Supplementary Information for

Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge *Poecillastra compressa* (Bowerbank, 1866)

Kevin Calabro 1,2, Elaheh Lotfi Kalahroodi 3, Daniel O. Rodrigues 3,4, Caridad Díaz 5, Mercedes de la Cruz 5, Bastien Cautain 5, Rémi Laville 5, Fernando Reyes 5, Thierry Pérez 4, Bassam Soussi 3,6,7 and Olivier P. Thomas 1,3,*

1 National University of Ireland Galway, School of Chemistry, Marine Biodiscovery, University Road, Galway, Ireland; kevin.calabro@unice.fr (K.C.); olivier.thomas@nuigalway.ie (O.T.)

2 Cosmo International Ingredients, 855 avenue du Docteur Maurice Donat, 06250 Mougins, France; remi.laville@airlquide.com (R.L.)

3 Université Côte d’Azur, CNRS, OCA, IRD, Géozazur, 250 rue Albert Einstein, 06560 Valbonne, France; elaheh.lotfi-kalahroodi@univ-rennes1.fr (E.L.K.); daniel4rodrigues@gmail.com (D.R.)

4 Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale. CNRS – Aix-Marseille Univ – IRD – Univ Avignon. Station Marine d’Endoume, rue de la batterie des lions, 13007, Marseille, France; thierry.perez@imbe.fr (T.P.)

5 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, E-18016, Armilla, Granada, Spain; caridad.diaz@medinaandalucia.es (C.D.); mercedes.delacruz@medinaandalucia.es (M.C.); bastien.cautain@medinaandalucia.es (B.C.); fernando.reyes@medinaandalucia.es (F.R.)

6 Department of Marine Sciences, University of Gothenburg, PO Box 460, SE40530 Gothenburg, Sweden; bassam.soussi@gu.se (B.S.)

7 Oman Centre for Marine Biotechnology, PO Box 236, PC 103, Muscat, Oman
Figure S1. (--)HRESIMS analysis of 1
Figure S2. 1H NMR spectrum of 1 at 500 MHz in CD3OD
Figure S3. COSY NMR spectrum of 1 at 500 MHz in CD3OD
Figure S4. TOCSY NMR spectrum of 1 at 500 MHz in CD3OD
Figure S5. NOESY NMR spectrum of 1 at 500 MHz in CD3OD
Figure S6. 13C NMR spectrum of 1 at 125 MHz in CD3OD
Figure S7. HSQC NMR spectrum of 1 at 500 MHz in CD3OD
Figure S8. HMBC NMR spectrum of 1 at 500 MHz in CD3OD
Figure S9. (--)HRESIMS analysis of 2
Figure S10. 1H NMR spectrum of 2 at 500 MHz in CD3OD
Figure S11. COSY NMR spectrum of 2 at 500 MHz in CD3OD
Figure S12. TOCSY NMR spectrum of 2 at 500 MHz in CD3OD
Figure S13. NOESY NMR spectrum of 2 at 500 MHz in CD3OD
Figure S14. 13C NMR spectrum of 2 at 125 MHz in CD3OD
Figure S15. HSQC NMR spectrum of 2 at 500 MHz in CD3OD
Figure S16. HMBC NMR spectrum of 2 at 500 MHz in CD3OD
Figure S17. (--)HRESIMS analysis of 3
Figure S18. 1H NMR spectrum of 3 at 500 MHz in CD3OD
Figure S19. COSY NMR spectrum of 3 at 500 MHz in CD3OD
Figure S20. TOCSY NMR spectrum of 3 at 500 MHz in CD3OD
Figure S21. 13C NMR spectrum of 3 at 125 MHz in CD3OD
Figure S22. HSQC NMR spectrum of 3 at 500 MHz in CD3OD
Figure S23. PSYCHE_1D NMR spectrum of 3 at 500 MHz in CD3OD
Figure S24. PS-HSQC NMR spectrum of 3 at 500 MHz in CD3OD
Figure S25. HMBC NMR spectrum of 3 at 500 MHz in CD3OD
Figure S26. (++)HRESIMS analysis of 4
Figure S27. 1H NMR spectrum of 4 at 500 MHz in CD3OD
Figure S28. COSY NMR spectrum of 4 at 500 MHz in CD3OD
Figure S29. TOCSY NMR spectrum of 4 at 500 MHz in CD3OD
Figure S30. 13C NMR spectrum of 4 at 125 MHz in CD3OD
Figure S31. HSQC NMR spectrum of 4 at 500 MHz in CD3OD
Figure S32. HMBC NMR spectrum of 4 at 500 MHz in CD3OD
Figure S33. (++)HRESIMS analysis of 5
Figure S34. 1H NMR spectrum of 5 at 500 MHz in CD3OD
Figure S35. COSY NMR spectrum of 5 at 500 MHz in CD3OD
Figure S36. NOESY NMR spectrum of 5 at 500 MHz in CD3OD
Figure S37. 13C NMR spectrum of 5 at 125 MHz in CD3OD
Figure S38. HSQC NMR spectrum of 5 at 500 MHz in CD3OD
Figure S39. HMBC NMR spectrum of 5 at 500 MHz in CD3OD
Figure S40. (++)HRESIMS analysis of 6
Figure S41. 1H NMR spectrum of 6 at 600 MHz in CD3OD
Figure S42. COSY NMR spectrum of 6 at 600 MHz in CD3OD
Figure S43. 13C NMR spectrum of 6 at 150 MHz in CD3OD
Figure S44. HSQC NMR spectrum of 6 at 600 MHz in CD3OD
Figure S45. HMBC NMR spectrum of 6 at 600 MHz in CD3OD
Figure S46. (+)-HRESIMS analysis of 7
Figure S47. 1H NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S48. COSY NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S49. TOCSY NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S50. 13C NMR spectrum of 7 at 150 MHz in CD$_3$OD
Figure S51. HSQC NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S52. HMBC NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S53. UPLC-qToF analysis of the four monosaccharide derivatives;
Figure S54. Absolute configuration of pyranose moieties of 3;
Figure S55. ESI-(+), spectrum of D-(+)-glucose derivative
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₄₀H₆₈O₁₃</td>
<td>Poecillastroside A</td>
<td>6.251</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

6×10^6

MS Spectrum

Figure S1. (–)-HRESIMS analysis of 1.
Figure S2. 1H NMR spectrum of 1 at 500 MHz in CD$_3$OD
Figure S3. COSY NMR spectrum of 1 at 500 MHz in CD-OD
Figure S4. TOCSY NMR spectrum of 1 at 500 MHz in CD3OD
Figure S5. NOESY NMR spectrum of 1 at 500 MHz in CD₃OD
Figure S6. 13C NMR spectrum of 1 at 125 MHz in CD$_3$OD
Figure S7. HSQC NMR spectrum of 1 at 500 MHz in CD$_3$OD
Figure S8. HMBC spectrum of 1 at 500 MHz in CD$_3$OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C41H70O13</td>
<td>Poecillastroside B</td>
<td>6.581</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

6 x10
MS Spectrum

Figure S9. (–)-HRESIMS analysis of 2.
Figure S10. 1H NMR spectrum of 2 at 500 MHz in CD$_3$OD
Figure S11. COSY NMR spectrum of 2 at 500 MHz in CD$_3$OD
Figure S12. TOCSY NMR spectrum of 2 at 500 MHz in CD$_3$OD
Figure S13. NOESY NMR spectrum of 2 at 500 MHz in CD$_3$OD
Figure S14. 13C NMR spectrum of 2 at 125 MHz in CD$_3$OD
Figure S15. HSQC NMR spectrum of 2 at 500 MHz in CD$_3$OD
Figure S16. HMBC spectrum of 2 at 500 MHz in CD$_3$OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{41}H_{70}O_{13}</td>
<td>Poecillatoroside C</td>
<td>6.559</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

Figure S17. (−)-HRESIMS analysis of 3.
Figure S18. 1H NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S19. COSY NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S20. TOCSY NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S21. 13C NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S22. HSQC NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S23. PSYCHE_1D NMR spectrum of 3 at 500 MHz in CD$_3$OD
Figure S24. PS-HSQC NMR spectrum of 3 at 500 MHz in CD₃OD
Figure S25. HMBC spectrum of 3 at 500 MHz in CD3OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₄₁H₆₈O₁₃</td>
<td>Poecillastroside D</td>
<td>7.049</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

5 x10
MS Spectrum

Figure S26. (+)-HRESIMS analysis of 4.
Figure S27. 1H NMR spectrum of 4 at 500 MHz in CD$_3$OD
Figure S28. COSY NMR spectrum of 4 at 500 MHz in CD₃OD
Figure S29. TOCSY NMR spectrum of 4 at 500 MHz in CD$_3$OD
Figure S30. 13C NMR spectrum of 4 at 125 MHz in CD$_3$OD
Figure S31. HSQC NMR spectrum of 4 at 500 MHz in CD$_3$OD
Figure S32. HMBC spectrum of 4 at 500 MHz in CD$_3$OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{43}H_{66}O_{15}</td>
<td>Poecillastroside E</td>
<td>7.109</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

5 x10
MS Spectrum

Figure S33. (+)-HRESIMS analysis of 5.
Figure S34. 1H NMR spectrum of 5 at 500 MHz in CD$_3$OD
Figure S35. COSY NMR spectrum of 5 at 500 MHz in CD₃OD
Figure S36. NOESY NMR spectrum of 5 at 500 MHz in CD₃OD
Figure S37. 13C NMR spectrum of 5 at 125 MHz in CD$_3$OD
Figure S38. HSQC NMR spectrum of 5 at 500 MHz in CD3OD
Figure S39. HMBC spectrum of 5 at 500 MHz in CD3OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₄₁H₆₆O₁₃</td>
<td>Poecillastroside F</td>
<td>7.024</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

MS Spectrum

Figure S40. (+)-HRESI/MS analysis of 6.
Figure S41. 1H NMR spectrum of 6 at 600 MHz in CD$_3$OD
Figure S42. COSY NMR spectrum of 6 at 600 MHz in CD$_3$OD
Figure S43. 13C NMR spectrum of 6 at 150 MHz in CD$_3$OD
Figure S44. HSQC NMR spectrum of 6 at 600 MHz in CD$_3$OD
Figure S45. HMBC spectrum of 6 at 600 MHz in CD$_3$OD
<table>
<thead>
<tr>
<th>Compound Formula</th>
<th>Name</th>
<th>RT</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{43}H_{68}O_{14}</td>
<td>Poecillastroside G</td>
<td>7.384</td>
<td>Spectrum Extraction</td>
</tr>
</tbody>
</table>

MS Spectrum

![MS Spectrum](image)

Figure S46. (+)-HRESIMS analysis of 7.
Figure S47. 1H NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S48. COSY NMR spectrum of 7 at 600 MHz in CD3OD
Figure S49. TOCSY NMR spectrum of 7 at 600 MHz in CD3OD
Figure S50. 13C NMR spectrum of 7 at 150 MHz in CD$_3$OD
Figure S51. HSQC NMR spectrum of 7 at 600 MHz in CD$_3$OD
Figure S52. HMBC spectrum of 7 at 600 MHz in CD$_3$OD
Figure S53. UPLC-qToF analysis of the four monosaccharide derivatives

Figure S54. Absolute configuration of the pyranose moieties of 3

Figure S55. ESI-(+) mass spectrum of D-(+)-glucose derivative