Supplementary Materials

Isobenzofuranones and Isochromenones from the Deep-Sea Derived Fungus *Leptosphaeria* sp. SCSIO 41005

Xiaowei Luo ^{1,2}, Xiuping Lin ¹, Limbadri Salendra ^{1,2}, Xiaoyan Pang ^{1,2}, Yu Dai ^{1,2}, Bin Yang ¹, Juan Liu ¹, Junfeng Wang ¹, Xuefeng Zhou ^{1,*}, and Yonghong Liu ^{1,*}

¹ Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology / Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China

Emails: luoxiaowei14@mails.ucas.ac.cn (X.L.); xiupinglin@hotmail.com (X.L.); raj.badri202@gmail.com (L.S.); luckygirlpxy@163.com (X.P.); daiyu15@mails.ucas.ac.cn (Y.D.); bingo525@163.com (B.Y.); liujuan@scsio.ac.cn (J.L.); junfeng1982a@163.com (J.W.)

- ² University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: xfzhou@scsio.ac.cn (X.Z.); yonghongliu@scsio.ac.cn (Y.L.); Tel: +86-020-89023174 (X.Z.)

No.	Contents	page
1	Figure S1. ¹ H NMR spectrum of leptosphaerin J (1) (MeOD)	5
2	Figure S2. ¹³ C NMR and DEPT spectrum of leptosphaerin J (1) (MeOD)	5-6
3	Figure S3. HSQC spectrum of leptosphaerin J (1) (MeOD)	6
4	Figure S4. HMBC spectrum of leptosphaerin J (1) (MeOD)	7
5	Figure S5. ¹ H- ¹ H COSY spectrum of leptosphaerin J (1) (MeOD)	7
6	Figure S6. Negative HRESIMS spectrum of leptosphaerin J (1)	8
7	Figure S7. Positive HRESIMS spectrum of leptosphaerin J (1)	8
8	Figure S8. UV spectrum of leptosphaerin J (1)	9
9	Figure S9. IR spectrum of leptosphaerin J (1)	10
10	Figure S10. UV and CD spectrum of leptosphaerin J (1)	10-11
11	Figure S11. ¹ H NMR spectrum of leptosphaerin K (2) (MeOD)	11
12	Figure S12. ¹³ C NMR and DEPT spectrum of leptosphaerin K (2) (MeOD)	12
13	Figure S13. HSQC spectrum of leptosphaerin K (2) (MeOD)	13
14	Figure S14. HMBC spectrum of leptosphaerin K (2) (MeOD)	13
15	Figure S15. HRESIMS spectrum of leptosphaerin K (2)	14
16	Figure S16. UV spectrum of leptosphaerin K (2)	15
17	Figure S17. IR spectrum of leptosphaerin K (2)	16
18	Figure S18. UV and CD spectrum of leptosphaerin K (2)	16-17
19	Figure S19. ¹ H NMR spectrum of leptosphaerin L (3) (MeOD)	17
20	Figure S20. ¹³ C NMR and DEPT spectrum of leptosphaerin L (3) (MeOD)	18
21	Figure S21. HSQC spectrum of leptosphaerin L (3) (MeOD)	19
22	Figure S22. HMBC spectrum of leptosphaerin L (3) (MeOD)	19
23	Figure S23. HRESIMS spectrum of leptosphaerin L (3)	20
24	Figure S24. UV spectrum of leptosphaerin L (3)	20
25	Figure S25. IR spectrum of leptosphaerin L (3)	21
26	Figure S26. UV and CD spectrum of leptosphaerin L (3)	21-22
27	Figure S27. ¹ H NMR spectrum of leptosphaerin M (4) (MeOD)	22
28	Figure S28. ¹³ C NMR and DEPT spectrum of leptosphaerin M (4) (MeOD)	23
29	Figure S29. HSQC spectrum of leptosphaerin M (4) (MeOD)	24
30	Figure S30. HMBC spectrum of leptosphaerin M (4) (MeOD)	24
31	Figure S31. HRESIMS spectrum of leptosphaerin M (4)	25
32	Figure S32. UV spectrum of leptosphaerin M (4)	26
33	Figure S33. IR spectrum of leptosphaerin M (4)	27
34	Figure S34. UV and CD spectrum of leptosphaerin M (4)	27-28
35	Figure S35. ¹ H NMR spectrum of clearanol I (9) (MeOD)	28
36	Figure S36. ¹³ C NMR and DEPT spectrum of clearanol I (9) (MeOD)	29
37	Figure S37. HSQC spectrum of clearanol I (9) (MeOD)	30
38	Figure S38. HMBC spectrum of clearanol I (9) (MeOD)	30
39	Figure S39 $^{1}\text{H}_{-}^{1}\text{H}$ COSY spectrum of clearanol I (9) (MeOD)	31

Contents of Supporting Information

40	Figure S40. NOESY spectrum of clearanol I (9) (MeOD)	31
41	Figure S41. HRESIMS spectrum of clearanol I (9)	32
No.	Contents	page
42	Figure S42. UV spectrum of clearanol I (9)	32
43	Figure S43. IR spectrum of clearanol I (9)	33
44	Figure S44. UV and CD spectrum of clearanol I (9)	33-34
45	Figure S45. ¹ H NMR spectrum of clearanol J (10) (MeOD)	34
46	Figure S46. ¹³ C NMR and DEPT spectrum of clearanol J (10) (MeOD)	35
47	Figure S47. HSQC spectrum of clearanol J (10) (MeOD)	36
48	Figure S48. HMBC spectrum of clearanol J (10) (MeOD)	36
49	Figure S49. ¹ H- ¹ H COSY spectrum of clearanol J (10) (MeOD)	37
50	Figure S50. NOESY spectrum of clearanol J (10) (MeOD)	37
51	Figure S51. HRESIMS spectrum of clearanol J (10)	38
52	Figure S52. UV spectrum of clearanol J (10)	38
53	Figure S53. IR spectrum of clearanol J (10)	39
54	Figure S54. UV and CD spectrum of clearanol J (10)	39-40
55	Figure S55. UV and CD spectrum of (R)-3-acetyl-7-hydroxy-5-methoxy-3,4-	40-41
	dimethylisobenzofuran-1(3H)-one (5)	
56	Figure S56. UV and CD spectrum of $(3R,3^{1}S)$ -7-hydroxy-3-(1-hydroxyethyl)-5-	41-42
	methoxy-3,4-dimethylisobenzofuran- $1(3H)$ -one (6)	
57	Figure S57. UV and CD spectrum of clearanol E (7)	43
58	Figure S58. UV and CD spectrum of clearanol D (8)	44
59	Figure S59. UV and CD spectrum of dothideomynone A (11)	45
60	Figure S60. X-Ray structure of leptosphaerin J (1)	46-47
61	Table S1. Crystal data and structure refinement for leptosphaerin J (1)	47-48
62	Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement	48-49
	parameters (Å ² x 10 ³) for leptosphaerin J (1). U (eq) is defined as one third of	
	the trace of the orthogonalized U ^{ij} tensor.	
63	Table S3. Bond lengths [Å] and angles [°] for leptosphaerin J (1)	50-54
64	Table S4 . Anisotropic displacement parameters ($Å^2x \ 10^3$) for leptosphaerin J	55-56
	(1). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h ²	
	$a^{2}II^{1}I + a^{2}hk^{2}a^{2}hk^{2}II^{1}I^{2}I$	
65	Table S5. Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters	56
	$(Å^2 x \ 10^{-3})$ for leptosphaerin J(1).	
66	Table S6 . Torsion angles [°] for leptosphaerin J (1).	57-59
67	Table S7 . Hydrogen bonds for leptosphaerin J (1) [Å and °].	59
68	Figure S61. X-Ray structure of clearanol E (7)	60-61
69	Table S8. Crystal data and structure refinement for clearanol E (7)	61-62
70	Table S9 . Atomic coordinates (x 10^4) and equivalent isotropic displacement	63-64
	parameters (Å ² x 10 ³) for clearanol E (7). U(eq) is defined as one third of the	
	trace of the orthogonalized U ^{ij} tensor.	
71	Table S10. Bond lengths [Å] and angles [°] for clearanol E (7)	64-69
72	Table S11. Anisotropic displacement parameters (A^2 x 10^3) for clearanol E	69-70

No.	Contents	page
73	Table S12. Hydrogen coordinates (x 10 ⁴) and isotropic displacement	70-71
	parameters (A ^{2} x 10 ^{3}) for clearanol E (7)	
74	Table S13. Torsion angles [°] for clearanol E (7)	71-73
75	Table S14. Hydrogen bonds for clearanol E (7) [Å and °].	74
76	Figure S62. X-Ray structure of clearanol I (9)	74-75
77	Table S15. Crystal data and structure refinement for clearanol I (9)	75-76
78	Table S16. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement	77
	parameters ($A^2 \ge 10^3$) for clearanol I (9). U(eq) is defined as one third of the	
	trace of the orthogonalized Uij tensor.	
78	Table S17. Bond lengths [Å] and angles [°] for clearanol I (9).	77-80
80	Table S18. Anisotropic displacement parameters (A ² x 10 ³) for clearanol I	81
	(9). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2	
	a*^2 U11 + + 2 h k a* b* U12]	
81	Table S19. Hydrogen coordinates $(x10^{4})$ and isotropic displacement	81-82
	parameters ($A^2 \ge 10^3$) for clearanol I (9).	
82	Table S20. Torsion angles [°] for clearanol I (9).	82-83
83	Table S21. Hydrogen bonds for clearanol I (9) [Å and °].	83
84	The physicochemical data of the known compounds	84-85
85	The strain's (Leptosphaeria sp. SCSIO 41005) ITS sequence of the rDNA	85-86

(7). The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

Figure S1. ¹H NMR spectrum of leptosphaerin J (1) (MeOD)

Figure S2. ¹³C NMR and DEPT spectrum of leptosphaerin J (1) (MeOD)

Figure S3. HSQC spectrum of leptosphaerin J (1) (MeOD)

Figure S5. ¹H-¹H COSY spectrum of leptosphaerin J (1) (MeOD)

Figure S7. Negative HRESIMS spectrum of leptosphaerin J (1)

Figure S8. UV spectrum of leptosphaerin J (1)

() SHIMADZU

Figure S9. IR spectrum of leptosphaerin J (1)

Figure S10. UV and CD spectrum of leptosphaerin J (1)

Figure S11. ¹H NMR spectrum of leptosphaerin K (2) (MeOD)

Figure S12. ¹³C NMR and DEPT spectrum of leptosphaerin K (2) (MeOD)

Figure S14. HMBC spectrum of leptosphaerin K (2) (MeOD)

Figure S15. HRESIMS spectrum of leptosphaerin K (2)

光谱峰值检测报告

2016-10-17 15:38:46

Figure S16. UV spectrum of leptosphaerin K (2)

() SHIMADZU

Figure S17. IR spectrum of leptosphaerin K (2)

Figure S18. UV and CD spectrum of leptosphaerin K (2)

Figure S19. ¹H NMR spectrum of leptosphaerin L (3) (MeOD)

Figure S20. 13 C NMR and DEPT spectrum of leptosphaerin L (3) (MeOD)

Luoxiaowei-lxw-b24.8.ser bC OF LXW-b24 0 10 QН 0 0 - 20 0 0 - 30 O 40 50 HO Ś 60 ŌΗ 70 Ò 0 leptosphaerin L (3) 80 (mqq) Iì 90 ģ 0 100 0 0 110 0 Ô 120 130 140 150 ġ 0 0 160 Ó 0 170 4.0 3.5 f2 (ppm) 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S22. HMBC spectrum of leptosphaerin L (3) (MeOD)

Figure S23. HRESIMS spectrum of leptosphaerin L (3)

Figure S24. UV spectrum of leptosphaerin L (3)

() SHIMADZU

Figure S25. IR spectrum of leptosphaerin L (3)

Ixw-B24-uv.dsx::Subtract

Figure S26. UV and CD spectrum of leptosphaerin L (3)

Figure S27. ¹H NMR spectrum of leptosphaerin M (4) (MeOD)

Figure S28. ¹³C NMR and DEPT spectrum of leptosphaerin M (4) (MeOD)

Figure S29. HSQC spectrum of leptosphaerin M (4) (MeOD)

Figure S30. HMBC spectrum of leptosphaerin M (4) (MeOD)

Figure S31. HRESIMS spectrum of leptosphaerin M (4)

Figure S32. UV spectrum of leptosphaerin M (4)

Figure S33. IR spectrum of leptosphaerin M (4)

lxw-b7-uv.dsx::Subtracte

Figure S34. UV and CD spectrum of leptosphaerin M (4)

Figure S35. ¹H NMR spectrum of clearanol I (9) (MeOD)

Figure S36. ¹³C NMR and DEPT spectrum of clearanol I (9) (MeOD)

Figure S38. HMBC spectrum of clearanol I (9) (MeOD)

Figure S39. ¹H-¹H COSY spectrum of clearanol I (9) (MeOD)

Figure S40. NOESY spectrum of clearanol I (9) (MeOD)

Figure S41. HRESIMS spectrum of clearanol I (9)

Figure S42. UV spectrum of clearanol I (9)

G SHIMADZU

Figure S43. IR spectrum of clearanol I (9)

Figure S44. UV and CD spectrum of clearanol I (9)

Figure S45. ¹H NMR spectrum of clearanol J (10) (MeOD)

Figure S46. ¹³C NMR and DEPT spectrum of clearanol J (10) (MeOD)

Figure S48. HMBC spectrum of clearanol J (10) (MeOD)

Figure S49. ¹H-¹H COSY spectrum of clearanol J (10) (MeOD)

Figure S50. NOESY spectrum of clearanol J (10) (MeOD)

Figure S51. HRESIMS spectrum of clearanol J (10)

Figure S52. UV spectrum of clearanol J (10)

Figure S53. IR spectrum of clearanol J (10)

Figure S54. UV and CD spectrum of clearanol J (10)

40

Figure S55. UV and CD spectrum of (*R*)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3*H*)-one (**5**)

Figure S56. UV and CD spectrum of $(3R,3^1S)$ -7-hydroxy-3-(1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3*H*)-one (**6**)

Figure S57. UV and CD spectrum of clearanol E (7)

Figure S58. UV and CD spectrum of clearanol D (8)

Figure S59. UV and CD spectrum of dothideomynone A (11)

Figure S61. X-Ray structure of leptosphaerin J (1)

Table S1. Crystal data and structure refinement for leptosphaerin J (1)

Identification code	1606215		
Empirical formula	$C_{26}H_{26}O_{11}$		
Formula weight	514.47		
Temperature	150(2) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	P21212		
Unit cell dimensions	a = 23.08124(16) Å	α= 90°.	
	b = 10.49438(8) Å	β= 90°.	
	c = 10.03167(10) Å	$\gamma = 90^{\circ}$.	
Volume	2429.90(3) Å ³		
Ζ	4		
Density (calculated)	1.406 Mg/m ³		
Absorption coefficient	0.938 mm ⁻¹		
F(000)	1080		
Crystal size	0.390 x 0.080 x 0.040 mm ³		
Theta range for data collection	3.830 to 74.081°.		
Index ranges	-28<=h<=28, -13<=k<=12, -11<=l<=12		
Reflections collected	23207		
Independent reflections	4841 [R(int) = 0.0236]		
Completeness to theta = 67.684°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.00000 and 0.69119		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4841 / 0 / 347		

Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0289, wR2 = 0.0758
R indices (all data)	R1 = 0.0297, wR2 = 0.0765
Absolute structure parameter	0.00(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.176 and -0.175 e.Å ⁻³

U(eq) Х у Z C(1) 3297(1) 7145(2) 4488(2) 30(1) C(3) 4108(1) 7062(2) 3109(2) 25(1) C(3A) 3844(1) 8387(2) 3058(2) 22(1) C(4) 4011(1) 9447(2) 2333(2) 22(1) C(5) 3667(1) 10550(2) 2524(2) 24(1)C(6) 3183(1) 10570(2) 3348(2) 26(1) C(7) 3024(1) 9481(2) 4055(2) 26(1)C(7A) 3363(1) 8395(2) 3899(2) 25(1) C(8) 4025(1) 6364(2) 1778(2) 29(1) C(9) 3417(1) 6060(2) 1358(3) 38(1) C(10) 4726(1) 7013(2) 3616(2) 34(1) C(11) 4535(1) 9514(2) 1453(2) 25(1)C(12) 3523(1) 1941(2) 40(1) 12737(2) O(1) 2926(1) 6728(2) 5227(2) 40(1)O(2) 3737(1) 6387(1) 4062(2) 31(1) O(3) 4437(1) 6108(2) 1099(2) 49(1) O(4) 3852(1) 11586(1) 1840(2) 32(1) O(5) 2564(1) 9435(2) 4870(2) 36(1) 5000 10000 O(6) 2245(2)27(1) C(13) 1898(1) 7766(2) 1403(2)24(1) 7784(2) 2950(2) C(15) 1148(1) 24(1)6419(2) C(15A) 1271(1) 2534(2)22(1) C(16) 1015(1) 5294(2) 2931(2) 22(1) C(17) 1243(1) 4168(2) 2349(2) 24(1)C(18) 1670(1) 4193(2) 1362(2) 26(1)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for leptosphaerin J (1). U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(19)	1903(1)	5353(2)	946(2)	24(1)
C(19A)	1713(1)	6457(2)	1580(2)	23(1)
C(20)	532(1)	8199(2)	2504(2)	28(1)
C(21)	407(1)	8224(4)	1056(3)	63(1)
C(22)	1267(1)	8084(2)	4400(2)	30(1)
C(23)	503(1)	5207(2)	3850(2)	23(1)
C(24)	1185(1)	1889(2)	2256(2)	36(1)
O(7)	2290(1)	8207(1)	736(2)	32(1)
O(8)	1557(1)	8534(1)	2154(1)	27(1)
O(9)	181(1)	8488(2)	3322(2)	49(1)
O(10)	1008(1)	3081(1)	2822(2)	31(1)
O(11)	2290(1)	5470(1)	-48(2)	29(1)
O(12)	0	5000	3048(2)	24(1)

1.214(2)
1.360(2)
1.447(3)
1.465(2)
1.516(2)
1.519(2)
1.535(3)
1.383(2)
1.393(2)
1.416(2)
1.499(2)
1.355(2)
1.390(3)
1.394(3)
0.9500
1.341(2)
1.392(3)
1.199(3)
1.500(3)
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
1.430(2)
0.9900
0.9900
1.430(2)
0.9800
0.9800
0.9800
0.90(3)
1.430(2)
1.216(2)
1.356(2)

Table S3. Bond lengths [Å] and angles [°] for leptosphaerin J (1)

C(13)-C(19A)	1.451(2)
C(15)-O(8)	1.466(2)
C(15)-C(22)	1.514(3)
C(15)-C(15A)	1.518(2)
C(15)-C(20)	1.551(3)
C(15A)-C(16)	1.379(2)
C(15A)-C(19A)	1.399(3)
C(16)-C(17)	1.420(2)
C(16)-C(23)	1.502(2)
C(17)-O(10)	1.349(2)
C(17)-C(18)	1.396(3)
C(18)-C(19)	1.395(3)
C(18)-H(18)	0.9500
C(19)-O(11)	1.344(2)
C(19)-C(19A)	1.392(3)
C(20)-O(9)	1.193(3)
C(20)-C(21)	1.482(3)
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-O(12)	1.4291(19)
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-O(10)	1.433(2)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
O(11)-H(11)	0.90(3)
O(12)-C(23)#2	1.4291(19)
O(1)-C(1)-O(2)	120.55(18)
O(1)-C(1)-C(7A)	130.64(19)
O(2)-C(1)-C(7A)	108.80(16)
O(2)-C(3)-C(10)	108.34(16)
O(2)-C(3)-C(3A)	103.34(14)

C(10)-C(3)-C(3A)	114.83(15)
O(2)-C(3)-C(8)	105.32(14)
C(10)-C(3)-C(8)	113.11(16)
C(3A)-C(3)-C(8)	110.93(15)
C(4)-C(3A)-C(7A)	122.37(16)
C(4)-C(3A)-C(3)	129.93(16)
C(7A)-C(3A)-C(3)	107.69(15)
C(3A)-C(4)-C(5)	115.47(16)
C(3A)-C(4)-C(11)	124.92(16)
C(5)-C(4)-C(11)	119.51(16)
O(4)-C(5)-C(6)	122.76(16)
O(4)-C(5)-C(4)	114.33(16)
C(6)-C(5)-C(4)	122.91(16)
C(5)-C(6)-C(7)	120.08(16)
C(5)-C(6)-H(6)	120.0
C(7)-C(6)-H(6)	120.0
O(5)-C(7)-C(7A)	119.00(17)
O(5)-C(7)-C(6)	123.23(17)
C(7A)-C(7)-C(6)	117.77(17)
C(7)-C(7A)-C(3A)	121.37(17)
C(7)-C(7A)-C(1)	129.55(17)
C(3A)-C(7A)-C(1)	109.06(16)
O(3)-C(8)-C(9)	122.2(2)
O(3)-C(8)-C(3)	120.23(18)
C(9)-C(8)-C(3)	117.50(17)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
С(3)-С(10)-Н(10А)	109.5
C(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(3)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(6)-C(11)-C(4)	107.15(15)

O(6)-C(11)-H(11A)	110.3
C(4)-C(11)-H(11A)	110.3
O(6)-C(11)-H(11B)	110.3
C(4)-C(11)-H(11B)	110.3
H(11A)-C(11)-H(11B)	108.5
O(4)-C(12)-H(12A)	109.5
O(4)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(4)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(1)-O(2)-C(3)	111.03(14)
C(5)-O(4)-C(12)	118.42(16)
C(7)-O(5)-H(5)	109(2)
C(11)-O(6)-C(11)#1	112.5(2)
O(7)-C(13)-O(8)	120.76(17)
O(7)-C(13)-C(19A)	130.35(18)
O(8)-C(13)-C(19A)	108.88(15)
O(8)-C(15)-C(22)	107.15(14)
O(8)-C(15)-C(15A)	103.68(14)
C(22)-C(15)-C(15A)	115.20(16)
O(8)-C(15)-C(20)	106.37(14)
C(22)-C(15)-C(20)	112.61(16)
C(15A)-C(15)-C(20)	110.96(15)
C(16)-C(15A)-C(19A)	122.30(17)
C(16)-C(15A)-C(15)	130.35(16)
C(19A)-C(15A)-C(15)	107.33(15)
C(15A)-C(16)-C(17)	115.74(16)
C(15A)-C(16)-C(23)	124.55(16)
C(17)-C(16)-C(23)	119.61(16)
O(10)-C(17)-C(18)	123.25(17)
O(10)-C(17)-C(16)	114.20(16)
C(18)-C(17)-C(16)	122.54(16)
C(19)-C(18)-C(17)	120.02(17)
C(19)-C(18)-H(18)	120.0
C(17)-C(18)-H(18)	120.0
O(11)-C(19)-C(19A)	118.19(16)
O(11)-C(19)-C(18)	123.90(17)

C(19A)-C(19)-C(18)	117.90(16)
C(19)-C(19A)-C(15A)	121.25(16)
C(19)-C(19A)-C(13)	129.74(17)
C(15A)-C(19A)-C(13)	109.00(15)
O(9)-C(20)-C(21)	122.5(2)
O(9)-C(20)-C(15)	119.70(18)
C(21)-C(20)-C(15)	117.82(18)
C(20)-C(21)-H(21A)	109.5
C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(20)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(15)-C(22)-H(22A)	109.5
С(15)-С(22)-Н(22В)	109.5
H(22A)-C(22)-H(22B)	109.5
C(15)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(12)-C(23)-C(16)	107.60(14)
O(12)-C(23)-H(23A)	110.2
C(16)-C(23)-H(23A)	110.2
O(12)-C(23)-H(23B)	110.2
C(16)-C(23)-H(23B)	110.2
H(23A)-C(23)-H(23B)	108.5
O(10)-C(24)-H(24A)	109.5
O(10)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
O(10)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(13)-O(8)-C(15)	110.95(14)
C(17)-O(10)-C(24)	119.02(15)
С(19)-О(11)-Н(11)	107.8(18)
C(23)-O(12)-C(23)#2	111.41(19)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,z #2 -x,-y+1,z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	31(1)	27(1)	30(1)	2(1)	2(1)	-4(1)
C(3)	23(1)	22(1)	31(1)	3(1)	0(1)	0(1)
C(3A)	19(1)	22(1)	24(1)	-1(1)	-2(1)	-2(1)
C(4)	19(1)	23(1)	23(1)	-1(1)	-2(1)	-3(1)
C(5)	25(1)	22(1)	26(1)	2(1)	-3(1)	-3(1)
C(6)	25(1)	24(1)	29(1)	-3(1)	-2(1)	3(1)
C(7)	21(1)	29(1)	30(1)	-3(1)	4(1)	-2(1)
C(7A)	23(1)	24(1)	27(1)	0(1)	1(1)	-4(1)
C(8)	31(1)	21(1)	35(1)	0(1)	1(1)	-1(1)
C(9)	36(1)	32(1)	46(1)	-4(1)	-9(1)	-3(1)
C(10)	28(1)	30(1)	45(1)	1(1)	-10(1)	4(1)
C(11)	20(1)	27(1)	27(1)	-1(1)	0(1)	-6(1)
C(12)	62(1)	24(1)	33(1)	6(1)	1(1)	8(1)
O(1)	42(1)	35(1)	44(1)	7(1)	15(1)	-8(1)
O(2)	35(1)	22(1)	35(1)	6(1)	5(1)	0(1)
O(3)	40(1)	59(1)	48(1)	-19(1)	10(1)	-3(1)
O(4)	38(1)	22(1)	38(1)	6(1)	4(1)	-1(1)
O(5)	29(1)	33(1)	46(1)	-1(1)	14(1)	1(1)
O(6)	20(1)	35(1)	26(1)	0	0	-7(1)
C(13)	24(1)	24(1)	25(1)	0(1)	1(1)	-1(1)
C(15)	25(1)	22(1)	24(1)	-1(1)	4(1)	-3(1)
C(15A)	20(1)	23(1)	21(1)	-1(1)	-1(1)	-1(1)
C(16)	22(1)	23(1)	22(1)	-1(1)	0(1)	-2(1)
C(17)	23(1)	23(1)	27(1)	0(1)	-3(1)	-2(1)
C(18)	25(1)	24(1)	29(1)	-5(1)	-1(1)	2(1)
C(19)	19(1)	28(1)	25(1)	-2(1)	0(1)	0(1)
C(19A)	22(1)	25(1)	22(1)	0(1)	1(1)	-2(1)
C(20)	28(1)	22(1)	33(1)	1(1)	2(1)	2(1)
C(21)	43(1)	109(3)	38(1)	-3(2)	-5(1)	28(2)
C(22)	34(1)	27(1)	28(1)	-4(1)	1(1)	-5(1)
C(23)	22(1)	24(1)	23(1)	1(1)	-2(1)	-4(1)
C(24)	42(1)	21(1)	44(1)	-4(1)	0(1)	-1(1)
O(7)	31(1)	29(1)	36(1)	2(1)	10(1)	-5(1)

Table S4. Anisotropic displacement parameters (Å²x 10³) for leptosphaerin J (1). The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

O(8)	29(1)	22(1)	31(1)	0(1)	7(1)	-2(1)
O(9)	36(1)	69(1)	43(1)	-3(1)	8(1)	16(1)
O(10)	36(1)	19(1)	38(1)	-1(1)	6(1)	-3(1)
O(11)	28(1)	29(1)	32(1)	-4(1)	8(1)	0(1)
O(12)	20(1)	32(1)	21(1)	0	0	-2(1)

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for leptosphaerin J(1).

	х	у	Z	U(eq)
Ш(б)	2060	11227	2420	22
	2900	(952)	1264	52
H(9A)	3196	6832 55 2 0	1204	57
H(9B)	3234	5520	2034	57
H(9C)	3424	5609	503	57
H(10A)	4743	/3/1	4518	51
H(10B)	4976	7511	3023	51
H(10C)	4859	6127	3635	51
H(11A)	4632	8657	1108	30
H(11B)	4460	10085	686	30
H(12A)	3705	13400	1395	60
H(12B)	3512	13015	2873	60
H(12C)	3128	12585	1624	60
H(5)	2369(13)	10180(30)	4810(30)	54
H(18)	1801	3420	974	31
H(21A)	-10	8105	913	95
H(21B)	620	7537	613	95
H(21C)	527	9047	684	95
H(22A)	1670	7873	4612	45
H(22B)	1007	7580	4966	45
H(22C)	1200	8993	4562	45
H(23A)	555	4494	4484	28
H(23B)	461	6007	4366	28
H(24A)	1094	1881	1302	53
H(24B)	978	1192	2700	53
H(24C)	1603	1778	2381	53
H(11)	2401(12)	4680(30)	-290(30)	44

O(2)-C(3)-C(3A)-C(4)	179.58(17)
C(10)-C(3)-C(3A)-C(4)	61.8(3)
C(8)-C(3)-C(3A)-C(4)	-68.0(2)
O(2)-C(3)-C(3A)-C(7A)	-1.15(19)
C(10)-C(3)-C(3A)-C(7A)	-118.93(18)
C(8)-C(3)-C(3A)-C(7A)	111.26(17)
C(7A)-C(3A)-C(4)-C(5)	1.2(3)
C(3)-C(3A)-C(4)-C(5)	-179.66(17)
C(7A)-C(3A)-C(4)-C(11)	177.59(17)
C(3)-C(3A)-C(4)-C(11)	-3.2(3)
C(3A)-C(4)-C(5)-O(4)	177.79(15)
C(11)-C(4)-C(5)-O(4)	1.2(2)
C(3A)-C(4)-C(5)-C(6)	-1.9(3)
C(11)-C(4)-C(5)-C(6)	-178.54(17)
O(4)-C(5)-C(6)-C(7)	-178.20(18)
C(4)-C(5)-C(6)-C(7)	1.5(3)
C(5)-C(6)-C(7)-O(5)	179.80(18)
C(5)-C(6)-C(7)-C(7A)	-0.2(3)
O(5)-C(7)-C(7A)-C(3A)	179.49(17)
C(6)-C(7)-C(7A)-C(3A)	-0.5(3)
O(5)-C(7)-C(7A)-C(1)	0.9(3)
C(6)-C(7)-C(7A)-C(1)	-179.10(19)
C(4)-C(3A)-C(7A)-C(7)	0.0(3)
C(3)-C(3A)-C(7A)-C(7)	-179.35(17)
C(4)-C(3A)-C(7A)-C(1)	178.85(17)
C(3)-C(3A)-C(7A)-C(1)	-0.5(2)
O(1)-C(1)-C(7A)-C(7)	2.1(4)
O(2)-C(1)-C(7A)-C(7)	-179.2(2)
O(1)-C(1)-C(7A)-C(3A)	-176.7(2)
O(2)-C(1)-C(7A)-C(3A)	2.1(2)
O(2)-C(3)-C(8)-O(3)	-135.2(2)
C(10)-C(3)-C(8)-O(3)	-17.1(3)
C(3A)-C(3)-C(8)-O(3)	113.6(2)
O(2)-C(3)-C(8)-C(9)	46.5(2)

Table S6. Torsion angles [°] for leptosphaerin J (1).

C(10)-C(3)-C(8)-C(9)	164.68(17)
C(3A)-C(3)-C(8)-C(9)	-64.6(2)
C(3A)-C(4)-C(11)-O(6)	-92.6(2)
C(5)-C(4)-C(11)-O(6)	83.72(19)
O(1)-C(1)-O(2)-C(3)	175.99(18)
C(7A)-C(1)-O(2)-C(3)	-2.9(2)
C(10)-C(3)-O(2)-C(1)	124.74(17)
C(3A)-C(3)-O(2)-C(1)	2.5(2)
C(8)-C(3)-O(2)-C(1)	-113.95(17)
C(6)-C(5)-O(4)-C(12)	-2.0(3)
C(4)-C(5)-O(4)-C(12)	178.33(17)
C(4)-C(11)-O(6)-C(11)#1	-161.51(16)
O(8)-C(15)-C(15A)-C(16)	-178.79(18)
C(22)-C(15)-C(15A)-C(16)	64.5(3)
C(20)-C(15)-C(15A)-C(16)	-65.0(3)
O(8)-C(15)-C(15A)-C(19A)	-0.34(19)
C(22)-C(15)-C(15A)-C(19A)	-117.07(17)
C(20)-C(15)-C(15A)-C(19A)	113.48(17)
C(19A)-C(15A)-C(16)-C(17)	2.5(3)
C(15)-C(15A)-C(16)-C(17)	-179.29(18)
C(19A)-C(15A)-C(16)-C(23)	-173.88(16)
C(15)-C(15A)-C(16)-C(23)	4.4(3)
C(15A)-C(16)-C(17)-O(10)	175.96(17)
C(23)-C(16)-C(17)-O(10)	-7.5(2)
C(15A)-C(16)-C(17)-C(18)	-4.7(3)
C(23)-C(16)-C(17)-C(18)	171.81(17)
O(10)-C(17)-C(18)-C(19)	-178.42(17)
C(16)-C(17)-C(18)-C(19)	2.3(3)
C(17)-C(18)-C(19)-O(11)	-176.07(17)
C(17)-C(18)-C(19)-C(19A)	2.4(3)
O(11)-C(19)-C(19A)-C(15A)	173.92(16)
C(18)-C(19)-C(19A)-C(15A)	-4.7(3)
O(11)-C(19)-C(19A)-C(13)	-4.9(3)
C(18)-C(19)-C(19A)-C(13)	176.53(19)
C(16)-C(15A)-C(19A)-C(19)	2.2(3)
C(15)-C(15A)-C(19A)-C(19)	-176.40(16)
C(16)-C(15A)-C(19A)-C(13)	-178.79(17)
C(15)-C(15A)-C(19A)-C(13)	2.6(2)

O(7)-C(13)-C(19A)-C(19)	-6.0(4)
O(8)-C(13)-C(19A)-C(19)	174.79(18)
O(7)-C(13)-C(19A)-C(15A)	175.1(2)
O(8)-C(13)-C(19A)-C(15A)	-4.1(2)
O(8)-C(15)-C(20)-O(9)	-130.1(2)
C(22)-C(15)-C(20)-O(9)	-13.0(3)
C(15A)-C(15)-C(20)-O(9)	117.8(2)
O(8)-C(15)-C(20)-C(21)	49.7(3)
C(22)-C(15)-C(20)-C(21)	166.8(2)
C(15A)-C(15)-C(20)-C(21)	-62.4(3)
C(15A)-C(16)-C(23)-O(12)	100.63(19)
C(17)-C(16)-C(23)-O(12)	-75.57(19)
O(7)-C(13)-O(8)-C(15)	-175.41(17)
C(19A)-C(13)-O(8)-C(15)	3.9(2)
C(22)-C(15)-O(8)-C(13)	120.00(17)
C(15A)-C(15)-O(8)-C(13)	-2.25(19)
C(20)-C(15)-O(8)-C(13)	-119.33(16)
C(18)-C(17)-O(10)-C(24)	-2.5(3)
C(16)-C(17)-O(10)-C(24)	176.82(17)
C(16)-C(23)-O(12)-C(23)#2	174.87(16)

Table S7. Hydrogen bonds for leptosphaerin J(1) [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(5)-H(5)O(1)#3	0.90(3)	1.76(3)	2.660(2)	172(3)
O(11)-H(11)O(7)#4	0.90(3)	1.76(3)	2.656(2)	173(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,z #2 -x,-y+1,z #3 -x+1/2,y+1/2,-z+1 #4 -x+1/2,y-1/2,-z

Figure S61. X-Ray structure of clearanol E (7)

Identification code	1606215	
Empirical formula	$C_{26}H_{26}O_{11}$	
Formula weight	514.47	
Temperature	150(2) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	P21212	
Unit cell dimensions	$a = 23.08124(16) \text{ Å} \qquad \alpha = 90^{\circ}.$	
	$b = 10.49438(8) \text{ Å} \qquad \beta = 90^{\circ}.$	
	$c = 10.03167(10) \text{ Å} \qquad \gamma = 90^{\circ}.$	
Volume	2429.90(3) Å ³	
Z	4	
Density (calculated)	1.406 Mg/m ³	
Absorption coefficient	0.938 mm ⁻¹	
F(000)	1080	
Crystal size	0.390 x 0.080 x 0.040 mm ³	
Theta range for data collection	3.830 to 74.081°.	
Index ranges	-28<=h<=28, -13<=k<=12, -11<=l<=12	
Reflections collected	23207	
Independent reflections	4841 [R(int) = 0.0236]	
Completeness to theta = 67.684°	99.9 %	

Table S8. Crystal data and structure refinement for clearanol E (7)

Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.00000 and 0.69119 Full-matrix least-squares on F² Refinement method 4841 / 0 / 347 Data / restraints / parameters Goodness-of-fit on F² 1.031 Final R indices [I>2sigma(I)] R1 = 0.0289, wR2 = 0.0758R indices (all data) R1 = 0.0297, wR2 = 0.0765Absolute structure parameter 0.00(5) Extinction coefficient n/a Largest diff. peak and hole 0.176 and -0.175 e.Å⁻³

	х	у	Z	U(eq)
C(1)	3297(1)	7145(2)	4488(2)	30(1)
C(3)	4108(1)	7062(2)	3109(2)	25(1)
C(3A)	3844(1)	8387(2)	3058(2)	22(1)
C(4)	4011(1)	9447(2)	2333(2)	22(1)
C(5)	3667(1)	10550(2)	2524(2)	24(1)
C(6)	3183(1)	10570(2)	3348(2)	26(1)
C(7)	3024(1)	9481(2)	4055(2)	26(1)
C(7A)	3363(1)	8395(2)	3899(2)	25(1)
C(8)	4025(1)	6364(2)	1778(2)	29(1)
C(9)	3417(1)	6060(2)	1358(3)	38(1)
C(10)	4726(1)	7013(2)	3616(2)	34(1)
C(11)	4535(1)	9514(2)	1453(2)	25(1)
C(12)	3523(1)	12737(2)	1941(2)	40(1)
O(1)	2926(1)	6728(2)	5227(2)	40(1)
O(2)	3737(1)	6387(1)	4062(2)	31(1)
O(3)	4437(1)	6108(2)	1099(2)	49(1)
O(4)	3852(1)	11586(1)	1840(2)	32(1)
O(5)	2564(1)	9435(2)	4870(2)	36(1)
O(6)	5000	10000	2245(2)	27(1)
C(13)	1898(1)	7766(2)	1403(2)	24(1)
C(15)	1148(1)	7784(2)	2950(2)	24(1)
C(15A)	1271(1)	6419(2)	2534(2)	22(1)
C(16)	1015(1)	5294(2)	2931(2)	22(1)
C(17)	1243(1)	4168(2)	2349(2)	24(1)
C(18)	1670(1)	4193(2)	1362(2)	26(1)
C(19)	1903(1)	5353(2)	946(2)	24(1)
C(19A)	1713(1)	6457(2)	1580(2)	23(1)
C(20)	532(1)	8199(2)	2504(2)	28(1)
C(21)	407(1)	8224(4)	1056(3)	63(1)
C(22)	1267(1)	8084(2)	4400(2)	30(1)
C(23)	503(1)	5207(2)	3850(2)	23(1)
C(24)	1185(1)	1889(2)	2256(2)	36(1)
O(7)	2290(1)	8207(1)	736(2)	32(1)

Table S9. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for clearanol E (7). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(8)	1557(1)	8534(1)	2154(1)	27(1)
O(9)	181(1)	8488(2)	3322(2)	49(1)
O(10)	1008(1)	3081(1)	2822(2)	31(1)
O(11)	2290(1)	5470(1)	-48(2)	29(1)
O(12)	0	5000	3048(2)	24(1)

Table S10. Bond lengths	Å	and angles [°]	for clearanol E ((7))
-------------------------	---	--------------	----	-------------------	--------------	---

C(1)-O(1)	1.214(2)
C(1)-O(2)	1.360(2)
C(1)-C(7A)	1.447(3)
C(3)-O(2)	1.465(2)
C(3)-C(10)	1.516(2)
C(3)-C(3A)	1.519(2)
C(3)-C(8)	1.535(3)
C(3A)-C(4)	1.383(2)
C(3A)-C(7A)	1.393(2)
C(4)-C(5)	1.416(2)
C(4)-C(11)	1.499(2)
C(5)-O(4)	1.355(2)
C(5)-C(6)	1.390(3)
C(6)-C(7)	1.394(3)
C(6)-H(6)	0.9500
C(7)-O(5)	1.341(2)
C(7)-C(7A)	1.392(3)
C(8)-O(3)	1.199(3)
C(8)-C(9)	1.500(3)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-O(6)	1.430(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-O(4)	1.430(2)
C(12)-H(12A)	0.9800

C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
O(5)-H(5)	0.90(3)
O(6)-C(11)#1	1.430(2)
C(13)-O(7)	1.216(2)
C(13)-O(8)	1.356(2)
C(13)-C(19A)	1.451(2)
C(15)-O(8)	1.466(2)
C(15)-C(22)	1.514(3)
C(15)-C(15A)	1.518(2)
C(15)-C(20)	1.551(3)
C(15A)-C(16)	1.379(2)
C(15A)-C(19A)	1.399(3)
C(16)-C(17)	1.420(2)
C(16)-C(23)	1.502(2)
C(17)-O(10)	1.349(2)
C(17)-C(18)	1.396(3)
C(18)-C(19)	1.395(3)
C(18)-H(18)	0.9500
C(19)-O(11)	1.344(2)
C(19)-C(19A)	1.392(3)
C(20)-O(9)	1.193(3)
C(20)-C(21)	1.482(3)
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-O(12)	1.4291(19)
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-O(10)	1.433(2)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
O(11)-H(11)	0.90(3)
O(12)-C(23)#2	1.4291(19)

O(1)-C(1)-O(2)	120.55(18)
O(1)-C(1)-C(7A)	130.64(19)
O(2)-C(1)-C(7A)	108.80(16)
O(2)-C(3)-C(10)	108.34(16)
O(2)-C(3)-C(3A)	103.34(14)
C(10)-C(3)-C(3A)	114.83(15)
O(2)-C(3)-C(8)	105.32(14)
C(10)-C(3)-C(8)	113.11(16)
C(3A)-C(3)-C(8)	110.93(15)
C(4)-C(3A)-C(7A)	122.37(16)
C(4)-C(3A)-C(3)	129.93(16)
C(7A)-C(3A)-C(3)	107.69(15)
C(3A)-C(4)-C(5)	115.47(16)
C(3A)-C(4)-C(11)	124.92(16)
C(5)-C(4)-C(11)	119.51(16)
O(4)-C(5)-C(6)	122.76(16)
O(4)-C(5)-C(4)	114.33(16)
C(6)-C(5)-C(4)	122.91(16)
C(5)-C(6)-C(7)	120.08(16)
C(5)-C(6)-H(6)	120.0
C(7)-C(6)-H(6)	120.0
O(5)-C(7)-C(7A)	119.00(17)
O(5)-C(7)-C(6)	123.23(17)
C(7A)-C(7)-C(6)	117.77(17)
C(7)-C(7A)-C(3A)	121.37(17)
C(7)-C(7A)-C(1)	129.55(17)
C(3A)-C(7A)-C(1)	109.06(16)
O(3)-C(8)-C(9)	122.2(2)
O(3)-C(8)-C(3)	120.23(18)
C(9)-C(8)-C(3)	117.50(17)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(3)-C(10)-H(10A)	109.5

C(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
С(3)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(6)-C(11)-C(4)	107.15(15)
O(6)-C(11)-H(11A)	110.3
C(4)-C(11)-H(11A)	110.3
O(6)-C(11)-H(11B)	110.3
C(4)-C(11)-H(11B)	110.3
H(11A)-C(11)-H(11B)	108.5
O(4)-C(12)-H(12A)	109.5
O(4)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(4)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(1)-O(2)-C(3)	111.03(14)
C(5)-O(4)-C(12)	118.42(16)
C(7)-O(5)-H(5)	109(2)
C(11)-O(6)-C(11)#1	112.5(2)
O(7)-C(13)-O(8)	120.76(17)
O(7)-C(13)-C(19A)	130.35(18)
O(8)-C(13)-C(19A)	108.88(15)
O(8)-C(15)-C(22)	107.15(14)
O(8)-C(15)-C(15A)	103.68(14)
C(22)-C(15)-C(15A)	115.20(16)
O(8)-C(15)-C(20)	106.37(14)
C(22)-C(15)-C(20)	112.61(16)
C(15A)-C(15)-C(20)	110.96(15)
C(16)-C(15A)-C(19A)	122.30(17)
C(16)-C(15A)-C(15)	130.35(16)
C(19A)-C(15A)-C(15)	107.33(15)
C(15A)-C(16)-C(17)	115.74(16)
C(15A)-C(16)-C(23)	124.55(16)
C(17)-C(16)-C(23)	119.61(16)
O(10)-C(17)-C(18)	123.25(17)
O(10)-C(17)-C(16)	114.20(16)

C(18)-C(17)-C(16)	122.54(16)
C(19)-C(18)-C(17)	120.02(17)
С(19)-С(18)-Н(18)	120.0
С(17)-С(18)-Н(18)	120.0
O(11)-C(19)-C(19A)	118.19(16)
O(11)-C(19)-C(18)	123.90(17)
C(19A)-C(19)-C(18)	117.90(16)
C(19)-C(19A)-C(15A)	121.25(16)
C(19)-C(19A)-C(13)	129.74(17)
C(15A)-C(19A)-C(13)	109.00(15)
O(9)-C(20)-C(21)	122.5(2)
O(9)-C(20)-C(15)	119.70(18)
C(21)-C(20)-C(15)	117.82(18)
С(20)-С(21)-Н(21А)	109.5
C(20)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
С(20)-С(21)-Н(21С)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
С(15)-С(22)-Н(22А)	109.5
С(15)-С(22)-Н(22В)	109.5
H(22A)-C(22)-H(22B)	109.5
С(15)-С(22)-Н(22С)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(12)-C(23)-C(16)	107.60(14)
O(12)-C(23)-H(23A)	110.2
C(16)-C(23)-H(23A)	110.2
O(12)-C(23)-H(23B)	110.2
С(16)-С(23)-Н(23В)	110.2
H(23A)-C(23)-H(23B)	108.5
O(10)-C(24)-H(24A)	109.5
O(10)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
O(10)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(13)-O(8)-C(15)	110.95(14)

C(17)-O(10)-C(24)	119.02(15)
С(19)-О(11)-Н(11)	107.8(18)
C(23)-O(12)-C(23)#2	111.41(19)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,z #2 -x,-y+1,z

Table S11. Anisotropic displacement parameters (A^2 x 10^3) for clearanol E (7). The anisotropicdisplacement factor exponent takes the form: -2 pi^2 [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	31(1)	27(1)	30(1)	2(1)	2(1)	-4(1)
C(3)	23(1)	22(1)	31(1)	3(1)	0(1)	0(1)
C(3A)	19(1)	22(1)	24(1)	-1(1)	-2(1)	-2(1)
C(4)	19(1)	23(1)	23(1)	-1(1)	-2(1)	-3(1)
C(5)	25(1)	22(1)	26(1)	2(1)	-3(1)	-3(1)
C(6)	25(1)	24(1)	29(1)	-3(1)	-2(1)	3(1)
C(7)	21(1)	29(1)	30(1)	-3(1)	4(1)	-2(1)
C(7A)	23(1)	24(1)	27(1)	0(1)	1(1)	-4(1)
C(8)	31(1)	21(1)	35(1)	0(1)	1(1)	-1(1)
C(9)	36(1)	32(1)	46(1)	-4(1)	-9(1)	-3(1)
C(10)	28(1)	30(1)	45(1)	1(1)	-10(1)	4(1)
C(11)	20(1)	27(1)	27(1)	-1(1)	0(1)	-6(1)
C(12)	62(1)	24(1)	33(1)	6(1)	1(1)	8(1)
O(1)	42(1)	35(1)	44(1)	7(1)	15(1)	-8(1)
O(2)	35(1)	22(1)	35(1)	6(1)	5(1)	0(1)
O(3)	40(1)	59(1)	48(1)	-19(1)	10(1)	-3(1)
O(4)	38(1)	22(1)	38(1)	6(1)	4(1)	-1(1)
O(5)	29(1)	33(1)	46(1)	-1(1)	14(1)	1(1)
O(6)	20(1)	35(1)	26(1)	0	0	-7(1)
C(13)	24(1)	24(1)	25(1)	0(1)	1(1)	-1(1)
C(15)	25(1)	22(1)	24(1)	-1(1)	4(1)	-3(1)
C(15A)	20(1)	23(1)	21(1)	-1(1)	-1(1)	-1(1)
C(16)	22(1)	23(1)	22(1)	-1(1)	0(1)	-2(1)
C(17)	23(1)	23(1)	27(1)	0(1)	-3(1)	-2(1)
C(18)	25(1)	24(1)	29(1)	-5(1)	-1(1)	2(1)
C(19)	19(1)	28(1)	25(1)	-2(1)	0(1)	0(1)
C(19A)	22(1)	25(1)	22(1)	0(1)	1(1)	-2(1)

C(20)	28(1)	22(1)	33(1)	1(1)	2(1)	2(1)
C(21)	43(1)	109(3)	38(1)	-3(2)	-5(1)	28(2)
C(22)	34(1)	27(1)	28(1)	-4(1)	1(1)	-5(1)
C(23)	22(1)	24(1)	23(1)	1(1)	-2(1)	-4(1)
C(24)	42(1)	21(1)	44(1)	-4(1)	0(1)	-1(1)
O(7)	31(1)	29(1)	36(1)	2(1)	10(1)	-5(1)
O(8)	29(1)	22(1)	31(1)	0(1)	7(1)	-2(1)
O(9)	36(1)	69(1)	43(1)	-3(1)	8(1)	16(1)
O(10)	36(1)	19(1)	38(1)	-1(1)	6(1)	-3(1)
O(11)	28(1)	29(1)	32(1)	-4(1)	8(1)	0(1)
O(12)	20(1)	32(1)	21(1)	0	0	-2(1)

Table S12. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for clearanol E (7)

	Х	У	Z	U(eq)
H(6)	2960	11327	3429	32
H(9A)	3196	6852	1264	57
H(9B)	3234	5520	2034	57
H(9C)	3424	5609	503	57
H(10A)	4743	7371	4518	51
H(10B)	4976	7511	3023	51
H(10C)	4859	6127	3635	51
H(11A)	4632	8657	1108	30
H(11B)	4460	10085	686	30
H(12A)	3705	13400	1395	60
H(12B)	3512	13015	2873	60
H(12C)	3128	12585	1624	60
H(5)	2369(13)	10180(30)	4810(30)	54
H(18)	1801	3420	974	31
H(21A)	-10	8105	913	95
H(21B)	620	7537	613	95
H(21C)	527	9047	684	95
H(22A)	1670	7873	4612	45
H(22B)	1007	7580	4966	45

H(22C)	1200	8993	4562	45
H(23A)	555	4494	4484	28
H(23B)	461	6007	4366	28
H(24A)	1094	1881	1302	53
H(24B)	978	1192	2700	53
H(24C)	1603	1778	2381	53
H(11)	2401(12)	4680(30)	-290(30)	44

 Table S13. Torsion angles [°] for clearanol E (7)

O(2)-C(3)-C(3A)-C(4)	179.58(17)
C(10)-C(3)-C(3A)-C(4)	61.8(3)
C(8)-C(3)-C(3A)-C(4)	-68.0(2)
O(2)-C(3)-C(3A)-C(7A)	-1.15(19)
C(10)-C(3)-C(3A)-C(7A)	-118.93(18)
C(8)-C(3)-C(3A)-C(7A)	111.26(17)
C(7A)-C(3A)-C(4)-C(5)	1.2(3)
C(3)-C(3A)-C(4)-C(5)	-179.66(17)
C(7A)-C(3A)-C(4)-C(11)	177.59(17)
C(3)-C(3A)-C(4)-C(11)	-3.2(3)
C(3A)-C(4)-C(5)-O(4)	177.79(15)
C(11)-C(4)-C(5)-O(4)	1.2(2)
C(3A)-C(4)-C(5)-C(6)	-1.9(3)
C(11)-C(4)-C(5)-C(6)	-178.54(17)
O(4)-C(5)-C(6)-C(7)	-178.20(18)
C(4)-C(5)-C(6)-C(7)	1.5(3)
C(5)-C(6)-C(7)-O(5)	179.80(18)
C(5)-C(6)-C(7)-C(7A)	-0.2(3)
O(5)-C(7)-C(7A)-C(3A)	179.49(17)
C(6)-C(7)-C(7A)-C(3A)	-0.5(3)
O(5)-C(7)-C(7A)-C(1)	0.9(3)
C(6)-C(7)-C(7A)-C(1)	-179.10(19)
C(4)-C(3A)-C(7A)-C(7)	0.0(3)
C(3)-C(3A)-C(7A)-C(7)	-179.35(17)
C(4)-C(3A)-C(7A)-C(1)	178.85(17)
C(3)-C(3A)-C(7A)-C(1)	-0.5(2)
O(1)-C(1)-C(7A)-C(7)	2.1(4)

O(2)-C(1)-C(7A)-C(7)	-179.2(2)
O(1)-C(1)-C(7A)-C(3A)	-176.7(2)
O(2)-C(1)-C(7A)-C(3A)	2.1(2)
O(2)-C(3)-C(8)-O(3)	-135.2(2)
C(10)-C(3)-C(8)-O(3)	-17.1(3)
C(3A)-C(3)-C(8)-O(3)	113.6(2)
O(2)-C(3)-C(8)-C(9)	46.5(2)
C(10)-C(3)-C(8)-C(9)	164.68(17)
C(3A)-C(3)-C(8)-C(9)	-64.6(2)
C(3A)-C(4)-C(11)-O(6)	-92.6(2)
C(5)-C(4)-C(11)-O(6)	83.72(19)
O(1)-C(1)-O(2)-C(3)	175.99(18)
C(7A)-C(1)-O(2)-C(3)	-2.9(2)
C(10)-C(3)-O(2)-C(1)	124.74(17)
C(3A)-C(3)-O(2)-C(1)	2.5(2)
C(8)-C(3)-O(2)-C(1)	-113.95(17)
C(6)-C(5)-O(4)-C(12)	-2.0(3)
C(4)-C(5)-O(4)-C(12)	178.33(17)
C(4)-C(11)-O(6)-C(11)#1	-161.51(16)
O(8)-C(15)-C(15A)-C(16)	-178.79(18)
C(22)-C(15)-C(15A)-C(16)	64.5(3)
C(20)-C(15)-C(15A)-C(16)	-65.0(3)
O(8)-C(15)-C(15A)-C(19A)	-0.34(19)
C(22)-C(15)-C(15A)-C(19A)	-117.07(17)
C(20)-C(15)-C(15A)-C(19A)	113.48(17)
C(19A)-C(15A)-C(16)-C(17)	2.5(3)
C(15)-C(15A)-C(16)-C(17)	-179.29(18)
C(19A)-C(15A)-C(16)-C(23)	-173.88(16)
C(15)-C(15A)-C(16)-C(23)	4.4(3)
C(15A)-C(16)-C(17)-O(10)	175.96(17)
C(23)-C(16)-C(17)-O(10)	-7.5(2)
C(15A)-C(16)-C(17)-C(18)	-4.7(3)
C(23)-C(16)-C(17)-C(18)	171.81(17)
O(10)-C(17)-C(18)-C(19)	-178.42(17)
C(16)-C(17)-C(18)-C(19)	2.3(3)
C(17)-C(18)-C(19)-O(11)	-176.07(17)
C(17)-C(18)-C(19)-C(19A)	2.4(3)
O(11)-C(19)-C(19A)-C(15A)	173.92(16)
C(18)-C(19)-C(19A)-C(15A)	-4.7(3)
---------------------------------	-------------
O(11)-C(19)-C(19A)-C(13)	-4 9(3)
C(18)-C(19)-C(19A)-C(13)	176 53(19)
C(16)-C(15A)-C(19A)-C(19)	2 2(3)
C(15) - C(15A) - C(19A) - C(19)	-176 40(16)
C(16)-C(15A)-C(19A)-C(13)	-178 79(17)
C(15) - C(15A) - C(19A) - C(13)	2 6(2)
O(7)-C(13)-C(19A)-C(19)	-6 0(4)
O(8)-C(13)-C(19A)-C(19)	174 79(18)
O(7) C(13) C(19A) C(15A)	175 1(2)
O(7) - O(13) - O(13A) - O(13A)	4 1(2)
O(8) - C(15) - C(15A) - C(15A)	-4.1(2)
C(22) $C(15)$ $C(20)$ $C(9)$	-130.1(2)
C(22)-C(15)-C(20)-O(9)	-13.0(3)
C(15A)-C(15)-C(20)-O(9)	117.8(2)
0(8)-C(15)-C(20)-C(21)	49.7(3)
C(22)-C(15)-C(20)-C(21)	166.8(2)
C(15A)-C(15)-C(20)-C(21)	-62.4(3)
C(15A)-C(16)-C(23)-O(12)	100.63(19)
C(17)-C(16)-C(23)-O(12)	-75.57(19)
O(7)-C(13)-O(8)-C(15)	-175.41(17)
C(19A)-C(13)-O(8)-C(15)	3.9(2)
C(22)-C(15)-O(8)-C(13)	120.00(17)
C(15A)-C(15)-O(8)-C(13)	-2.25(19)
C(20)-C(15)-O(8)-C(13)	-119.33(16)
C(18)-C(17)-O(10)-C(24)	-2.5(3)
C(16)-C(17)-O(10)-C(24)	176.82(17)
C(16)-C(23)-O(12)-C(23)#2	174.87(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,z #2 -x,-y+1,z

Table S14.	. Hydrogen	bonds for	clearanol E	(7)	[Å and °].
------------	------------	-----------	-------------	-----	----------	----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(5)-H(5)O(1)#3	0.90(3)	1.76(3)	2.660(2)	172(3)
O(11)-H(11)O(7)#4	0.90(3)	1.76(3)	2.656(2)	173(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,z #2 -x,-y+1,z #3 -x+1/2,y+1/2,-z+1

#4 -x+1/2,y-1/2,-z

Figure S62. X-Ray structure of clearanol I (9)

Identification code	1606225		
Empirical formula	$C_{13}H_{16}O_5$		
Formula weight	252.26		
Temperature	150(2) K		
Wavelength	1.54184 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 4.91205(6) Å	α= 90°.	
	b = 13.99641(14) Å	β= 90°.	
	c = 17.18834(19) Å	$\gamma = 90^{\circ}$.	
Volume	1181.72(2) Å ³		
Z	4		
Density (calculated)	1.418 Mg/m ³		
Absorption coefficient	0.914 mm ⁻¹		
F(000)	536		
Crystal size	0.360 x 0.320 x 0.240 mm ³		
Theta range for data collection	4.073 to 70.583°.		
Index ranges	Index ranges -5<=h<=5, -16<=k<=16, -20<=l<=		
Reflections collected	8470		
Independent reflections	2216 [R(int) = 0.0181]		
Completeness to theta = 67.684°	99.8 %		
	-		

Table S15. Crystal data and structure refinement for clearanol I (9)

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.79385
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2216 / 0 / 174
Goodness-of-fit on F ²	1.059
Final R indices [I>2sigma(I)]	R1 = 0.0256, wR2 = 0.0656
R indices (all data)	R1 = 0.0259, wR2 = 0.0658
Absolute structure parameter	-0.03(5)
Extinction coefficient	n/a
Largest diff. peak and hole	0.127 and -0.156 e.Å ⁻³

	х	У	Z	U(eq)
C(1)	1572(3)	5986(1)	2284(1)	18(1)
C(3)	4842(3)	7056(1)	1735(1)	17(1)
C(4)	5504(3)	7477(1)	2531(1)	16(1)
C(4A)	5122(3)	6713(1)	3148(1)	15(1)
C(5)	6579(3)	6723(1)	3838(1)	17(1)
C(6)	6190(4)	5948(1)	4356(1)	18(1)
C(7)	4234(4)	5252(1)	4232(1)	20(1)
C(8)	2674(3)	5282(1)	3558(1)	18(1)
C(8A)	3180(3)	5990(1)	2994(1)	17(1)
C(9)	4871(4)	7790(1)	1090(1)	21(1)
C(10)	3871(4)	8382(1)	2722(1)	21(1)
C(11)	8548(4)	7498(1)	4070(1)	22(1)
C(12)	7992(5)	5094(1)	5441(1)	34(1)
O(1)	-354(3)	5440(1)	2170(1)	24(1)
O(2)	2123(2)	6628(1)	1723(1)	20(1)
O(3)	4808(3)	7356(1)	338(1)	25(1)
O(4)	7880(3)	5946(1)	4982(1)	24(1)
O(5)	743(3)	4606(1)	3465(1)	23(1)

Table S16. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for clearanol I (9). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S17. Bond lengths [Å] and angles [°] for clearanol I (9).

C(1)-O(1)	1.232(2)
C(1)-O(2)	1.3446(19)
C(1)-C(8A)	1.454(2)
C(3)-O(2)	1.4644(19)
C(3)-C(9)	1.511(2)
C(3)-C(4)	1.525(2)
C(3)-H(3A)	1.0000
C(4)-C(4A)	1.517(2)
C(4)-C(10)	1.535(2)
C(4)-H(4)	1.0000
C(4A)-C(5)	1.385(2)

C(4A)-C(8A)	1.415(2)
C(5)-C(6)	1.415(2)
C(5)-C(11)	1.507(2)
C(6)-O(4)	1.359(2)
C(6)-C(7)	1.385(2)
C(7)-C(8)	1.390(2)
C(7)-H(7)	0.9500
C(8)-O(5)	1.349(2)
C(8)-C(8A)	1.409(2)
C(9)-O(3)	1.4277(19)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
С(11)-Н(11С)	0.9800
C(12)-O(4)	1.432(2)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
O(3)-H(3)	0.83(3)
O(5)-H(5)	0.88(3)
O(1)-C(1)-O(2)	117.05(14)
O(1)-C(1)-C(8A)	123.56(14)
O(2)-C(1)-C(8A)	119.35(14)
O(2)-C(3)-C(9)	106.04(13)
O(2)-C(3)-C(4)	111.43(12)
C(9)-C(3)-C(4)	113.24(12)
O(2)-C(3)-H(3A)	108.7
C(9)-C(3)-H(3A)	108.7
C(4)-C(3)-H(3A)	108.7
C(4A)-C(4)-C(3)	109.21(12)
C(4A)-C(4)-C(10)	111.58(13)
C(3)-C(4)-C(10)	113.51(13)
C(4A)-C(4)-H(4)	107.4

C(3)-C(4)-H(4)	107.4
C(10)-C(4)-H(4)	107.4
C(5)-C(4A)-C(8A)	121.05(14)
C(5)-C(4A)-C(4)	121.83(14)
C(8A)-C(4A)-C(4)	117.12(13)
C(4A)-C(5)-C(6)	117.43(14)
C(4A)-C(5)-C(11)	124.36(14)
C(6)-C(5)-C(11)	118.20(14)
O(4)-C(6)-C(7)	122.95(14)
O(4)-C(6)-C(5)	114.61(14)
C(7)-C(6)-C(5)	122.44(15)
C(6)-C(7)-C(8)	119.29(15)
C(6)-C(7)-H(7)	120.4
C(8)-C(7)-H(7)	120.4
O(5)-C(8)-C(7)	117.78(14)
O(5)-C(8)-C(8A)	122.35(15)
C(7)-C(8)-C(8A)	119.86(15)
C(8)-C(8A)-C(4A)	119.51(14)
C(8)-C(8A)-C(1)	118.67(14)
C(4A)-C(8A)-C(1)	121.73(14)
O(3)-C(9)-C(3)	112.04(13)
O(3)-C(9)-H(9A)	109.2
C(3)-C(9)-H(9A)	109.2
O(3)-C(9)-H(9B)	109.2
C(3)-C(9)-H(9B)	109.2
H(9A)-C(9)-H(9B)	107.9
C(4)-C(10)-H(10A)	109.5
C(4)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(4)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(5)-C(11)-H(11A)	109.5
C(5)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
С(5)-С(11)-Н(11С)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5

O(4)-C(12)-H(12A)	109.5
O(4)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(4)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(1)-O(2)-C(3)	116.54(12)
C(9)-O(3)-H(3)	110.7(19)
C(6)-O(4)-C(12)	117.46(14)
C(8)-O(5)-H(5)	105.2(17)

Symmetry transformations used to generate equivalent atoms:

	0	U^{22}	U ³³	U ²³	U ¹³	U ¹²
C(1)	17(1)	16(1)	21(1)	-2(1)	1(1)	2(1)
C(3)	14(1)	19(1)	18(1)	-1(1)	0(1)	1(1)
C(4)	15(1)	18(1)	16(1)	0(1)	-1(1)	-1(1)
C(4A)	14(1)	16(1)	15(1)	-2(1)	2(1)	2(1)
C(5)	15(1)	19(1)	16(1)	-2(1)	2(1)	1(1)
C(6)	20(1)	22(1)	13(1)	-3(1)	1(1)	4(1)
C(7)	24(1)	18(1)	17(1)	2(1)	3(1)	2(1)
C(8)	16(1)	16(1)	22(1)	-3(1)	3(1)	1(1)
C(8A)	17(1)	17(1)	17(1)	-1(1)	1(1)	2(1)
C(9)	22(1)	24(1)	16(1)	1(1)	0(1)	-1(1)
C(10)	26(1)	18(1)	21(1)	0(1)	3(1)	2(1)
C(11)	22(1)	26(1)	17(1)	-2(1)	-1(1)	-3(1)
C(12)	50(1)	29(1)	22(1)	6(1)	-11(1)	1(1)
O(1)	21(1)	23(1)	27(1)	0(1)	-6(1)	-5(1)
O(2)	18(1)	23(1)	18(1)	2(1)	-5(1)	-4(1)
O(3)	22(1)	38(1)	14(1)	-1(1)	-1(1)	1(1)
O(4)	31(1)	24(1)	16(1)	0(1)	-6(1)	1(1)
O(5)	23(1)	19(1)	28(1)	3(1)	-2(1)	-4(1)

Table S18. Anisotropic displacement parameters (A^2 x 10^3) for clearanol I (9). The anisotropicdisplacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

Table S19. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for clearanol I (9).

	Х	у	Z	U(eq)
H(3A)	6212	6550	1612	20
H(4)	7474	7656	2529	20
H(7)	3961	4759	4604	24
H(9A)	3275	8216	1147	25
H(9B)	6532	8186	1136	25
H(10A)	1937	8269	2617	32
H(10B)	4520	8912	2399	32

H(10C)	4113	8544	3272	32
H(11A)	8553	8000	3671	32
H(11B)	10380	7228	4118	32
H(11C)	7989	7772	4570	32
H(12A)	8244	4540	5099	51
H(12B)	6289	5022	5732	51
H(12C)	9521	5134	5806	51
H(3)	3280(60)	7407(19)	141(15)	44(7)
H(5)	-40(60)	4740(18)	3015(16)	52(7)

Table S20. Torsion angles [°] for clearanol I (9).

O(2)-C(3)-C(4)-C(4A)	54.41(16)
C(9)-C(3)-C(4)-C(4A)	173.85(14)
O(2)-C(3)-C(4)-C(10)	-70.78(16)
C(9)-C(3)-C(4)-C(10)	48.67(18)
C(3)-C(4)-C(4A)-C(5)	152.08(14)
C(10)-C(4)-C(4A)-C(5)	-81.62(18)
C(3)-C(4)-C(4A)-C(8A)	-28.66(19)
C(10)-C(4)-C(4A)-C(8A)	97.64(16)
C(8A)-C(4A)-C(5)-C(6)	4.3(2)
C(4)-C(4A)-C(5)-C(6)	-176.42(14)
C(8A)-C(4A)-C(5)-C(11)	-175.91(15)
C(4)-C(4A)-C(5)-C(11)	3.3(2)
C(4A)-C(5)-C(6)-O(4)	173.39(14)
C(11)-C(5)-C(6)-O(4)	-6.4(2)
C(4A)-C(5)-C(6)-C(7)	-6.8(2)
C(11)-C(5)-C(6)-C(7)	173.41(15)
O(4)-C(6)-C(7)-C(8)	-177.01(15)
C(5)-C(6)-C(7)-C(8)	3.2(2)
C(6)-C(7)-C(8)-O(5)	-178.50(15)
C(6)-C(7)-C(8)-C(8A)	2.9(2)
O(5)-C(8)-C(8A)-C(4A)	176.23(14)
C(7)-C(8)-C(8A)-C(4A)	-5.2(2)
O(5)-C(8)-C(8A)-C(1)	-0.4(2)
C(7)-C(8)-C(8A)-C(1)	178.13(14)
C(5)-C(4A)-C(8A)-C(8)	1.5(2)

C(4)-C(4A)-C(8A)-C(8)	-177.78(13)
C(5)-C(4A)-C(8A)-C(1)	178.02(14)
C(4)-C(4A)-C(8A)-C(1)	-1.2(2)
O(1)-C(1)-C(8A)-C(8)	5.6(2)
O(2)-C(1)-C(8A)-C(8)	-176.68(14)
O(1)-C(1)-C(8A)-C(4A)	-170.98(15)
O(2)-C(1)-C(8A)-C(4A)	6.8(2)
O(2)-C(3)-C(9)-O(3)	-69.61(17)
C(4)-C(3)-C(9)-O(3)	167.90(14)
O(1)-C(1)-O(2)-C(3)	-161.10(13)
C(8A)-C(1)-O(2)-C(3)	21.02(19)
C(9)-C(3)-O(2)-C(1)	-176.20(13)
C(4)-C(3)-O(2)-C(1)	-52.56(16)
C(7)-C(6)-O(4)-C(12)	12.7(2)
C(5)-C(6)-O(4)-C(12)	-167.50(16)

Symmetry transformations used to generate equivalent atoms:

Table S21.	Hydrogen	bonds for	clearanol I	(9)) [Å	and	°].

d(D-H)	d(HA)	d(DA)	<(DHA)
0.83(3)	1.92(3)	2.7471(10)	175(3)
0.88(3)	1.76(3)	2.5710(17)	151(3)
	d(D-H) 0.83(3) 0.88(3)	d(D-H) d(HA) 0.83(3) 1.92(3) 0.88(3) 1.76(3)	d(D-H) d(HA) d(DA) 0.83(3) 1.92(3) 2.7471(10) 0.88(3) 1.76(3) 2.5710(17)

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+3/2,-z

The physicochemical data of the known compounds

(*R*)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3*H*)-one (5): pale yellow oil; $[\alpha]_D^{25} = + 108.4^{\circ}$ (*c* 0.15, MeOH) ; ¹H NMR (500 MHz, CDCl₃): δ_H 6.48 (1H, s, H-6), 3.87 (3H, s, H-12), 2.05 (3H, s, H-9), 2.03 (3H, s, H-11), 1.77 (3H, s, H-10). ¹³C NMR (125 MHz, CDCl₃): δ_C 202.9 (qC, C-8), 171.6 (qC, C-1), 165.9 (qC, C-5), 156.7 (qC, C-7),146.3 (qC, C-3a), 114.5 (qC, C-4), 102.3 (qC, C-7a), 99.2 (CH, C-6), 91.6 (qC, C-3), 56.5 (CH₃, C-12), 24.2 (CH₃, C-9), 20.2 (CH₃, C-10), 10.1 (CH₃, C-11).

(3*R*,3¹*S*)-7-hydroxy-3-(1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3*H*)-one (6) : pale yellow oil; LRESIMS $[M + H]^+ m/z 253.1$; $[2M + H]^+ m/z 505.2$; $[M - H]^- m/z 252.1$; $[\alpha]_D^{25} = -35.4^{\circ}$ (*c* 0.68, MeOH) ; ¹H NMR (500 MHz, CD₃OD): $\delta_H 6.14$ (1H, s, H-6), 3.92(1H, q, J = 6.5 Hz , H-9), 3.50 (3H, s, H-12), 0.50 (3H, J = 6.5 Hz , H-9), 1.72 (3H, s, H-11), 1.37 (3H, s, H-10). ¹³C NMR (125 MHz, CD₃OD): $\delta_C 171.6$ (qC, C-1), 166.0 (qC, C-5), 157.6 (qC, C-7),152.3 (qC, C-3a), 112.4 (qC, C-4), 104.3 (qC, C-7a), 99.4 (CH, C-6), 91.3 (qC, C-3), 70.7 (CH, C-8), 56.7 (CH₃, C-12), 17.2 (CH₃, C-9), 21.4 (CH₃, C-10), 11.3 (CH₃, C-11).

Clearanol E (7): white crystalline solid; LRESIMS $[M + H]^+ m/z 269.1$; $[M + Na]^+ m/z 291.1$; $[2M + Na]^+ m/z 559.3$; $[M - H]^- m/z 267.3$; $[2M - H]^- m/z 535.2$; $[\alpha]_D^{25} = -20.9^{\circ}$ (*c* 0.34, MeOH) ; ¹H NMR (700 MHz, CDCl₃): δ_H 6.43 (1H, s, H-6), 4.14(1H, dd, J = 3.5, 7.7 Hz , H-8), 3.37 (1H, dd, J = 11.9, 7.7 Hz , H-9a), 3.14 (1H, dd, J = 11.9, 3.5 Hz , H-9b), 3.87 (3H, s, H-12), 2.13 (3H, s, H-11), 1.80 (3H, s, H-10). ¹³C NMR (175 MHz, CDCl₃): δ_C 171.2 (qC, C-1), 165.7 (qC, C-5), 156.7 (qC, C-7), 149.1 (qC, C-3a), 112.8(qC, C-4), 102.8 (qC, C-7a), 98.6 (CH, C-6), 90.7 (qC, C-3), 74.6 (CH, C-8), 56.4 (CH₃, C-12), 62.4 (CH₂, C-9), 21.7 (CH₃, C-10), 11.5 (CH₃, C-11).

Clearanol D (8): white crystalline solid; LRESIMS $[M + H]^+ m/z 269.1$; $[M + Na]^+ m/z 291.1$; $[M - H]^- m/z 267.3$; $[2M - H]^- m/z 535.2$; $[2M + Na]^+ m/z 559.3$; $[\alpha]_D^{25} = + 3.8^{\circ}$ (*c* 0.13, MeOH) ; ¹H NMR (700 MHz, CD₃OD): $\delta_{\rm H} 6.46$ (1H, s, H-6), 4.13(1H, dd, J = 3.5, 7.7 Hz , H-8), 3.85 (1H, dd, J = 10.2, 3.5 Hz , H-9a), 3.54 (1H, dd, J = 10.2, 7.7 Hz , H-9b), 3.86 (3H, s, H-12), 2.18 (3H, s, H-11), 1.67 (3H, s, H-10). ¹³C NMR (175 MHz, CD₃OD): $\delta_{\rm C} 171.8$ (qC, C-1), 166.2 (qC, C-5), 157.7 (qC, C-7),152.9 (qC, C-3a), 113.2(qC, C-4), 105.2 (qC, C-7a), 99.4 (CH, C-6), 90.4 (qC, C-3), 75.5 (CH, C-8), 56.7 (CH₃, C-12), 63.7 (CH₂, C-9), 21.9 (CH₃, C-10), 11.2 (CH₃, C-11).

Dothideomynone A (11): pale yellow gun; LRESIMS $[M + H]^+ m/z 255.1$; $[M + Na]^+ m/z 277.1$; $[2M + Na]^+ m/z 531.2$; $[M - H]^- m/z 253.1$, $[2M - H]^- m/z 507.2$; $[\alpha]_D^{25} = +88.2^{\circ}$ (*c* 0.13, MeOH) ; ¹H NMR (700 MHz, CD₃OD): $\delta_H 6.25$ (1H, s, H-7), 3.79 (2H, overlapped , H-9), 2.06 (3H, s, H-11), 1.14 (3H, s, H-10). ¹³C NMR (175 MHz, CD₃OD): $\delta_C 170.6$ (qC, C-1), 164.7(qC, C-6), 163.4(qC, C-8),145.2 (qC, C-4a), 115.4(qC, C-5), 105.4 (qC, C-3), 101.1 (CH, C-7),99.9 (qC, C-8a), 65.4 (CH₂, C-9),

36.0 (CH, C-4),16.4 (CH₃, C-10), 10.0 (CH₃, C-11).

3,8-dihydroxy-3-hydroxymethyl-6-methoxy-4,5-dimethylisochromen-l-one (12): pale yellow oil; LRESIMS $[M + H]^+ m/z \ 269.2$; $[M + Na]^+ m/z \ 291.1$; $[M - H]^- m/z \ 267.1$; $[\alpha]_D^{25} = + 58.8^\circ (c \ 0.40, MeOH)$; ¹H NMR (700 MHz, CD₃OD): $\delta_H \ 6.25$ (1H, s, H-7), 3.79 (2H, overlapped , H-9), 2.06 (3H, s, H-11), 1.14 (3H, s, H-10). ¹³C NMR (175 MHz, CD₃OD): $\delta_C \ 170.5$ (qC, C-1), 165.8(qC, C-6), 163.7(qC, C-8),144.2 (qC, C-4a), 116.3(qC, C-5), 105.2 (qC, C-3), 97.4 (CH, C-7),100.4 (qC, C-8a), 65.2 (CH₂, C-9), 56.2 (CH₃, C-12),36.4 (CH, C-4),16.4 (CH₃, C-10), 10.0 (CH₃, C-11).

(*R*)-4,8-dihydroxy-6-methoxy-4,5-dimethyl-3-methyleneisochromen-1-one (13): pale yellow oil; $[\alpha]_D^{25} = +70.7^{\circ}$ (*c* 0.12, MeOH) ; ¹H NMR (500 MHz, CDCl₃): δ_H 11.32(1H, br s, 8-OH), 6.40 (1H, s, H-7), 5.08 (1H, d, J = 2.0 Hz , H-9a), 4.94 (1H, d, J = 2.0 Hz , H-9b), 3.84 (3H, s, H-12), 2.36 (3H, s, H-11), 1.70 (3H, s, H-10). ¹³C NMR (125 MHz, CDCl₃): δ_C 166.5 (qC, C-1), 165.8(qC, C-6), 163.2(qC, C-8), 160.7 (qC, C-3), 142.5(qC, C-4a), 116.5 (qC, C-5), 98.6 (CH, C-7), 98.2 (qC, C-8a), 95.5 (CH₂, C-9), 56.0 (CH₃, C-12), 72.1 (qC, C-4), 29.1 (CH₃, C-10), 12.0 (CH₃, C-11).

6, **8**-dihydroxy-3,4-dimethylisocoumarin (14): white amorphous power; HRESIMS $([M - H]^- m/z \ 205.0509, calcd for C_{11}H_9O4^-, 205.0501)$. ¹H NMR (500 MHz, DMSO*d6*): $\delta_{\rm H}$ 11.32(1H, br s, 8-OH), 6.24 (1H, s, H-5), 6.29 (1H, s, H-7), 2.23 (3H, s, H-9), 1.99 (3H, s, H-10). ¹³C NMR (125 MHz, DMSO-*d6*): $\delta_{\rm C}$ 165.2 (qC, C-1), 168.0(qC, C-6), 163.1(qC, C-8), 149.4 (qC, C-3), 140.3(qC, C-4), 108.3 (qC, C-4), 101.3 (CH, C-7), 101.5 (CH, C-5), 96.7 (qC, C-8a), 16.8 (CH₃, C-9), 12.1 (CH₃, C-10).

Acremonone F (15): pale yellow gun; ¹H NMR (700 MHz, CD₃OD): $\delta_{\rm H}$ 6.45(1H, s, H-7), 4.55 (2H, s, H-9), 4.74(2H, s, H-10), 2.50 (3H, s, H-11). ¹³C NMR (175 MHz, CD₃OD): $\delta_{\rm C}$ 167.8 (qC, C-1), 166.2(qC, C-6), 163.5(qC, C-8), 156.5 (qC, C-3), 138.5(qC, C-4a), 116.8 (qC, C-4), 114.1 (qC, C-5), 102.8 (CH, C-7),100.9 (qC, C-8a), 60.0 (CH₂, C-9), 57.6 (CH₂, C-10), 12.1 (CH₃, C-11).

Acremonone G (16): pale yellow oil; LRESIMS $[M - H]^{-} m/z 221.1$;¹H NMR (700 MHz, CD₃OD): $\delta_{\rm H} 6.47(1\text{H}, \text{d}, J = 2.0 \text{ Hz}, \text{H-6})$, 6.37(1H, d, J = 2.0 Hz, H-8), 4.47 (2H, s, H-11), 2.17 (3H, s, H-12). ¹³C NMR (175 MHz, CD₃OD): $\delta_{\rm C} 167.9$ (qC, C-1), 167.3 (qC, C-7), 165.2 (qC, C-9), 152.1 (qC, C-3), 141.8(qC, C-5), 112.5(qC, C-4), 103.1(CH, C-8),102.7 (CH, C-6), 99.9(qC, C-10), 59.6 (CH₂, C-11), 12.0 (CH₃, C-12).

The strain's (Leptosphaeria sp. SCSIO 41005) ITS sequence of the rDNA GGCCTTTCTTTATGAGAGAGTTGAGGTGGTTGAGTATCTCGCCCCTCAATTC TCGCTGTATTTTACCCTTGTTTTTCTCA TACTATTATTTCCTCGGCAGGCCAGCCTGCCGGGTGAAACAACTTCAAACC TGTTTAATTTTCAATCAGCGTCTGAACAA ATTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGT GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC TTGGTATTCCATGGGGGCATGCCTGTTCGA GCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCCTTGCTC TAGTGGCGGGACTCGCCTTAAAGTAATT GGCAGCCAGTGTTTTGGTTTTGAAGCGCAGCACAAGTCGCGATTCAAGTCT ATACGCTAGTTTCCACAAGTCTTTTATCA CTTTTGACCTCGGATCAGGTAGGGATACCCGCT