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Abstract: A crude methanolic extract of the Indonesian sponge Clathria bulbotoxa showed a potent
cytotoxic activity against the human epidermoid carcinoma A431 cells. An investigation of the active
components led to the isolation of three new compounds named crambescidins 345 (1), 361 (2), and
373 (3), together with the known related metabolites crambescidins 359 (4), 657 (5), and 800 (6). The
structures of the compounds were determined by spectroscopic analysis. These compounds 1–4 that
possess a simple pentacyclic guanidine core exhibited moderate cytotoxicity against the A431 cells
with the IC50 values of 7.0, 2.5, 0.94, and 3.1 µM, respectively, while the known compounds 5 and 6
that possess a long aliphatic side chain were found to be significantly cytotoxic. On the other hand, in
an anti-oomycete activity test against the fungus-like plant pathogen Phytophthora capsici, 1–4 showed
a higher activity than that of 5 and 6, suggesting that the long aliphatic side chain plays a significant
role for cytotoxicity, but is not effective or suppressive for anti-oomycete activity.
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1. Introduction

Marine sponges (phyla Porifera) are one of the most prolific and the largest sources of novel
bioactive compounds among marine organisms [1,2], with more than 200 new compounds reported
each year [3]. During the last decade from 2001 to 2010, approximately 2400 new natural products
had been discovered from 671 species of sponges, contributing 29% of the marine natural products
reported within the period [4]. Ecological studies reported that sponges produce a wide array of
secondary metabolites for defensive purposes to protect them from threats of competitors, predators,
and pathogens [5,6]. Furthermore, sponges are frequently a host for microbial symbionts, which are
regarded as one of the most important sources of bioactive molecules [7].

Studies on Indonesian marine sponges are interesting because Indonesia is the largest
archipelagic country in the world, encompassing approximately 86,700 square kilometers of coral
reef ecosystems [8], which are important for sponges as the most dominant benthic inhabiting coral
reefs [9]. The Indonesian coral reefs are located in the coral triangle area, which is the global center of
marine biodiversity and is recognized as the richest region on the earth [10]. Therefore, sponges from
the coral ecosystems produce metabolites with various biological properties and become a target of
continuing searching for new bioactive compounds [11,12].
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We recently investigated the biological activity of extracts from Indonesian marine
organisms, including six sponge species (Agelas conifera, Carteriospongia foliascens, Clathria bulbotoxa,
Clathria reinwardti, Haliclona koromella, and Tedania ignis), and found that an extract of the sponge C.
bulbotoxa was highly cytotoxic. The sponges of the genus Clathria are widely distributed in the tropical
shallow waters and temperate regions, especially along the cost of the southern hemisphere [13,14].
This genus has been recognized as an excellent producer of novel secondary metabolites exhibiting
diverse chemical structures including alkaloids [15–20], carotenoids [21,22], peptides [23], sugars [24],
terpenoids [25,26], and sterols [27–29].

For the above reasons as well as the abundant population of the Clathria bulbotoxa in the Samalona
Island, South Sulawesi Sea, we were interested in the investigation of bioactive compounds from
this sponge, leading to the isolation of three new crambescidin-type guanidine alkaloids 1–3 as well
as three known related products 4–6. Herein, we present the isolation, structure elucidation, and
biological characterization of these guanidine alkaloids.

2. Results and Discussion

2.1. Isolation and Structural Elucidation

The MeOH extract of the freeze-dried sponge was found to be higly cytotoxic against the human
epidermoid carcinoma cell line A431 at an IC50 value of 0.046 µg/mL and to exhibit anti-oomycete
activity against the fungus-like plant pathogen Phytophthora capsici at a dose of 50 µg/disk. The active
extract was subjected to bioassay-guided fractionation, followed by the final reversed-phase high
performance liquid chromatography (HPLC) to yield six compounds 1–6. The compounds 4–6 were
identified as crambescidins 359 [30], 657 [31], and 800 [32] (Figure 1), respectively, by comparison with
published spectroscopic data, whereas the compounds 1–3 were found to be new crambescidin analogs.
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Figure 1. Chemical structures of 1–6.

Crambescidin 345 (1) possesses the molecular formula of C20H31N3O2 deduced from a high
resolution electrospry ionization mass spectrum (HR-ESIMS) using the pseudo-molecular ion at m/z
346.2495 [M + H]+ (calculated for C20H32N3O2 346.2489). The infra red (IR) spectrum of 1 exhibited a
characteristic absorption at 3109 cm−1, which was also observed for 2 (3107 cm−1), 3 (3111 cm−1), and
the other known crambescidin-type analogs [31,33–35]. It was reported that this absorption was due
to the N-H streching mode of the cyclic guanidine structure [36].
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The 1H and 13C NMR spectra (Tables 1 and 2) showed that 1 consisted of 30 hydrogen and
20 carbon atoms. A hetero-nuclear single quantum coherence (HSQC) experiment indicated that all
of the hydrogen atoms were attached to carbons, revealing the presence of five CH, eleven CH2, one
CH3, and three C. Two additional protons were observed at δH 10.20 and 10.28 in CDCl3 (Figure S2),
supporting the presence of the above-mentioned guanidine moiety characteristic of the crambescidin
alkaloids. The signals of the three quaternary carbons were found at δC 85.1 (C-8), 81.3 (C-15), and
149.4 (C-20). Other NMR signals were characterized as an olefinic bond [δC 134.2/δH 5.50 (C-4) and δC

131.4/δH 5.71 (C-5)], one methyl [δC 10.8/δH 0.84 (C-1)], one oxymethylene [δC 62.6/δH 3.69 (C-19)],
one oxymethine [δC 72.1/δH 4.35 (C-3)], two N-subtituted methines [δC 54.9/δH 4.03 (C-10) and δC

53.5/δH 3.96 (C-13)], and ten methylenes (δC 19.5–39.1/δH 1.45–2.59) based on their chemical shifts.
These NMR data exhibited a close similarity to those for crambescidin 359 (4) [30], except for the
CH2-19 in 1, which is replaced with an ethylidene (CH3-CH<) in 4.

Table 1. 1H NMR data for 1–3 (CD3OD).

Position 1 a 2 b 3 a

1 0.84, t (7.2) 0.87, t (6.8) 0.84, t (7.2)
2a 1.46, m

1.38, m
1.46, m

2b 1.54, m 1.54, m

3 4.35, brd (10.8)
1.41, m

4.33, brd (10.2)1.47, m
4 5.50, dt (10.8, 2.1) 3.63, brt (12.6) 5.50, dt (11.2, 2.1)
5a

5.71, m
1.29, m

5.71, m5b 1.67, m
6a 2.15, dt (15.3, 7.2) 1.74, m 2.15, dt (15.3, 7.2)
6b 2.42, brt (15.3) 1.85, m 2.42, brt (15.3)
7a 1.97, dd (13.5, 6.0)

1.74, m
1.97, dd (13.5, 6.0)

7b 2.27, t (13.5) 2.27, t (13.5)
9a 1.45, t (12.7) 1.57, t (12.8) c 1.45, t (12.9)
9b 2.59, dd (12.7, 4.8) 2.19, dd (12.8, 4.2) d 2.59, dd (12.9, 4.8)
10 4.03, m 4.00, m 4.05, m

11a 1.75, m 1.73, m 1.75, m
11b 2.31, m 2.30, m 2.32, m
12a 1.75, m 1.73, m 1.75, m
12b 2.31, m 2.30, m 2.32, m
13 3.96, m 4.00, m 4.03, m

14a 1.53, t (13.0) 1.59, t (12.8) c 1.59, t (13.0)
14b 2.33, dd (13.0, 4.5) 2.21, dd (12.8, 4.2) d 2.21, dd (13.0, 4.8)
16a

1.77, m 1.74, m
1.73, m

16b 1.77, m
17a

1.80, m
1.74, m 1.77, m

17b 1.85, m 1.85, m
18a

1.61, m
1.26, m 1.26, m

18b 1.70, m 1.70, m
19 3.69, m 3.74, m 3.50, m
20 1.11, d (9.0) 1.42, m
21 0.85, t (7.2)

Data were observed at a 600 MHz or b 400 MHz; c,d Interchangeable signal within the same marks.
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Table 2. 13C NMR data for 1–3 (CD3OD).

Position 1 a 2 b 3 a

1 10.8, CH3 13.8, CH3 11.3, CH3
2 30.3, CH2 19.4, CH2 30.3, CH2
3 72.1, CH 38.7, CH2 72.1, CH
4 134.2, CH 71.1, CH 134.3, CH
5 131.4, CH 31.7, CH2 131.4, CH
6 24.4, CH2 19.5, CH2

c 24.5, CH2
7 38.5, CH2 34.7, CH2

d 38.5, CH2
8 85.1, C 81.6, C 85.1, C
9 37.9, CH2 40.4, CH2 37.9, CH2

10 54.9, CH 53.7, CH e 54.9, CH
11 30.8, CH2 30.7, CH2 30.8, CH2
12 30.8, CH2 30.7, CH2 30.8, CH2
13 53.5, CH 53.4, CHe 53.5, CH
14 39.1, CH2 40.4, CH2 40.4, CH2
15 81.3, C 81.6, C 81.5, C
16 35.1, CH2 34.6, CH2

d 34.7, CH2
17 19.5, CH2 19.7, CH2

c 19.5, CH2
18 25.9, CH2 33.3, CH2 31.3, CH2
19 62.6, CH2 68.2, CH 73.3, CH
20 149.4, C 22,0 CH3 30.0, CH2
21 149.0, C 10.2, CH3
22 149.4, C

Data were obtained at a 150 MHz or b 100 MHz; The number of hydrogen on carbon was determined by a
hetero-nuclear single quantum coherence (HSQC); c–e Interchangeable signals within the same marks.

A double quantum filtered correlation spectroscopy (DQF-COSY) experiment was performed to
determine the connectivity of the proton-bearing carbons described above, suggesting the presence
of four substructures, CH3-1–CH2-2–CH-3–CH-4=CH-5–CH2-6–CH2-7, CH2-9–CH-10–CH2-11,
CH2-12–CH-13–CH2-14, and CH2-18–CH2-19 (Figure 2a). A hetero-nuclear multiple-bond connectivity
(HMBC) experiment was conducted to connect these substructures and the quaternary carbons. The
HMBC correlations from H2-6, H2-7, and H-9 to C-8, and from H-9 to C-7 revealed the position of
the quaternary carbon C-8, and the correlations from H2-14, H2-16, and H2-19 to C-15 confirmed the
position of the quaternary carbon C-15. The other important HMBC signals were found from H2-14,
H2-17, and H2-18 to C-16, from H2-16 to C-14, and from H2-19, H2-18, and H2-16 to C-17, supporting
the position of the methylene carbons C-16 and C-17. Although the HMBC signal from H-3 to C-8 was
not found, the chemical shift of the C-3 (δC 72.1) indicated that this carbon had an oxygen functionality.
Based on these analyses, crambescidin 345 (1) was deduced as a new crambescidin analog, lacking
the alkyl group at C-19, which is the second example among the crambescidins that were reported
previously [35].

The relative configuration for 1 was assigned by nuclear Overhauser effect spectroscopy NOESY
experiments (Figure 2b). The NOESY correlations of δH 4.35 (H-3)/2.27 (H-7b), δH 1.97 (H-7a)/1.45
(H-9a), and δH 2.42 (H-6b)/2.59 (H-9b) indicated the relative configuration between C-3 and C-8.
The relative stereochemistry between C-10 and C-13 was confirmed by the NOESY correlations of
H-9a/δH 1.75 (H-11a), δH 1.75 (H-12a)/1.53 (H-14a), H-9b/δH 4.03 (H-10), H-10/δH 3.96 (H-13), and
H-13/δH 2.33 (H-14b). An additional NOESY correlation of δH 1.77 (H-16)/H-14a determined the
relative configuration between C-15 and other positions. Furthermore, the large coupling constants of
H-9a/H-10 (J = 12.7 Hz) and H-14a/H-13 (J = 13.0 Hz) confirmed the 1,2-diaxial orientation of these
hydrogen pairs, concluding the relative stereochemistry of 1, as described in Figure 2b. The specific
rotation value of 1 (−7.1) indicated a close similarity to that of the structurally similar analog 4 (−8.9),
suggesting that 1 possesses the same absolute configuration as that of 4 (Figure 1).
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Crambescidin 361 (2) possesses the molecular formula of C21H35N3O2 deduced from a HR-ESIMS
using the pseudo-molecular ion at m/z 362.2765 [M + H]+ (calculated for C21H36N3O2, 362.2802).
Detailed analysis of the 1H and 13C NMR spectral data (Tables 1 and 2) indicated that 2 consisted
of 34 hydrogene and 21 carbon atoms, and HSQC experiments implied that all the protons were
connected to carbons (four CH, twelve CH2, two CH3, and three C). In addition, two exchangeable
proton signals were observed at δH 10.13, and 10.16 in acetone-d6 (Figure S17 and Table S1). The
signals of the three quaternary carbons were observed at δC 81.6 (C-8 and C-15) and 149.0 (C-21).
Other important NMR signals were recognized as two methyls [δC 13.8/δH 0.87 (C-1) and δC 22.0/δH

1.11 (C-20)], two oxymethines [δC 71.1/δH 3.63 (C-4) and δC 68.2/δH 3.74 (C-19)], two N-subtituted
methines [δC 53.7/δH 4.00 (C-10) and δC 53.4/δH 4.00 (C-13)], and twelve methylenes [δC 19.4–40.4/
δH 1.26–3.30]. Although these data were characteristic of the crambescidin alkaloids, they showed the
absence of the olefinic function that was found in most of the reported crambescidin-type alkaloids.
In addition, the pentacyclic guanidine core is symmetrical, as indicated by highly overlapping chemical
shifts of the corresponding proton and carbon signals (Tables 1 and 2).

The DQF-COSY correlations for 2 indicated the five partial structures CH3-1–CH2-2,
CH2-3–CH-4–CH2-5–CH2-6, CH2-9–CH-10–CH2-11, CH2-12–CH-13–CH2-14, and CH2-17–CH2-18–
CH-19–CH3-20 (Figure 3a). The HMBC correlations from H3-1 to C-3, and from H2-3 to C-2 and C-1
confirmed the presence of a propyl group on C-4. Furthermore, the correlations from H2-6 to C-8, from
H2-7 to C-6, from H2-17 to C-15, and from H2-16 to C-17 confirmed the connectivities of C-6–C-7 and
C-16–C-17. An HMBC spectrum was obtained in acetone-d6 (Figure 3a, dotted arrows), indicating
the following important correlations: from NHb to C-7, C-8, C-9, and C-21 and from NHa to C-14,
C-15, and C-16, revealing not only the presence of guanidine moiety, but also the position of C-7, C-8,
C-15, and C-16. Based on these analyses, crambescidin 361 (2) was deduced as a new crambescidin
analog with two tetrahydropyrane rings instead of the combination of the left-side unsaturated seven
membered ring and the right-side tetrahydropyrane ring as found in 1 and most of the crambescidin
analogs. Another structural feature of 2 is the presence of a propyl group as an alkyl substituent, which
is quite rare in the crambescidin-type alkaloids [37,38].

The relative configuration of 2 was examined by the interpretation of NOESY correlations
(Figure 3b). The chair conformation of both the tetrahydropyrane rings was determined by the
1,3-diaxial correlations of δH 3.63 (H-4)/1.85 (H-6b) and δH 3.74 (H-19)/1.85 (H-17b) (Figure 3b, dotted
double arrows). The NOESY correlations of δH 10.16 (NHb)/H-4, NHb/H-6b, δH 10.13 (NHa)/H-19,
and NHa/H-17b indicated that both the guanidine NHs were also in the axial orientation about the
tetrahydropyrane rings. The additional NOESY correlations of δH 1.74 (H-7)/1.57 (H-9a), H-7/2.19
(H-9b), H-9b/δH 4.00 (H-10), δH 4.00 (H-13)/2.21 (H14b), δH 1.59 (H14a)/1.74 (H-16), and H14b/H-16
suggested the relative configuration between C-8 and C-10 and between C-13 and C-15. Although the
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NOESY correlation of H-10/H-13 was not obtained due to their identical chemical shifts, the large
coupling constants of 12.8 Hz between H-9a and H-10 and between H-14a and H-13 described that both
H-10 and H-13 were in the axial-like α orientation. These findings support the relative stereochemistry
of 2, as shown in Figure 3b. Since it was difficult to determine the position of two alkyl groups due
to the highly symmetrical nature of 2, we tentatively assigned the alkyl position as shown becasue
most of the related guanidine alkaloids possess a methylated tetrahydropyrane ring at the right side
of the molecule. The specific rotation of 2 (−7.9) similar to that of 1 suggests the identical absolute
configuration of 1 and 2.
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Figure 3. Two dimensional NMR correlations for 2. (a) Key DQF-COSY (bold bonds) and HMBC
correlations (solid arrows in CD3OD and dotted arrows in acetone-d6); (b) Key NOESY correlations in
CD3OD (solid arrows) and acetone-d6 (dotted arrows). The position of the propyl and methyl groups
at C-4 and C-19 are tentative.

Crambescidin 373 (3) possesses the molecular formula C22H35N3O2 as determined by the
pseudo-molecular ion at m/z 374.2786 [M + H]+ (calculated for C22H36N3O2, 374.2802) in HR-ESIMS.
The NMR data (Tables 1 and 2) were found to be similar to those for 1 and 4, indicating that 3
was another crambescidin analog with an ethyl group as supported by the signals at δH 1.42/δC

30.0 (CH2-20) and δH 0.85/δC 10.2 (CH3-21). This ethyl group was found to be connected to C-19 by
a DQF-COSY experiment (Figure 4). The exchangeable protons of 3 were observed at δH 10.49 and
10.06 in CDCl3, revealing that 3 is the 19-ethyl homolog of 1. Although satisfactory NOESY data for 3
was not obtained due to the lack of the sample, the close similarity of the NMR data and the specific
rotation (−8.0 for 3 and −8.9 for 4) to those for 4 suggests that the absolute configuration of 3 is the
same as that of 4.

Guanidine compounds were mostly reported from marine organisms [39]. They have
intriguing structures and wide range of biological activities and have attracted much attention
of chemists and pharmacologists for their potential as drug leads [40]. Due to the strongest
organic bases, guanidines are fully protonated under physiological conditions to form guanidinium
cation, which can interact with biopolymers, such as DNA and proteins through hydrogen
bonds and/or electrostatic interactions [41,42]. Since the first pentacyclic guanidine alkaloid
ptilomycalin A was isolated from the Caribbean sponge Ptilocaulis spiculifer and a Red Sea
sponge Hemimycale sp. in 1989 [43], an array of cyclic guanidine alkaloids has been reported to
date, including ptilomycalins [44,45], crambescidins [30,32,33,35,46,47], monanchocidins [48,49], and
monanchomycalins [37,38]. Particularly, a number of metabolites of these types have been isolated
mainly from marine sponges of the genera Monanchora and Crambe. The crambescidins and related
alkaloids are characterized by a pentacyclic guanidine skeleton (vessel part) with two alkyl groups
(ethyl at C-3 and methyl at C-19 in most cases) and a long aliphatic chain with a terminal carboxylate
or a terminal spermidine amide. Crambescidins 359 (4) and 431 were reported in 2000 as the first
crambescidin analogs lacking the long aliphatic chain (at C-14 in 5 and 6), which is replaced by a
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hydrogen atom and an ethyl ester group, respectively [30]. Our compounds 1–3 are additional analogs
of this type and are structurally characteristic in the following points. Crambescidin 345 (1) is the
first analog with a non-alkylated tetrahydropyrane ring. Crambescidin 361 (2) possesses a rare propyl
substituent as well as two tetrahydropyrane rings instead of the combination of one unsaturated
oxepane and one tetrahydropyrane rings, which are found in most of the crambescidin-type alkaloids.
Crambescidin 373 (3) is the first analog with an ethyl group at the right-side tetrahydropyrane ring,
which possesses a methyl group in most of the reported crambescidin-type alkaloids.
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2.2. Biological Activity

Biological activities of the isolated crambescidins 1–6 were evaluated as cytotoxic and
anti-oomycete agents against the human epidermoid carcinoma cell line A431 and the oomycete
plant pathogen Phytophthora capsici, respectively. All of the compounds showed cytotoxicity with an
IC50 value lower than 10 µM (Figure 5a). The strongest cytotoxicity was observed for the long side
chain-bearing crambescidins 5 and 6 with IC50’s of 12 and 48 nM, respectively. Meanwhile, other
crambescidins (1–4) without the long side chain part indicated a moderate cytotoxicity with IC50’s
of 7.0, 2.5, 0.94, and 3.1 µM, respectively. On the contrary, all new crambescidins 1–3 and the known
analog 4 showed a higher anti-oomycete activity [minimum inhibitory dose (MID) of 50 µg/disk]
than that for 5 and 6 (MID of 100 µg/disk or higher) (Figure 5b). It is interesting to note that the
highly cytotoxic crambescidins (5 and 6) with a long side chain showed a lower anti-oomycete activity
than the others. Especially, the most cytotoxic compound 5 showed no anti-oomycete activity even at
500 µg/disk (not indicated in Figure 5b). Consequently, these biological activities are approximately in
an inverse relationship (Figure 5c).

Previous structure-activity relationship (SAR) studies on the crambescidins and their analogs
reported that the presence of the long aliphatic side chain enhanced the cytotoxic effect of the guanidine
core [50–53]. Our cytotoxicity data indicating the significant effect of the long aliphatic side chain are in
good agreement with the previous reports. The long aliphatic side chain could affect the permeability
of the guanidine alkaloid into animal cells. In contrast, it did not affect or rather diminished the
anti-oomycete activity, which might be attributable to a low permeability through the microbial cell
wall (mainly β-glucan) or/and into the hydrophilic agar medium that is used in the test.
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Figure 5. Biological activity of 1–6. (a) Cytotoxicity against the human epidermoid carcinoma A431
cells. The curves were generated by sigmoid fitting; (b) Anti-oomycete activity against the plant
pathogen P. capsici. The same colors are used as in Figure 5a; (c) Inverse relationship between the
cytotoxicity and anti-oomycete activities of 1–6. The data for anti-oomycete activity were observed at a
dose of 100 µg/disk.

3. Materials and Methods

3.1. General Procedures

Thin layer chromatography (TLC) was conducted by using precoated silica gel 600 F254
plates (Art. 5715, Merck, Darmstadt, Germany) or reverse phase C18 F254 plates (Art. 15389,
Merck, Darmstadt, Germany). Flash column chromatography was carried out on silica gel by a
medium-pressure gradient system equipped with a Pump Module C-605 and a Pump Manager C-615
(BÜCHI, Flawil, Switzerland). High resolution ESIMS were recorded on a Mariner Biospectrometry
Workstation (Applied Biosystems of Thermo Fisher Scientific, Waltham, MA, USA) equipped with
an electrospray ion source in the positive mode. High performance liquid chromatography (HPLC)
was performed on a high pressure gradient system that is composed of pumps PU-2087, a degasser
DG-2080-53, a mixer MX-2080-32, and a detector UV-2075 (JASCO, Tokyo, Japan). FT-IR spectra were
recorded on an FT/IR-400 spectrometer instrument (JASCO). Specific rotations were observed on a
DIP-370 polarimeter (JASCO). NMR spectra were investigated on an Avance ARX400 (400 MHz for 1H)
or Avance III HD 600 MHz Cryo-probe spectrometer (600 MHz for 1H) (Bruker Bio Spin, Yokohama,
Japan). The chemical shifts (ppm) were referenced to the solvent residual peak at δH 7.26 ppm (CDCl3),
δH 3.30/δC 49.0 ppm (CD3OD), or δH 2.06/δC 29.9 ppm (acetone-d6).

3.2. Isolation of Bioactive Compounds

A reddish Indonesian sponge was collected by hand using a snorkeling equipment at a depth
between 0.5 and 3 m in Samalona Island (5◦8′16.4” S–119◦23′22.60” E), South Sulawesi Sea, in August
2015. The species was identified as Clathria bulbotoxa based on the observation of its morphology and
spicule elements under a microscope. The sponge possesses bulbous toxa spicule bulging toward the
center that distinguishes it from other species [54]. The organism (750 g, wet weight) was lyophilized,
homogenized in MeOH (1.5 L) and stand at room temperature for 3 days. The mixture was filtrated
and the filtrate was concentrated to give an aqueous residue, which was extracted three times with
EtOAc (225 mL). The combined organic layers were concentrated to yield EtOAc extract (6.4 g). This
extract was dissolved in 90% MeOH (75 mL) and extracted twice with hexane (150 mL). Both of the
layers were concentrated to obtain 90% MeOH (3.1 g) and hexane (2.5 g) fractions.

The 90% MeOH fraction, which showed a cytotoxicity (IC50 = 0.046 µg/mL), was separated
by open column chromatography (silica gel, 100 g) eluted with 2, 5, 10, 100% of MeOH in CHCl3
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(600 mL each). The fractions were collected by every 100 mL, and appropriately combined to give
six fractions (fr.1–fr.6), where fr.3 (222 mg) eluted with 2–5% MeOH and fr.6 (2.1 g) eluted with 100%
MeOH showed significant cytotoxic activity of IC50 = 0.013 and 0.092 µg/mL, respectively. Fr.3 was
further chromatographed on silica gel (HI-FLASHTM Size L, 30 g, Yamazen Co., Osaka, Japan) with
linear gradient of 10–80% CHCl3-MeOH-H2O (90:9:1) in EtOAc (40 min) at a flow rate of 10 mL/min
to yield eight fractions (fr.3-1–fr.3-8). The cytotoxic fr.3-5 (33.1 mg, IC50 = 0.8 ng/mL) was purified
by HPLC [Develosil ODS-HG-5 (20 × 250 mm, Nomura Chemical Co., Ltd., Seto, Aichi, Japan),
80–100% MeOH-20 mM NH4CH3COO (40 min), 6 mL/min, detected at 215 nm] to give crambescidin
657 (5, 16.2 mg, tR = 48.0 min). The three fractions, fr.3-6–fr.3-8 (110 mg in total, IC50 = 0.081 µg/mL)
were combined and subjected to HPLC [Develosil ODS-HG-5 (20 × 250 mm), 50–80% MeOH-0.1%
trifluoroacetic acid (TFA) (60 min), flow rate 6 mL/min, monitored at 205 nm] to obtain a 1-containing
fraction (1.5 mg, tR = 40.8 min), crambescidin 359 (4, 26.0 mg, tR = 45.6 min), crambescidin 361 (2, 2.4 mg,
tR = 55.4 min), and crambescidin 373 (3, 1.1 mg, tR = 62.0 min). The 1-containing fraction was further
purified by HPLC [Develosil ODS-UG-5 (10 × 250 mm), 60% MeOH-0.1% TFA, 2 mL/min, detected at
215 nm] to obtain pure crambescidin 345 (1, 0.6 mg, tR = 19.7 min). The fr.6 (2.1 g, IC50 = 0.092 µg/mL)
was fractionated through a silica gel (50 g) open column, eluted with 10, 20, 40, 60, 100% MeOH-H2O
(90:10) in CHCl3 to afford four fractions (fr.6-1–fr.6-4). The active fr.6-3 (500 mg, IC50 = 0.017 µg/mL)
eluted with 40% MeOH-H2O (90:10) in CHCl3 was then chromatographed on silica gel (HI-FLASHTM,
Size L, 30 g) with gradient elution of 10–100% MeOH in CHCl3 for 40 min at a flow rate of 10 mL/min
to give four fractions (fr.6-3-1–fr.6-3-4). The active fr. 6-3-3 (180 mg, IC50 = 0.019 µg/mL) eluted with
54–86% MeOH was subjected to HPLC [Develosil ODS-HG-5 (20 × 250 mm), 40–60% MeCN-0.1% TFA
(60 min), 8 mL/min, detected at 230 nm] to obtain crambescidin 800 (6, 21.7 mg, tR = 36.3 min).

3.2.1. Crambescidin 345 (1)

Colorless powder; [α]26
D −7.1 (0.051, MeOH); IR (film) νmax 3222, 3109, 3019, 1678, 1654, 1607,

1201, 1177, 1131, and 720 cm−1; HR ESIMS m/z 346.2495 [M + H]+; calcd. for C20H32N3O2 346.2489.

3.2.2. Crambescidin 361 (2)

Pale yellow solid; [α]26
D −7.9 (0.13, MeOH); IR (film) νmax 3236, 3107, 1676, 1652, 1606, 1201, 1176,

1131, 1017, and 719 cm−1; HR ESIMS m/z 362.2765 [M + H]+; calcd. for C21H36N3O2 362.2802.

3.2.3. Crambescidin 373 (3)

Pale yellow solid; [α]26
D −8.8 (0.025, MeOH); IR (film) νmax 3228, 3111, 3019, 1678, 1652, 1606, 1201,

1177, 1131, and 720 cm−1; HR ESIMS m/z 374.2786 [M + H]+; calcd. for C22H36N3O2 374.2802.

3.2.4. Crambescidin 359 (4)

Pale yellow solid; [α]26
D −8.9 (0.23, MeOH) (reference [45]: [α]20

D −12.7 (0.4, MeOH)).

3.2.5. Crambescidin 657 (5)

Yellowish solid; [α]25
D −11.0 (0.18, MeOH) (reference [55]: [α]25

D −12.1 (0.34, MeOH)).

3.2.6. Crambescidin 800 (6)

Yellowish solid; [α]25
D −8.7 (1.6, MeOH) (reference [45]: [α]20

D −7.8 (4.1, MeOH)).

3.3. Anti-oomycetete Assay

The test was performed by the paper disk diffusion method [56]. Briefly, a piece of the mycelia
of the plant pathogen Phytophthora capsici NBRC 30696 was pre-cultured on a potato-glucose-agar
medium in a 9-cm dish at 25 ◦C and 60% humidity for seven days in the dark. A piece (5 × 5 mm)
of the colony was then inoculated on the center of a 5% V8 juice-1.5%-agar medium in a 9-cm dish
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and incubated for 48 h at 25 ◦C and 60% humidity. A paper disk (8 mm in diameter) containing a
sample at an appropriate dose (none, 25, 50, and 100 µg/disk) was placed at 1 cm away from the
colony front. After incubation for another 22–24 h, the inhibition zone formed around the sample
disk was measured. The activity was represented by the minimum dose that expressed an obvious
inhibition zone (usually 0.5 mm or wider).

3.4. Cytotoxicity Assay

A431 human vulva-derived epidermoid carcinoma cells were used to evaluate the cytotoxicity
of the compounds under the conditions reported previously [57]. Briefly, the cells at a density of
1.0 × 104 cells/well were cultured in a 24-well plate (BD Falco) in DF6F medium with various
concentrations of compounds (none, 1, 3, 10 µM for 1–4; none, 0.001, 0.01, 0.1, and 1.0 µM for 5 and 6) at
37 ◦C in a humidified 95% air/5% CO2 condition in a CO2 incubator (Thermo Fisher Scientific, Waltham,
MA, USA), followed by cell counting with a Coulter Counter (Coulter Electronics Inc., Hialeah, FL,
USA) on day 5. The DF6F medium was composed of a 1:1 ratio of DMEM and Ham F-12 medium
(DF), supplemented with six factors, i.e., insulin (10 µg/mL), transferrin (5 µg/mL), 2-aminoethanol
(10 µM), sodium selenite (10 nM), 2-mercaptoethanol (10 µM), and oleic acid conjugated with fatty
acid-free bovine serum albumin (9.4 µg/mL) (all of the chemicals were from Sigma-Aldrich, St. Louis,
MO, USA). IC50 values are shown by the means of two (for 1–4 and 6) or three (5) replicates.

4. Conclusions

In the present study, we discovered three new guanidine alkaloids, crambescidins 345 (1), 361 (2),
and 373 (3), together with three known crambescidins 4–6 from the Indonesian sponge Clathria
bulbotoxa. The structures of 1–3 with absolute stereochemistry were determined by spectroscopic
analysis, including two-dimensional NMR and specific rotation. Although the pentacyclic guanidine
core has been found in a number of the crambescidins and related natural compounds, a high diversity
in the alkyl substituents (methyl, ethyl, propyl) on the cyclic ether rings of our compounds was
observed for the first time, whereas most related products possess ethyl group at C-3 and methyl group
at C-19. The biological assays revealed that the long aliphatic side chain in compounds 5 and 6 plays a
quite important role for the cytotoxicity against cancer cells (possibly due to the increase of permeability
through cell membrane), but conversely not for the inhibition of an oomycete plant pathogen.
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