Supplementary Material

Palladium-catalyzed dehydrogenative coupling: an efficient synthetic strategy for the construction of the quinoline core

Asier Carral-Menoyo, ¹ Verónica Ortiz-de-Elguea, ¹ Mikel Martinez-Nunes, ¹ Nuria Sotomayor ^{1,*} and Esther Lete ^{1,*}

Table of contents

1. Synthesis of substituted anilines 1a-n.	S2
1.1. General procedure for the akylation of protected anilines S5 . Synthesis of 1a,b and 1k-n	S2
1.2. General procedure for the cross metathesis reaction. Synthesis of 1c-j.	S4
2. Copies of ¹ H and ¹³ C NMR spectra of compounds described	S8

¹ Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), Apdo. 644. 48080 Bilbao (Spain).

1. Synthesis of substituted anilines 1a-n

Substrates **1a-b**, and **1k-n** were prepared by alkylation of the corresponding protected aniline with buten-3-yl tosylate. Subsequent cross metathesis catalyzed by Grubbs second generation catalyst provided the substituted alkenes **1c-j**.

Scheme S1. Preparation of substrates 1a-n

1.1. General procedure for the akylation of protected anilines S5. Synthesis of 1a,b and 1k-n.

Over a solution of the corresponding protected aniline $\bf S5$ (1 mmol) in toluene (3 mL), anhydrous K_2CO_3 (1 mmol), powdered NaOH (4 mmol) and nBu_4NHSO_4 (0.05 mmol) were added. The mixture was stirred for 1 h at room temperature and then, it was heated at 80 °C for 15 min. Afterwards, a solution of but-3-enyl-4-methylbenzenesulfonate (1.6 mmol) in toluene (0.7 mL) was added, and the reaction was heated at 80 °C for the indicated time. The mixture was allowed to cool down to room temperature, and a 1 M aqueous solution of HCl (25 mL) was added. The organic layer was separated and the aqueous layer was extracted with Et_2O (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated *in vacuo*. Flash column chromatography (silica gel, hexane/AcOEt) afforded the corresponding *N*-substituted but-3-en-1-ylanilines $\bf 1a,b$ and $\bf 1k-n$.

Methyl but-3-en-1-yl(3,5-dimethoxyphenyl)carbamate (1a). Prepared from methyl (3,5-dimethoxyphenyl)carbamate S5a (2.05 g, 9.72 mmol), anhydrous K_2CO_3 (1.34 g, 9.72 mmol), powdered NaOH (1.55 g, 38.9 mmol) and nBu_4NHSO_4 (0.16 g, 0.49 mmol) in toluene (29.2 mL). The mixture was stirred for 1 h at room temperature and then, it was heated at 80 °C for 15 min. Afterwards, a solution of but-3-enyl-4-methylbenzenesulfonate 1c (3.51 g, 15.6 mmol) in toluene (11 mL) was added, and the reaction was heated at 80 °C for 28 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 8/2), affording 1a (2.40 g, 93%) as an oil: IR (ATR) 1706 cm⁻¹ (C=O); 1 H NMR (CDCl₃): \bar{o} 2.17-2.31 (m, 2H, NCH₂CH₂), 3.51-3.78 (m, 11H, COCCH₃), NCH₂CH₂, 2 × OCH₃), 4.82-5.11 (m, 2H, CH=CH₂), 5.69 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H, CH=CH₂), 6.30 (s, 3H, H₂, H₄, H₆); 13 C NMR (CDCl₃): \bar{o} 32.7 (NCH₂CH₂), 49.6 (NCH₂CH₂), 52.6 (COOCH₃), 55.2 (2 ×

O<u>C</u>H₃), 98.7 (C₄), 105.9 (C₂, C₆), 116.6 (CH=<u>C</u>H₂), 135.2 (<u>C</u>H=CH₂), 143.3 (C₁), 155.8 (<u>C</u>O), 160.8 (C₃, C₅); MS (EI) m/z (rel intensity) 265.1 (M⁺, 25), 225.1 (13), 224.1 (100), 211.1 (12), 180.1 (23), 165.1 (22), 152.1 (39), 137.1 (10); HRMS (CI) calcd. for C₁₄H₂₀NO₄ [MH⁺], 266.1396; found: 266.1392.

N-(But-3-en-1-yl)-*N*-(3,5-dimethoxyphenyl)acetamide (1b). Prepared from N-(3,5dimethoxyphenyl)acetamide S5b (2.05 g, 10.5 mmol), anhydrous K2CO3 (1.45 g, 10.5 mmol), powdered NaOH (1.68 g, 42.0 mmol) and ⁿBu₄NHSO₄ (0.18 g, 0.53 mmol) in toluene (31.5 mL). The mixture was stirred for 1 h at room temperature and then, it was heated at 80 °C for 15 min. Afterwards, a solution of but-3-enyl-4-methylbenzenesulfonate (3.80 g, 16.8 mmol) in toluene (9.5 mL) was added, and the reaction was heated at 80 °C for 4 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 6/4), affording 1b (1.73 g, 66%) as an oil: IR (ATR)1656 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 1.80 (s, 3H, COC<u>H</u>₃), 2.18-2.32 (m, 2H, NCH₂C<u>H₂), 3.65-3.72</u> (m, 2H, NCH_2CH_2), 3.74 (s, 6H, 2 × OCH₃), 4.95-5.08 (m, 2H, CH=C H_2), 5.69 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H, $C\underline{H}$ =CH₂), 6.25 (d, J = 2.2 Hz, 2H, H₂, H₆), 6.37 (t, J = 2.2 Hz, 1H, H₄); ¹³C NMR (CDCl₃): δ 22.4 (CO \underline{C} H₃), 32.2 (NCH₂CH₂), 47.8 (NCH₂CH₂), 55.3 (2 × OCH₃), 99.4 (C₄), 106.4 (C₂, C₆), 116.4 (CH=CH₂), 135.3 (<u>C</u>H=CH₂), 144.5 (C₁), 161.3 (C₃, C₅), 169.8 (<u>C</u>O); MS (EI) m/z (rel intensity) 249.1 (M⁺, 6), 195.1 (12), 167.1 (10), 166.1 (100); HRMS (CI) calcd. for $C_{14}H_{20}NO_3$ [MH $^+$], 250.1443; found: 250.1455.

Methyl but-3-en-1-yl(3,4,5-trimethoxyphenyl)carbamate (1k). Prepared from carbamate **S5k** (0.40 g, 1.66 mmol), anhydrous K_2CO_3 (0.24 g, 1.66 mmol), powder NaOH (0.27 g, 6.66 mmol) and *n*-Bu₄NHSO₄ (0.029 g, 0.083 mmol) in toluene (20 mL). The mixture was stirred for 1 h at room temperature and then heated at 80 °C for 15 min. Afterwards but-3-enyl 4-methylbenzenesulfonate (0.60 g, 2.65 mmol) in toluene (3 mL) was added and the reaction mixture was heated at 80 °C for 28 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 60:40) affording **1k** as an oil (0.29 g, 59 %): IR (ATR) 1700 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.26-2.37 (m, 2H, NCH₂CH₂), 3.64-3.76 (m, 5H, COOCH₃, NCH₂), 3.83 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 5.04-5.11 (m, 2H, NCH₂CH₂CH=CH₂), 5.78 (ddt, *J* = 17.1 Hz, 10.3 Hz, 6.8 Hz, 1 H, NCH₂CH₂CH=CH₂), 6.41 (s, 2H, H₂, H₆); ¹³C NMR (CDCl₃): δ (ppm) = 32.7 (NCH₂CH₂), 49.9 (CO₂CH₃), 52.8 (NCH₂), 56.1 (C₃O₂CH₃, C₅O₂CH₃), 60.7 (C₄O₂CH₃), 105.1 (C₂, C₆), 116.7 (CH=CH₂), 135.2 (C₁), 136.8 (C₄), 137.3 (CH=CH₂), 153.2 (C₃,C₅), 156.0 (NCO); MS (EI) *m/z* (rel intensity): 295 (M⁺, 71), 280 (19), 254 (100), 226 (23), 195 (46), 182 (24), 180 (51), 167 (13); HRMS (ESI⁺) calcd. for C₁₅H₂₂NO₅ [M+H]⁺, 296.1498; found: 296.1509.

Methyl benzo[d][1,3]dioxol-5-yl(but-3-en-1-yl)carbamate (1l). Prepared from carbamate S5I (0.72 g, 3.72 mmol), anhydrous K₂CO₃ (0.49 g, 3.72 mmol), powder NaOH (0.57 g, 14.88 mmol) and *n*-Bu₄NHSO₄ (0.060 g, 0.19 mmol) in toluene (45 mL).). The mixture was stirred for 1 h at room temperature and then heated at 80 °C for 15 min. Afterwards but-3-enyl 4-methylbenzenesulfonate (1.26 g, 5.55 mmol) in toluene (5 mL) was added, and the reaction mixture was heated at 80 °C for 28 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 70:30) affording 1l as an oil (0.79 g, 85 %): IR (ATR) 1700 cm⁻¹ (C=O); ¹H NMR (CDCl₃): \bar{o} 2.20-2.34 (m, 2H, NCH₂CH₂), 3.60-3.70 (m, 5H, COOCH₃, NCH₂), 4.98-5.09 (m, 2H, NCH₂CH₂CH=CH₂), 5.73 (ddt, J = 17.0 Hz, 10.2 Hz, 6.8 Hz, 1 H, NCH₂CH₂CH=CH₂), 5.95 (s, 2H, OCH₂O), 6.59-6.66 (m, 2H, H₂, H₅), 6.75 (d, J = 8.1 Hz, 1H, H₆); ¹³C NMR (CDCl₃): \bar{o} 32.6 (NCH₂CH₂), 50.0 (CO₂CH₃), 52.8 (NCH₂), 101.5 (OCH₂O), 108.1 (C₂), 109.0 (C₅), 116.8 (C₆), 120.8 (CH=CH₂), 135.1 (C₁), 135.5 (CH=CH₂), 146.3 (C₄), 147.8 (C₃), 156.2 (NCO); MS (EI) m/z (rel intensity): 249 (M⁺, 40), 209 (11), 208 (100), 176 (9), 164 (21), 149 (65), 136 (27), 106 (13); HRMS (ESI⁺) calcd. for C₁₃H₁₆NO₄ [M+H]⁺, 250.1079; found: 250.1092.

Methyl but-3-en-1-yl(3,4-dimethoxyphenyl)carbamate (1m). Prepared from carbamate S5m (0.63 g, 2.96 mmol), anhydrous K_2CO_3 (0.42 g, 2.96 mmol), powder NaOH (0.48 g, 11.85 mmol) and *n*-Bu₄NHSO₄ (0.051 g, 0.15 mmol) in toluene (35 mL). The mixture was stirred for 1 h at room temperature and then, it was heated at 80 °C for 15 min. Afterwards, a solution of but-3-enyl-4-methylbenzenesulfonate (1.072 g, 4.74 mmol) in toluene (4.5 mL) was added, and the reaction mixture was heated at 80 °C for 28 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 70:30) affording 1m as an oil (0.71 g, 91 %): IR (ATR) 1700 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.23-2.30 (m, 2H, NCH₂CH₂), 3.62-3.71 (m, 5H, COOCH₃, NCH₂), 3.82 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.97-5.07 (m, 2H, NCH₂CH₂CH=CH₂), 5.73 (ddt, *J* = 17.0 Hz, 10.2 Hz, 6.8 Hz, 1H, NCH₂CH₂CH=CH₂), 6.62-6.75 (m, 2H, H₂, H₅), 6.80 (d, *J* = 8.4 Hz, 1H, H₆); ¹³C NMR (CDCl₃): δ 32.6 (NCH₂CH₂CH₂CH₂CH₂), 49.9 (CO₂CH₃), 52.7 (NCH₂), 55.8 (OCH₃), 111.0 (C₂), 111.4 (C₅), 116.6 (C₆), 119.6 (CH=CH₂), 134.5 (C₁), 135.2 (CH=CH₂), 147.8 (C₄), 149.0 (C₃), 156.1 (NCO); MS (EI) m/z (rel intensity): 265 (M⁺, 47), 225 (13), 224 (100), 192 (15), 180 (11), 165 (50), 152 (39), 150 (31); HRMS (ESI⁺) calcd. for C₁4H₂₀NO₄ [M+H]⁺; 266.1396; found: 266.1393.

Methyl but-3-en-1-yl(3,5-dimethylphenyl)carbamate (1n). Prepared from carbamate S5n (0.87 g, 4.88 mmol), anhydrous K_2CO_3 (0.70 g, 4.88 mmol), powder NaOH (0.80 g, 19.54 mmol) and *n*-Bu₄NHSO₄ (0.085 g, 0.25 mmol) in toluene (58.5 mL). The mixture was stirred for 1 h at room temperature and then, it was heated at 80 °C for 15 min. Afterwards, a solution of but-3-enyl-4-methylbenzenesulfonate (1.77 g, 7.82 mmol) in toluene (7 mL) was added, and the reaction mixture was heated at 80 °C for 28 h. After work-up, the crude reaction product was purified by flash column chromatography (silica gel, hexane/AcOEt 70:30) affording 1n as an oil (0.87 g, 76 %): IR (ATR) 1700 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.19-2.39 (m, 8H, NCH₂CH₂, 2 x CH₃), 3.62-3.76 (m, 5H, COOCH₃, NCH₂), 4.99-5.10 (m, 2H, NCH₂CH₂CH=CH₂), 5.76 (ddt, *J* = 17.1 Hz, 10.4 Hz, 6.8 Hz, 1 H, NCH₂CH₂CH=CH₂), 6.80 (s, 2H, H₂, H₆), 6.90 (s, 1H, H₄); ¹³C NMR (CDCl₃): δ 21.2 (CH₃), 32.7 (NCH₂CH₂), 49.9 (CO₂CH₃), 52.8 (NCH₂), 116.6 (CH=CH₂), 125.2 (C₂, C₆), 128.6 (C₄), 135.2 (CH=CH₂), 138.6 (C₃, C₅), 141.5 (C₁), 156.2 (NCO); MS (EI) *m/z* (rel intensity): 233 (M⁺, 12), 192 (100), 148 (28), 133 (26), 121 (18), 105 (25); HRMS (ESI⁺) calcd. for C₁₄H₂₀NO₂ [M+H]⁺, 234.1494; found: 234.1503.

- **1.2.** General procedure for the cross metathesis reaction. Synthesis of 1c-j. Over a solution of the corresponding N-but-3-en-1-ylaniline 1a-b (1 mmol) in dry CH_2Cl_2 (29 mL) under argon atmosphere, the corresponding acrylate (10 or 20 mmol) or phenyl vinyl sulfone (2.5 mmol) was added. The mixture was stirred, and then, a solution of 2^{nd} generation Grubbs catalyst (0.05 mmol) in dry CH_2Cl_2 (8 mL) was added *via canula*. The mixture was heated under reflux for 72 or 24 h, and every 24 h additional amounts of the catalyst (5 mol%) were added. Afterwards, the mixture was allowed to cool down to room temperature and the solvent was removed under reduced pressure. Flash column chromatography (silica gel, hexane/AcOEt 6/4) afforded the corresponding products **1c-j**.
- (*E*)-Methyl (3,5-dimethoxyphenyl)[4-(phenylsulfonyl)but-3-en-1-yl]carbamate (1c). Prepared from carbamate 1a (0.12 g, 0.45 mmol) and phenyl vinyl sulfone (0.18 g, 1.09 mmol) in dry CH_2CI_2 (13 mL), as well as a solution of 2^{nd} generation Grubbs catalyst (19.1 mg, 0.023 mmol) in dry CH_2CI_2 (3.7 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (19.1 mg, 0.023 mmol) were added every 24 h. After purification by flash column chromatography, 1c was obtained (0.13 g, 71%) as an oil: IR (ATR) 1702 cm⁻¹ (C=O), 1229 cm⁻¹, 1157 cm⁻¹ (R-SO₂-R); ¹H NMR (CDCI₃): δ 2.43 2.54 (m, 2H, NCH₂CH₂), 3.65 (s, 3H, COOCH₃), 3.70 3.86 (m, 8H, NCH₂CH₂, 2 × OCH₃), 6.25 (d, J = 2.2 Hz, 2H, H₂, H₆), 6.30 6.42 (m, 2H, H₄, CH=C<u>H</u>-SO₂Ph), 6.91 (dt, J = 15.2, 6.9 Hz, 1H, C<u>H</u>=CH-SO₂Ph),

7.46 - 7.66 (m, 3H, H_{2′}, H_{4′}, H_{6′}), 7.76 - 7.91 (m, 2H, H_{3′}, H_{5′}); ¹³C NMR (CDCl₃): δ 30.4 (NCH₂CH₂), 48.4 (NCH₂CH₂), 53.1 (COOCH₃), 55.4 (2 × OCH₃), 99.1 (C₄), 105.7 (C₂, C₆), 127.6 (C_{2′}, C_{6′}), 129.3 (C_{3′}, C_{5′}), 132.2 (C_{4′}), 133.4 (CH=CH-SO₂Ph), 140.4 (C_{1′}), 142.7 (C₁), 143.1 (CH=CH-SO₂Ph), 155.8 (CO), 161.0 (C₃, C₅); MS (ESI[†]) m/z (rel intensity) 407.1 (MH[†] + 1, 20), 406.1 (MH[†], 100), 374.1 (1); HRMS (ESI[†]) calcd. for C₂₀H₂₄NO₆S [MH[†]], 406.1324; found: 406.1326.

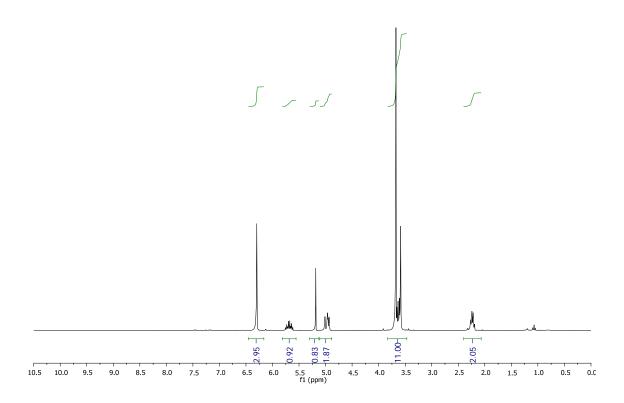
(*E*)-*N*-(3,5-dimethoxyphenyl)-*N*-[4-(phenylsulphonyl)but-3-en-1-yl]acetamide (1d). Prepared from acetamide 1b (0.15 g, 0.59 mmol) and phenyl vinyl sulfone (0.25 g, 1.47 mmol) in dry CH₂Cl₂ (17 mL), as well as a solution of 2nd generation Grubbs catalyst (25.0 mg, 0.029 mmol) in dry CH₂Cl₂ (4.7 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (25.0 mg, 0.029 mmol) were added every 24 h. After purification by flash column chromatography, 1d was obtained (0.18 g, 77%) as an oil: IR (ATR) 1652 cm⁻¹ (C=O), 1311, 1143 cm⁻¹ (R-SO₂-R); ¹H NMR (CDCl₃): δ (1.84 (s, 3H, COCH₃), 2.43-2.57 (m, 2H, NCH₂CH₂), 3.71 – 3.89 (m, 8H, NCH₂CH₂, 2 × OCH₃), 6.23 (d, J = 2.2 Hz, 2H, H₂, H₆), 6.31 – 6.49 (m, 2H, H₄, CH=CH-SO₂Ph), 6.92 (dt, J = 14.8, 6.8 Hz, 1H, CH=CH-SO₂Ph), 7.43 – 7.67 (m, 3H, H₂, H₄, H₆), 7.76 – 7.95 (m, 2H, H₃, H₅); ¹³C NMR (CDCl₃): δ 22.5 (COCH₃), 29.9 (NCH₂CH₂), 46.7 (NCH₂CH₂), 55.5 (2 × OCH₃), 99.8 (C₄), 106.2 (C₂, C₆), 127.6 (C₂, C₆), 129.3 (C₃, C₅), 132.2 (C₄), 133.4 (CH=CH-SO₂Ph), 140.5 (C₁), 143.4 (CH=CH-SO₂Ph), 144.2 (C₁), 161.6 (C₃, C₅), 170.5 (CO); MS (CI) m/z (rel intensity) 391.1 (MH⁺+ 1, 20), 390.1 (MH⁺, 79), 348.1 (22), 250.1 (26), 249.1 (16), 248.1 (67), 247.1 (14), 232.1 (16), 231.1 (13), 208.1 (12), 206.1 (21), 197.1 (17), 196.1 (99), 195.1 (100), 180.1 (11), 166.1 (29), 153.1 (15), 125 (17), 111 (42), 110 (19); HRMS (CI) calcd. for C₂₀H₂₄NO₅S [MH⁺], 390.1375; found: 390.1378.

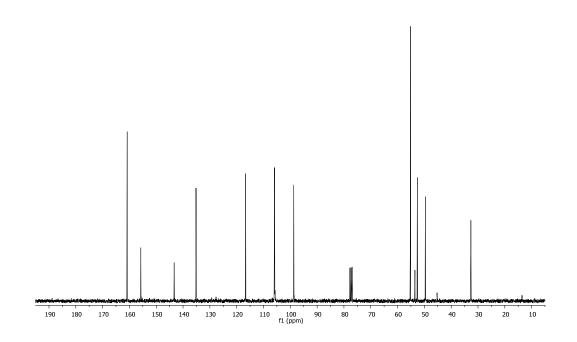
(*E*)-Methyl 5-[(3,5-dimethoxyphenyl)(methoxycarbonyl)amino]pent-2-enoate (1e). Prepared from methyl carbamate 1a (1.08 g, 4.09 mmol) and methyl acrylate (7.37 mL, 81.8 mmol) in dry CH₂Cl₂ (118 mL), as well as a solution of 2nd generation Grubbs catalyst (0.17 g, 0.20 mmol) in dry CH₂Cl₂ (33 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (0.17 g, 0.20 mmol) were added every 24 h. After purification by flash column chromatography, 1e was obtained (1.22 g, 88%) as a solid: mp (CH₂Cl₂) 68-70 °C; IR (ATR) 1727 cm⁻¹ (CO₂CH₃), 1691 cm⁻¹ (NCO₂CH₃); ¹H NMR (CDCl₃): δ 2.40-2.52 (m, 2H, NCH₂CH₂), 3.62-3.91 (m, 14H, 2 × OCH₃, COOCH₃, NCOOCH₃, NCH₂CH₂), 5.82-5.91 (m, 1H, CO-CH=CH), 6.32 (d, J = 2.1 Hz, 2H, H₂, H₆), 6.37 (t, J = 2.1 Hz, 1H, H₄), 6.88 (dt, J = 15.7, 7.3 Hz, 1H, CO-CH=CH); ¹³C NMR (CDCl₃): δ 31.2 (NCH₂CH₂), 48.9 (NCH₂CH₂), 51.5 (COOCH₃), 53.0 (COOCH₃), 55.4 (2 × OCH₃), 99.1 (C₄), 106.8 (C₂, C₆), 122.8 (CO-CH=CH), 143.1 (C₁), 145.4 (CO-CH=CH), 155.8 (NCOOCH₃), 161.0 (C₃, C₅), 166.6 (COOCH₃); MS (EI) m/z (rel intensity) 323.1 (M⁺, 11), 250.1 (18), 225.1 (13), 224.1 (100), 211.1 (18), 180.1 (21), 165.1 (19), 152.1 (36); HRMS (ESI) calcd. for C₁₆H₂₂NO₆ [MH⁺], 324.1447; found: 324.1458.

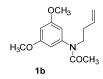
(E)-Methyl 5-[N-(3,5-dimethoxyphenyl)acetamido]pent-2-enoate (1f). Prepared from acetamide 1b (0.15 g, 0.59 mmol) and methyl acrylate (1.05 mL, 11.7 mmol) in dry CH₂Cl₂ (17 mL), as well as a solution of 2nd generation Grubbs catalyst (24.8 mg, 0.029 mmol) in dry CH₂Cl₂ (4.7 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (24.8 mg, 0.029 mmol) were added every 24 h. After purification by flash column chromatography, 1f was obtained (0.17 g, 91%) as a solid: mp (CH₂Cl₂) 63-65 °C; IR (ATR) 1724 cm⁻¹ (CO₂CH₃), 1656 cm⁻¹ (COCH₃); ¹H NMR (CDCl₃): δ 1.87 (s, 3H, CH₃), 2.40-2.53 (m, 2H, NCH₂CH₂), 3.60-3.86 (m, 11H, 2 × OCH₃, COOCH₃, NCH₂CH₂), 5.84 (d, J = 15.7 Hz, 1H, CO-CH=CH), 6.27 (d, J = 2.1 Hz, 2H, H₂, H₆), 6.43 (t, J = 2.1 Hz, 1H, H₄), 6.87 (dt, J = 15.7, 7.7 Hz, 1H, CO-CH=CH); ¹³C NMR (CDCl₃): δ 22.4 (COCH₃), 31.7 (NCH₂CH₂), 47.2 (NCH₂CH₂), 51.3 (COOCH₃), 55.4 (2 × OCH₃), 99.6 (C₄), 106.3 (C₂, C₆), 122.6 (CO-CH=CH), 144.3 (C₁), 145.6 (CO-COCH=CH), 144.3 (C₁), 145.6 (CO-CH=CH), 144.3 (C₁), 145.6 (CO

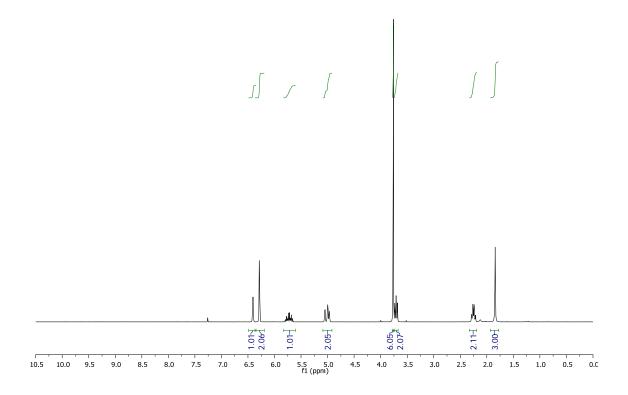
CH= $\underline{\text{C}}\text{H}$), 161.4 (C₃, C₅), 166.5 ($\underline{\text{C}}\text{OOCH}_3$), 170.1 (N $\underline{\text{C}}\text{OCH}_3$); MS (EI) m/z (rel intensity) 307.2 (M $^+$, 12), 234.1 (34), 208.1 (10), 195.1 (15), 167.2 (24), 166.2 (100), 153.1 (12); HRMS (ESI) calcd. for C₁₆H₂₂NO₅ [MH $^+$], 308.1498; found: 308.1507.

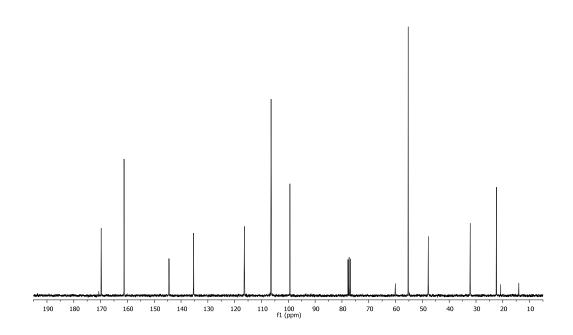
(*E*)-Methyl 5-[(3,5-dimethoxyphenyl)(methoxycarbonyl)amino]-2-methylpent-2-enoate (1g). Prepared from carbamate 1a (0.36 g, 1.36 mmol) and methyl methacrylate (2.91 mL, 27.3 mmol) in dry CH₂Cl₂ (39.4 mL), as well as a solution of 2^{nd} generation Grubbs catalyst (57.9 mg, 0.068 mmol) in dry CH₂Cl₂ (11 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (57.9 mg, 0.068 mmol) were added every 24 h. After purification by flash column chromatography, 1g was obtained (0.42 g, 92%) as an oil: IR (ATR) 1706 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 1.76 (s, 3H, CH₃C=CH), 2.36-2.46 (m, 2H, NCH₂CH₂), 3.56-3.80 (m, 14H, 2 × OCH₃, NCOOCH₃, COOCH₃, NCH₂CH₂), 6.29 (d, *J* = 1.5 Hz, 2H, H₆), 6.31-6.35 (m, 1H, H₄), 6.61-6.69 (m, 1H, CO-C(CH₃)=CH); ¹³C NMR (CDCl₃): δ 12.5 (CH₃), 27.8 (NCH₂CH₂), 49.2 (NCH₂CH₂), 51.7 (COOCH₃), 52.9 (COOCH₃), 55.3 (2 × OCH₃), 98.9 (C₄), 106.7 (C₂, C₆), 129.5 (CO-C(CH₃)=CH), 138.2 (CO-C(CH₃)=CH), 143.2 (C₁), 155.8 (NCOOCH₃), 160.9 (C₃, C₅), 168.2 (COOCH₃); MS (EI) *m/z* (rel intensity) 338.2 (M⁺ + 1, 2), 337.2 (M⁺, 10), 305.1 (13), 225.1 (16), 224.2 (100), 211.1 (16), 180.1 (24), 165.1 (18), 152.1 (37); HRMS (ESI) calcd. for C₁₇H₂₄NO₆ [MH⁺], 338.1604; found: 338.1604.

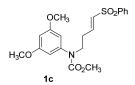

(E)-2,2,2-Trifluoroethyl 5-[(3,5-dimethoxyphenyl)(methoxycarbonyl)amino]pent-2-enoate (1h). Prepared from carbamate 1a (0.30 g, 1.12 mmol) and 2,2,2-trifluoroethyl acrylate (1.42 mL, 11.2 mmol) in dry CH₂Cl₂ (32.4 mL), as well as a solution of 2nd generation Grubbs catalyst (47.6 mg, 0.056 mmol) in dry CH2Cl2 (9 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (47.6 mg, 0.056 mmol) were added every 24 h. After purification by flash column chromatography, **1h** was obtained (0.41 g, 94%) as an oil: IR (ATR) 1739 cm⁻¹ (CO₂CH₂), 1701 cm⁻¹ (NCO₂CH₃); ¹H NMR $(CDCl_3)$: δ 2.45-2.57 (m, 2H, NCH_2CH_2), 3.56-3.91 (m, 11H, 2 × OCH_3 , $NCOOCH_3$, NCH_2CH_2), 4.49 (q, J =8.5 Hz, 2H, $CO_2CH_2CF_3$), 5.90 (d, J = 15.7 Hz, 1H, CO-CH=CH), 6.31 (d, J = 1.9 Hz, 2H, H_2 , H_6), 6.36-6.39 (m, 1H, H₄), 7.01 (dt, J = 15.7, 7.1 Hz, 1H, CO-CH=CH); ¹³C NMR (CDCl₃): δ 31.4 (NCH₂CH₂), 48.7 (NCH_2CH_2) , 52.9 $(COOCH_3)$, 55.3 $(2 \times OCH_3)$, 60.0 $(q, J = 36.6 Hz, COOCH_2CF_3)$, 99.0 (C_4) , 106.8 (C_2, C_3) C₆), 121.2 (CO-<u>C</u>H=CH), 123.0 (q, J = 275.8 Hz, <u>C</u>F₃), 143.0 (C₁), 148.3 (CO-CH=<u>C</u>H), 155.8 $(NCOOCH_3)$, 160.9 (C_3, C_5) , 164.2 $(COOCH_2)$; MS (EI) m/z (rel intensity) 392.2 $(M^+ + 1, 4)$, 391.2 $(M^+, 20)$, 250.1 (19), 225.1 (14), 224.2 (100), 211.1 (15), 180.1 (23), 165.1 (19), 152.1 (35); HRMS (ESI) Calcd. for $C_{17}H_{21}NO_6F_3$ [MH⁺], 392.1321; found: 392.1329.

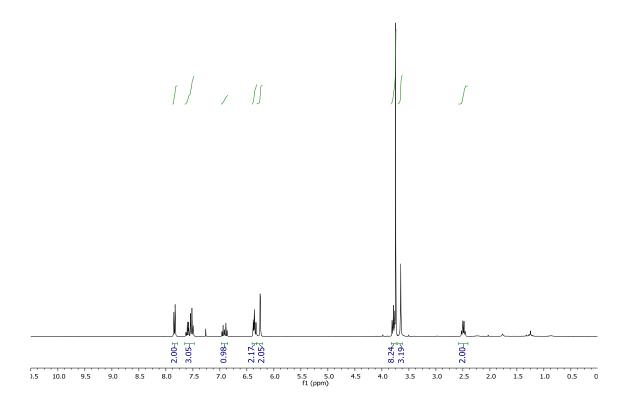

(*E*)-Dodecyl 5-[(3,5-dimethoxyphenyl)(methoxycarbonyl)amino]pent-2-enoate (1i). Prepared from carbamate 1a (0.29 g, 1.10 mmol) and lauryl acrylate (3.0 mL, 11.0 mmol) in dry CH₂Cl₂ (31.9 mL), as well as a solution of 2nd generation Grubbs catalyst (46.8 mg, 0.055 mmol) in dry CH₂Cl₂ (8.9 mL). The reaction mixture was heated under reflux for 72 h and additional amounts of the catalyst (46.8 mg, 0.055 mmol) were added every 24 h. After purification by flash column chromatography, 1i was obtained (0.53 g, quant.) as an oil: IR (ATR) 1713 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 0.82 (t, J = 6.6 Hz, 3H, CH₃), 1.15-1.33 (m, 18H, OCH₂CH₂(CH₂)₉CH₃), 1.52-1.64 (m, 2H, CO₂CH₂CH₂), 2.36-2.46 (m, 2H, NCH₂CH₂), 3.53-3.80 (m, 11H, 2 × OCH₃, NCOOCH₃, NCH₂CH₂), 4.04 (t, J = 6.7 Hz, 2H, CO₂CH₂D, 5.79 (d, J = 15.7 Hz, 1H, CO-CH=CH), 6.28 (d, J = 1.8 Hz, 2H, H₂, H₆), 6.29-6.33 (m, 1H, H₄), 6.67-6.96 (m, 1H, CO-CH=CH); ¹³C NMR (CDCl₃): δ 14.7 (CH₃), 22.7 (CH₃CH₂), 25.9 (COOCH₂CH₂CH₂), 28.6, 29.2, 29.3, 29.5, 29.6, 29.7, (7 × CH₂), 31.2 (NCH₂CH₂), 31.9 (CH₃CH₂CH₂), 48.9 (NCH₂CH₂), 52.9 (COOCH₃), 55.3 (2 × OCH₃), 64.4 (COOCH₂), 99.0 (C₄), 106.8 (C₂, C₆), 123.3 (CO-CH=CH), 143.1 (C₁), 145.0 (CO-CH=CH), 155.8

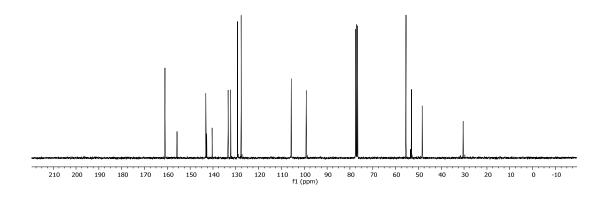

 $(NCOOCH_3)$, 161.0 (C_3, C_5) , 166.2 $(COOCH_2)$; MS (ESI) m/z (rel intensity) 479.3 $(MH^+ + 1, 25)$, 478.3 $(MH^+, 100)$; HRMS (ESI^+) calcd. for $C_{27}H_{44}NO_6$ $[MH^+]$, 478.3169; found: 478.3171.

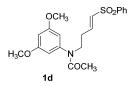

(*E*)-Benzyl 5-[(3,5-dimethoxyphenyl)(methoxycarbonyl)amino]pent-2-enoate (1j). Prepared from carbamate 1a (0.24 g, 0.92 mmol) and benzyl acrylate (1.40 mL, 9.2 mmol) in dry CH₂Cl₂ (26.5 mL), as well as a solution of 2nd generation Grubbs catalyst (38.9 mg, 0.046 mmol) in dry CH₂Cl₂ (7.4 mL). The reaction mixture was heated under reflux for 24 h and after purification by flash column chromatography, 1j was obtained (0.32 g, 86%) as an oil: IR (ATR)1706 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 2.43-2.53 (m, 2H, NCH₂CH₂), 3.64-3.81 (m, 11H, NCH₂CH₂, NCOOCH₃, 2 × OCH₃), 5.16 (s, 2H, CH₂Ph), 5.86-5.94 (m, 1H, CO-CH=CH), 6.33 (d, J = 2.2 Hz, 2H, H₂, H₆), 6.39 (t, J = 2.2 Hz, 1H, H₄), 6.94 (dt, J = 15.7, 7.1 Hz, 1H, CO-CH=CH), 7.22 – 7.40 (m, 5H, Ph); ¹³C NMR (CDCl₃): δ 31.3 (NCH₂CH₂), 48.9 (NCH₂CH₂), 53.0 (COOCH₃), 55.6 (2 × OCH₃), 66.1 (CH₂Ph), 99.1 (C₄), 106.8 (C₂, C₆), 122.9 (CO-CH=CH), 128.1 (C₂·, C₆·), 128.2 (C₄·), 128.6 (C₃·, C₅·), 136.1 (C₁·), 143.1 (C₁·), 145.9 (CO-CH=CH), 155.8 (NCOOCH₃), 161.0 (C₃, C₅), 165.9 (COOCH₂); MS (EI) m/z (rel intensity) 400.2 (M⁺ + 1, 2), 399.2 (M⁺, 7), 308.1 (24), 250.1 (16), 248.1 (19), 225.1 (13), 224.1 (100), 211.1 (13), 180.1 (25), 165.1 (19), 152,1 (37), 91.1 (49); HRMS (ESI⁺) calcd. for C₂₂H₂₆NO₆ [MH⁺], 400.1760; found: 400.1760.

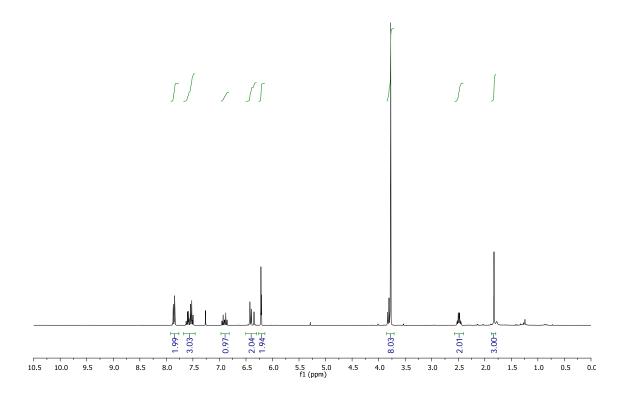

5. Copies of ¹H and ¹³C NMR spectra of compounds described.

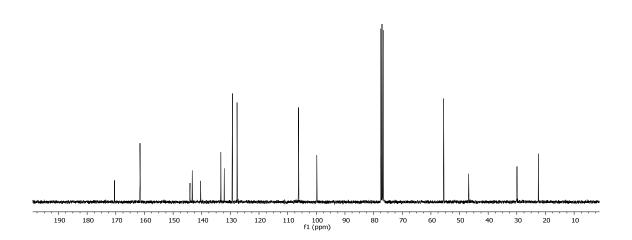


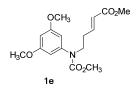


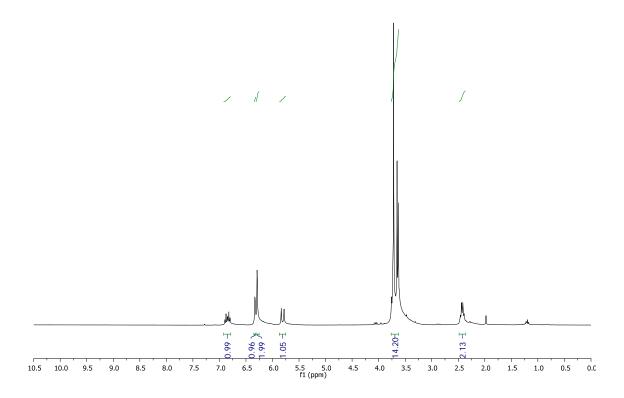


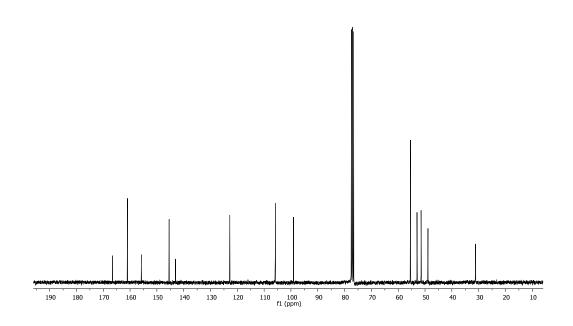


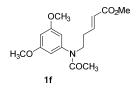


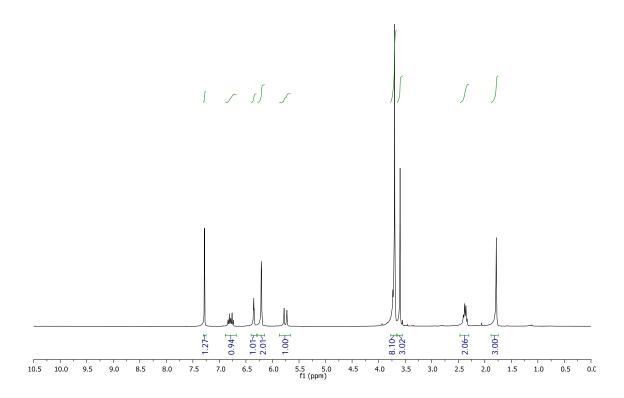


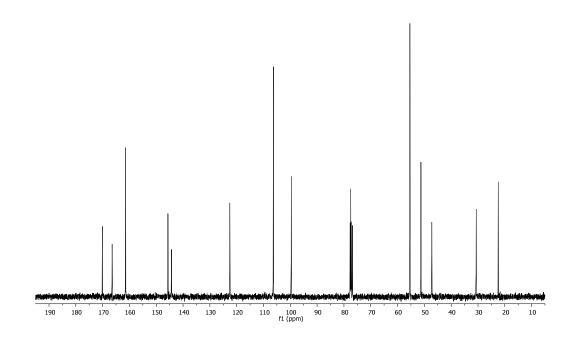


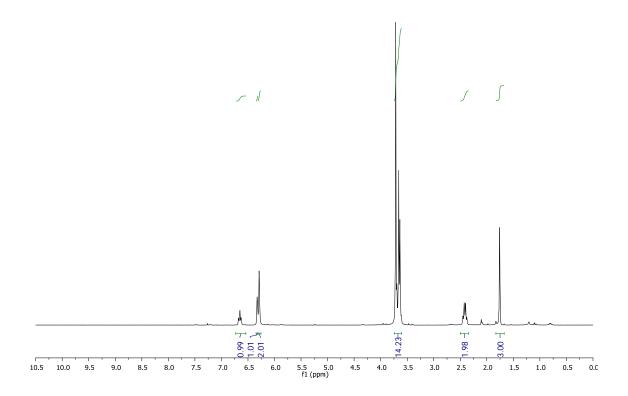


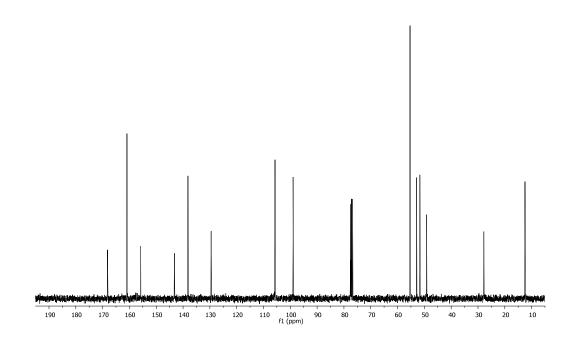


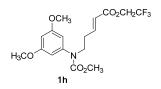


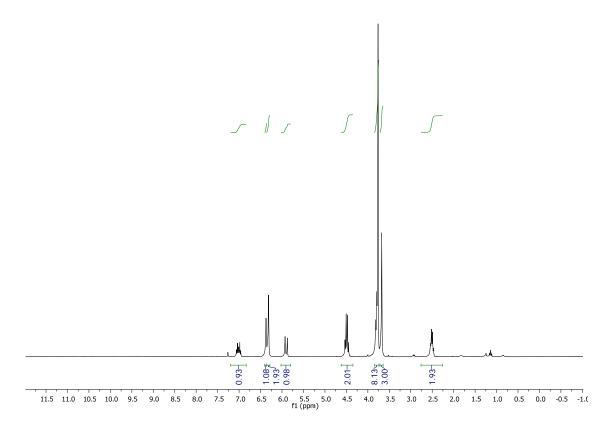


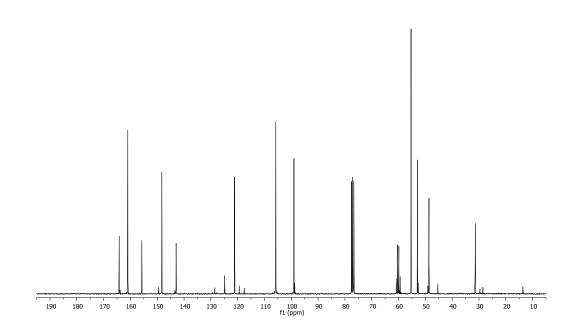


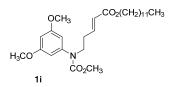


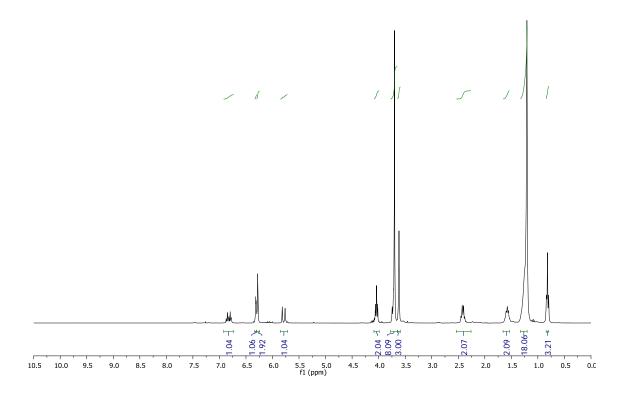


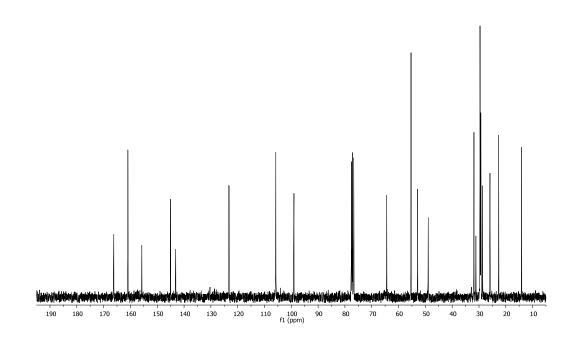


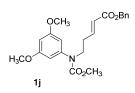


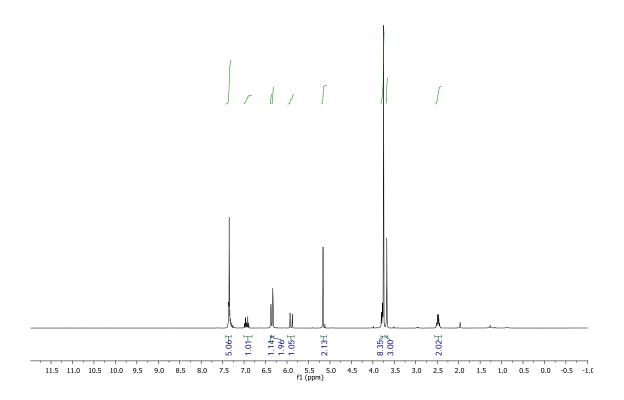

$$\begin{array}{c} \text{OCH}_3 & \text{CO}_2\text{Me} \\ \\ \text{N} & \text{CO}_2\text{CH}_3 \\ \\ \text{1g} \end{array}$$



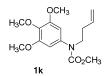


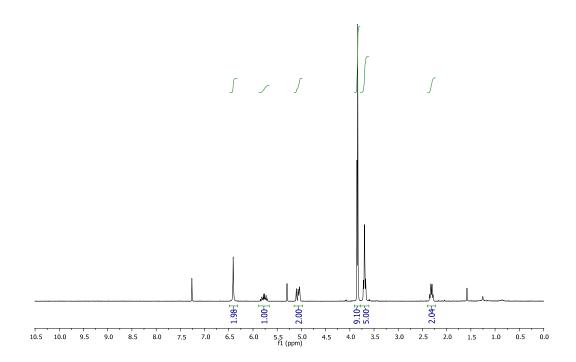


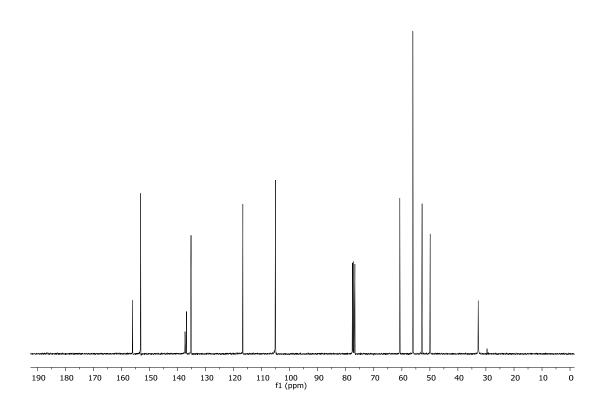


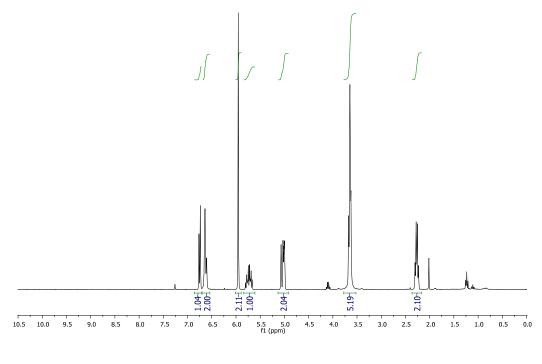


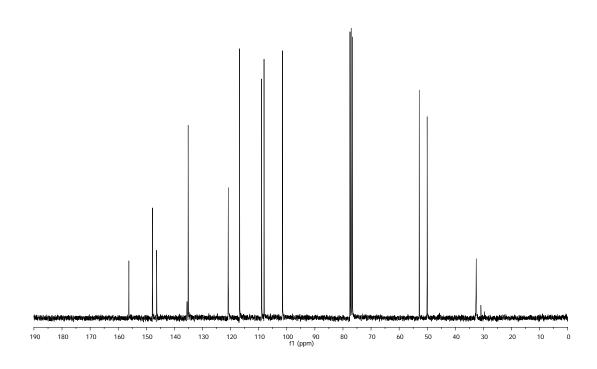


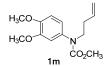


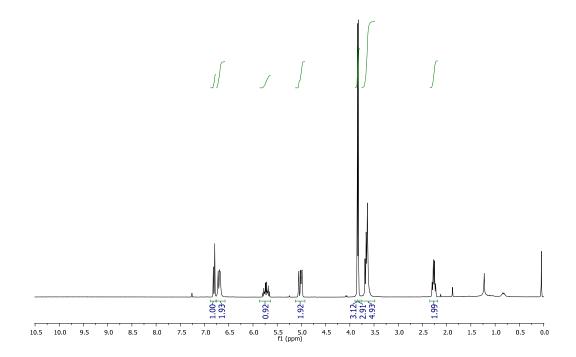


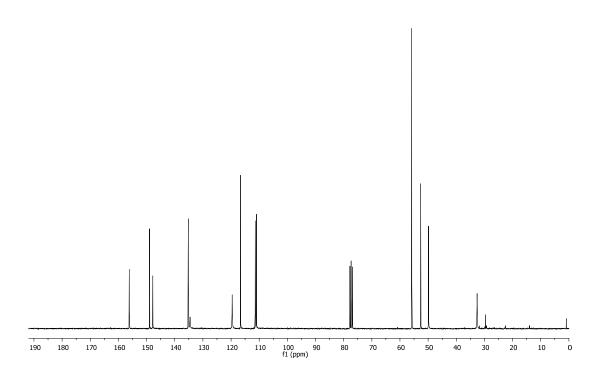


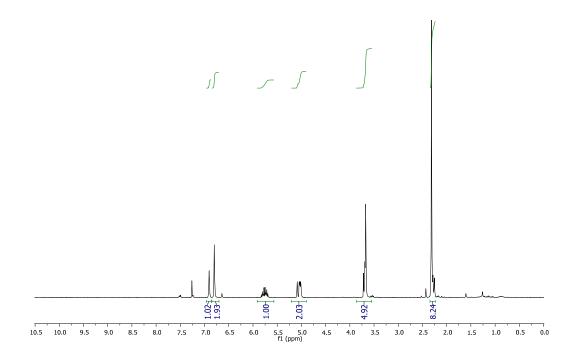


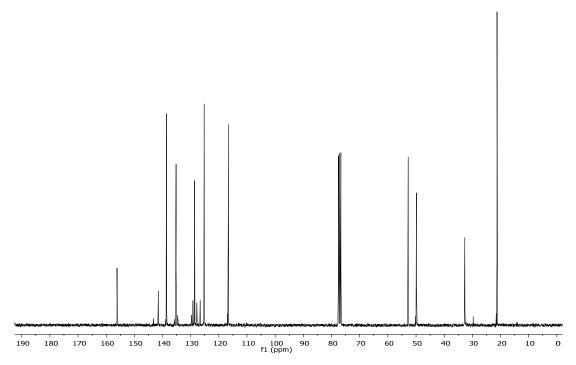


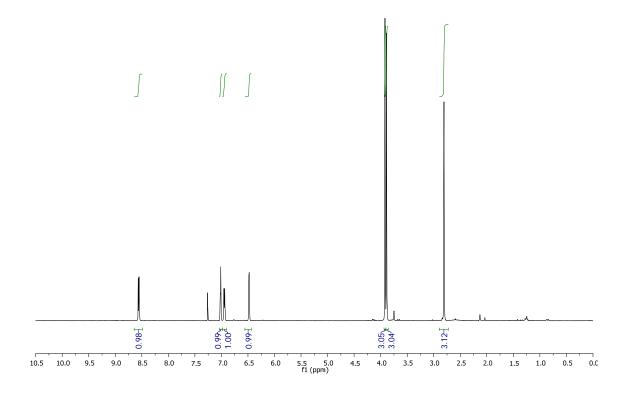


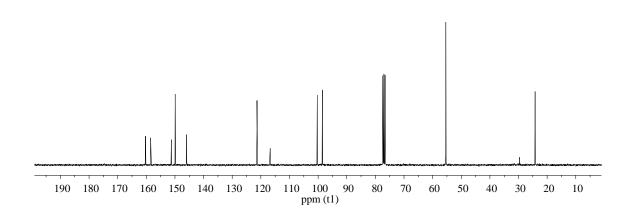


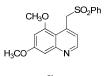


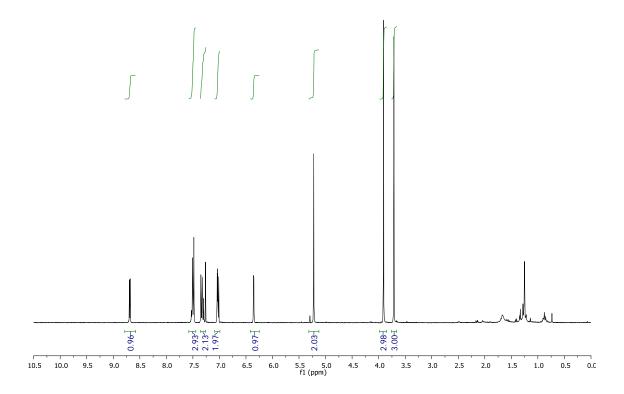


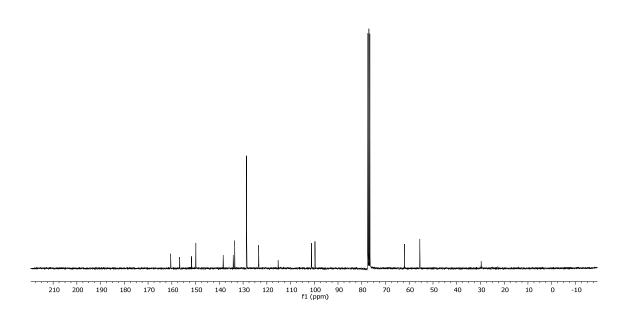


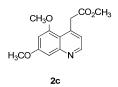


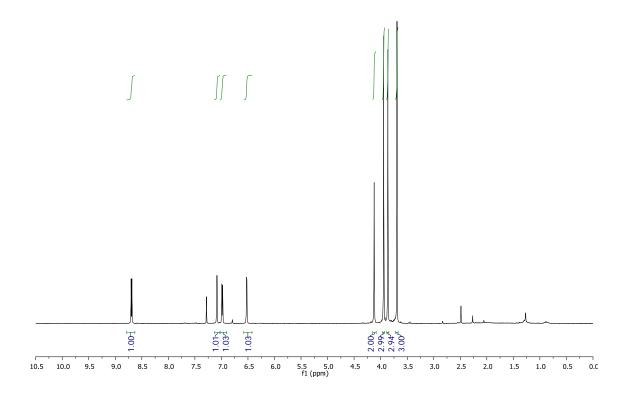


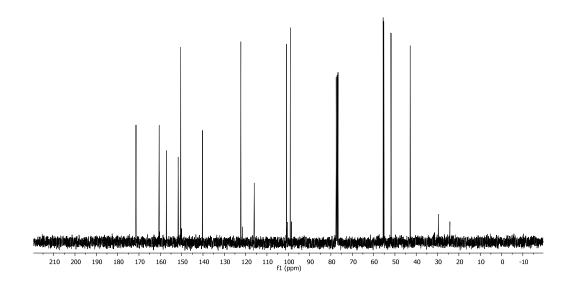



2a








2b

