³C NMR (125 MHz, in C₅D₅N) spectrum of Culcinoside D (7)
- Figure S20. HSQC spectrum of Culcinoside D (7)
- Figure S21. HMBC spectrum of Culcinoside D (7)
- Figure S22. ¹H-¹H COSY spectrum of Culcinoside D (7)
- Figure S23. NOESY spectrum of Culcinoside D (7)
- Figure S24.HRESIMS spectrum of Culcinoside A (1)
- Figure S25. HRESIMS spectrum of Culcinoside B (2)

Figure S26.HRESIMS spectrum of Culcinoside C (4)

Figure S27.HRESIMS spectrum of Culcinoside D (7)

position	3 ^a	5 ^a	6 ^b	
1	39.5	39.1	39.8	
2	28.3	28.0	28.0	
3	76.8	76.4	77.6	
4	126.6	126.2	127.0	
5	149.5	148.6	148.6	
6	76.1	75.7	76.5	
7	45.0	44.6	44.5	
8	76.1	75.7	76.3	
9	57.8	57.4	57.9	
10	37.8	37.4	37.8	
11	19.7	19.3	19.6	
12	43.1	42.7	43.1	
13	45.2	44.8	45.2	
14	64.3	63.8	63.7	
15	81.3	80.9	80.6	
16	85.6	82.5	83.1	
17	60.9	60.4	61.1	
18	17.7	17.3	16.9	
19	23.2	22.8	22.9	
20	30.7	30.2	31.8	
21	19.1	18.6	18.8	
22	37.3	35.0	30.2	
23	25.1	32.8	31.7	
24	35.1	153.9	77.5	
25	37.3	43.4	33.9	
26	68.1	67.0	17.3	

Table S1. The ¹³C-NMR (500 MHz) data of compounds echinasteroside C (3), linckoside F (5)

and linckoside L3 (6) (δ in ppm).

27	18.1	17.5	17.6
28		108.9	66.2
2-OMe-Xyl			
1'	104.9	104.5	104.7
2'	85.6	85.2	85.0
3'	78.1	77.7	77.6
4'	71.7	71.3	71.3
5'	67.5	67.1	66.9
2-OMe	61.3	60.9	61.3

^a in C_5D_5N . ^b in CD_3OD .

Table S2. The inhibition ratio of the new compounds against glioblastoma cell lines at 24h.

Compounds	Inhibition ratio (%)		
	U87	U251	SHG44
1	19.32	17.71	21.27
2	10.16	8.47	9.33
4	12.14	13.35	9.82
7	7.78	11.22	11.88

The concentration of each compound was 10 $\mu mol/L.$

Table S3. The inhibition ratio of the new compounds against glic	oblastoma cell lines at 48h.
--	------------------------------

Compounds	Inhibition ratio (%)		
	U87	U251	SHG44
1	54.85	48.63	55.68
2	19.91	16.44	18.75
4	26.26	28.45	19.42
7	15.81	25.57	26.14

The concentration of each compound was 10 µmol/L.

Tuote of The minoration fundo of the new compounds against ghootastonia con mices at / 2m

Compounds	Inhibition ratio (%)		
	U87	U251	SHG44
1	63.42	61.38	65.88
2	25.73	21.82	22.95
4	34.26	37.13	24.35
7	20.64	33.58	34.62

The concentration of each compound was 10 µmol/L.

Figure S1. $^1\!H$ NMR (500 MHz, in $C_5D_5N)$ spectrum of Culcinoside A (1)

Figure S2. 13 C NMR (125 MHz, in C₅D₅N) spectrum of Culcinoside A (1)

Figure S4. HMBC spectrum of Culcinoside A (1)

Figure S6. NOESY spectrum of Culcinoside A (1)

f1 (ppm)

Figure S7. 1 H NMR (500 MHz, in C₅D₅N) spectrum of Culcinoside B (2)

Figure S8. 13 C NMR (125 MHz, in C₅D₅N) spectrum of Culcinoside B (2)

Figure S10. HMBC spectrum of Culcinoside B (2)

Figure S11. ¹H-¹H COSY spectrum of Culcinoside B (2)

Figure S12. ¹H NMR (500 MHz, in CD₃OD) spectrum of Culcinoside C (4)

Figure S13. 13 C NMR (125 MHz, in CD₃OD) spectrum of Culcinoside C (4)

Figure S14. HSQC spectrum of Culcinoside C (4)

Figure S15. HMBC spectrum of Culcinoside C (4)

Figure S16. ¹H-¹H COSY spectrum of Culcinoside C (4)

Figure S17. NOESY spectrum of Culcinoside C (4)

Figure S18. ¹H NMR (500 MHz, in C₅D₅N) spectrum of Culcinoside D (7)

Figure S19. 13 C NMR (125 MHz, in C₅D₅N) spectrum of Culcinoside D (7)

Figure S20. HSQC spectrum of Culcinoside D (7)

Figure S21. HMBC spectrum of Culcinoside D (7)

Figure S22. ¹H-¹H COSY spectrum of Culcinoside D (7)

Figure S23. NOESY spectrum of Culcinoside D (7)

Figure S26.HRESIMS spectrum of Culcinoside C (4)

Figure S27.HRESIMS spectrum of Culcinoside D (7)