Supporting Information

Bonnevillamides, Linear Heptapeptides Isolated from a Great Salt Lake-Derived Streptomyces sp.

Guangwei Wu 1, Jason R. Nielson 2, Randall T. Peterson 2, and Jaclyn M. Winter 1,*

1Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Guangwei.Wu@utah.edu

2Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Jason.Nielson@pharm.utah.edu (J. R. N); Randall.Peterson@pharm.utah.edu (R. T. P.)

*Correspondence: Jaclyn.Winter@utah.edu; Tel.: +1-801-585-7117
List of Supporting Information

- **Figure S1.** UV spectra of compounds 1–3..........................S3
- **Figure S2-S5.** 1H, 13C, gHSQCAD, gHMBCAD spectra of compound 1..........................S4-S7
- **Figure S6-S7.** TOCSY and COSY spectra of compound 1..........................S8-S9
- **Figure S8-S11.** ROESY, NOESY and 1D NOE spectra of compound 1..........................S10-S13
- **Figure S12-S13.** LC-MS/MS and HR(+)-ESIMS spectra of compound 1..........................S14-S15
- **Figure S14-S17.** 1H, 13C, gHSQCAD, gHMBCAD spectra of compound 2..........................S16-S19
- **Figure S18-S19.** TOCSY and COSY spectra of compound 2..........................S20-S21
- **Figure S20-S22.** ROESY, NOESY and 1D NOE spectra of compound 2..........................S22-S24
- **Figure S23-S24.** LC-MS/MS and HR(+)-ESIMS spectra of compound 2..........................S25-S26
- **Figure S25-S27.** 1H, gHSQCAD, gHMBCAD spectra of compound 3..........................S27-S29
- **Figure S28-S29.** TOCSY and COSY spectra of compound 3..........................S30-S31
- **Figure S30-S31.** ROESY, NOESY spectra of compound 3..........................S32-S33
- **Figure S32.** HR(+)-ESIMS spectra of compound 3..........................S34
- **Figure S33.** Advanced Marfey's analysis of acid hydrolysate of 1..........................S35-S38
- **Figure S34.** Advanced Marfey's analysis of acid hydrolysate of 2..........................S39-S44
- **Figure S35.** Advanced Marfey's analysis of acid hydrolysate of 3..........................S45-S49
- **Table S1.** Corresponding retention times between D,L-FDLA derivatives of amino acids...........S50
Figure S1. UV spectra of compounds 1–3.
Figure S2. 1H NMR spectrum of compound 1 in DMSO-d_6
Figure S3. 13C NMR spectrum of compound 1 in DMSO-d_6
Figure S4. gHSQCAD spectrum of compound 1 in DMSO-d_6
Figure S5. gHMBCAD spectrum of compound 1 in DMSO-d_6.
Figure S6. TOCSY spectrum of compound 1 in DMSO-<i>d</i>₆
Figure S7. COSY spectrum of compound 1 in DMSO-d_6
Figure S8. ROESY spectrum of compound 1 in DMSO-d_6.
Figure S9. NOESY spectrum of compound 1 in DMSO-d_6
Figure S10. 1D NOE spectrum of compound 1 at 4.88 ppm DMSO-d_6.

Selective band center: 4.89 (ppm); width: 18.2 (Hz)
Figure S11. 1D NOE spectrum of compound 1 at 4.36 ppm DMSO-d_6.
Figure S12. Main Fragment Ions Observed in the HRESIMS/MS Spectrum of compound 1
Figure S13. HR(+)ESIMS of compound 1
Figure S14. 1H NMR spectrum of compound 2 in DMSO-d_6
Figure S15. 13C NMR spectrum of compound 2 in DMSO-d_6.

![NMR spectrum image]
Figure S16. gHSQCAD spectrum of compound 2 in DMSO-d_6
Figure S17. gHMBCAD spectrum of compound 2 in DMSO-d_6
Figure S18. TOCSY spectrum of compound 2 in DMSO-d_6
Figure S19. COSY spectrum of compound 2 in DMSO-d_6.

![COSY spectrum of compound 2 in DMSO-d_6.](image_url)
Figure S20. ROESY spectrum of compound 2 in DMSO-\textit{d}_6
Figure S21. NOESY spectrum of compound 2 in DMSO-\textit{d}_6.
Figure S22. 1D NOE spectrum of compound 2 at 3.92 ppm DMSO-d_6.

Selective band center: 3.92 (ppm); width: 14.5 (Hz)
Figure S23. Main fragment ions observed in the HRESIMS/MS Spectrum of compound 2
Figure S24. HR(+)ESIMS of compound 2
Figure S25. 1H NMR spectrum of compound 3 in DMSO-d_6.
Figure S26. gHSQCAD spectrum of compound 3 in DMSO-d_6.
Figure S27: gHMBCAD spectrum of compound 3 in DMSO-\textit{d}_6
Figure S28. TOCSY spectrum of compound 3 in DMSO-d_6
Figure S29. COSY spectrum of compound 3 in DMSO-d_6
Figure S30. ROESY spectrum of compound 3 in DMSO-d_6
Figure S31. NOESY spectrum of compound 3 in DMSO-d_6
Figure S32. HR(+)ESIMS of compound 3
Figure S3. Advanced Marfey's analysis of acid hydrolysate of 1

A) D,L-FDLA-Threonine derivatives in 1: 414 [M+H]+
B) D,L-FDLA-Leucine derivatives in 1: 426 [M+H]^+
C) D,L-FDLA-HMP derivatives in 1: 440 [M+H]$^+$
D,L-FDLA-Valine derivatives in 1: 434 [M+Na]⁺
Figure S34. Advanced Marfey's analysis of acid hydrolysate of 2

A) D,L-FDLA-Threonine derivatives in 2: 414 [M+H]^+
B) D,L-FDLA-Leucine derivatives in 2: 426 [M+H]⁺
C) D,L-FDLA-HMP derivatives in 2: 440 [M+H]^+
D,L-FDLA-Valine derivatives in 2: 434 [M+Na]^+
D,L-FDLA-Proline derivatives in 2: 410 [M+H]^+
F)D,L-FDLA-Proline standard: 410 [M+H]⁺
Figure S35. Advanced Marfey's analysis of acid hydrolysate of 3

A) D,L-FDLA-Throne derivatives in 3: 414 [M+H]^+
B) D,L-FDLA-Leucine derivatives in 3: 426 [M+H]⁺
3. derivative in D,L-FDLA-HMP derivatives in 3: \([M+H]^+\)
D,L-FDLA-Valine derivatives in 3: 434 [M+Na]^+
E) D,L-FDLA-Proline derivatives in 3: 410 [M+H]^+
Table S1: Corresponding Retention times between D/L-FDLA derivatives of amino acids

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>Structure of FDLA-derivatives</th>
<th>m/z [M+H]+</th>
<th>Retention time of D/L-FDLA derivatives (min)</th>
<th>Retention time of L-FDLA derivatives (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Threonine</td>
<td></td>
<td>414</td>
<td>22.03, 24.57</td>
<td>22.08</td>
</tr>
<tr>
<td>L-Leucine</td>
<td></td>
<td>426</td>
<td>27.94, 32.03</td>
<td>28.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>440.1</td>
<td>21.61, 22.22</td>
<td>21.59</td>
</tr>
<tr>
<td>L-Valine</td>
<td></td>
<td>412, 434[M+Na]+</td>
<td>26.69, 29.95</td>
<td>26.69</td>
</tr>
<tr>
<td>L-Proline</td>
<td></td>
<td>410</td>
<td>24.41, 26.00</td>
<td>24.35</td>
</tr>
<tr>
<td>L-Proline (standard)</td>
<td></td>
<td>410</td>
<td>24.43, 26.05</td>
<td>24.39</td>
</tr>
</tbody>
</table>

Analysis condition:

HPLC-MS method: the analysis of the L- and D-FDLA derivatives was carried out by an Agilent Eclipse XDB-C18 column (150×4.6 mm, 5 μm) employing a linear gradient of from 5% to 100% CH₃CN in 0.1%formic acid at 0.5 mL/min over 45 min.