Supplementary Materials: Trichodermanins C–E, New Diterpenes with a Fused 6-5-6-6 Ring System Produced by a Marine Sponge-Derived Fungus

Takeshi Yamada, Mayo Suzue, Takanobu Arai, Takashi Kikuchi and Reiko Tanaka

Scheme 1. Structures of metabolites in the fungal strain	2
Table S1. Spectral data including 2D NMR data for 1.	2
Table S2. Spectral data including 2D NMR data for 2.	3
Table S3. Spectral data including 2D NMR data for 3.	4
Table S4. 1H NMR spectral data of MTPA esters 1a and 1b in CDCl3	5
Table S5. 1H NMR spectral data of MTPA esters 2a and 2b in CDCl3	6
Figure S1. ¹ H NMR spectrum of 1 in CDCl ₃	7
Figure S2. ¹³ C NMR spectrum of 1 in CDCl ₃	8
Figure S3. ¹ H- ¹ H COSY of 1	9
Figure S4. NOESY of 1	10
Figure S5. HMQC of 1	11
Figure S6. HMBC of 1	12
Figure S7. 1H NMR spectrum of 2 in CDCl3	13
Figure S8. ¹³ C NMR spectrum of 2 in CDCl ₃	14
Figure S9. 1H-1H COSY of 2	15
Figure S10. NOESY of 2	16
Figure S11. HMQC of 2	17
Figure S12. HMBC of 2	18
Figure S13. 1H NMR spectrum of 3 in CDCl3	19
Figure S14. ¹³ C NMR spectrum of 3 in CDCl ₃	20
Figure S15. 1H-1H COSY of 3	21
Figure S16. NOESY of 3	22
Figure S17. HMQC of 3	23
Figure S18. HMBC of 3	24
Figure S19. ¹ H NMR spectra of 1a in CDCl ₃	25
Figure S20. 1H-1H COSY of 1a	26
Figure S21. NOESY of 1a	27
Figure S22. ¹ H NMR spectra of 1b in CDCl ₃	28
Figure S23. 1H-1H COSY of 1b	29
Figure S24. NOESY of 1b	30
Figure S25. 1H NMR spectra of 2a in CDCl3	31
Figure S26. 1H-1H COSY of 2a	32
Figure S27. NOESY of 2a	33
Figure S28. ¹ H NMR spectra of 2b in CDCl ₃	34
Figure S29. 1H-1H COSY of 2b	35
Figure S30. NOESY of 2b	36

Scheme 1. Structures of metabolites in the fungal strain.

Position	tion δ_{H^a}		$\delta_{\rm H^{a}}$		J/Hz	¹ H- ¹ H COSY	NOESY ^b	δς		HMBC
1	-	-	-	-	_	217.7	1	-		
2α	2.27	dd	20.4 (26), 7.2 (3)	26.3	17, 19	48.7	2α	2.27		
2β	2.91	dd	$20.4 (2\alpha), 9.0 (3)$	2α , 3	20		2β	2.91		
3	2.44	dqd	9.0 (2β), 7.2 (2α), 7.2 (17)	2α, 2β, 17	11, 14β, 20	26.1	3	2.44		
4	-	-	-	-	-	39.5	4	-		
5	-	-	-	-	-	38.2	5	-		
6	2.03	dd	3.6 (7 <i>α</i>), 3.6 (7β)	7α, 7β	18, 19	58.0	6	2.03		
7α	1.76	dd	13.8 (7β), 3.6 (6)	6, 7β	9, 12, 18	41.4	7α	1.76		
7β	1.92	dd	13.8 (7α), 3.6 (6)	6, 7α	9, 20	-	7β	1.92		
8	-				-	39.0	8	-		
9	1.50	m		10	7α, 7β, 20	53.9	9	1.50		
10	4.41	ddd	7.8 (9), 4.8 (11), 1.2 (9)	9, 11	12, 16	72.6	10	4.41		
11	1.95	dd	12.6 (12), 4.8 (10)	10, 12	3, 20	54.7	11	1.95		
12	1.46	d	12.6 (11)	11	7α, 10, 16, 18	51.0	12	1.46		
13α	1.25	ddd	14.0 (13β), 14.0 (14β), 3.0 (14α)	13β, 14α, 14β	18	25.9	13α	1.25		
13β	1.80	ddd	14.0 (13α), 3.0 (14β), 3.0 (14α)	13α, 14α, 14β	17, 19	-	13β	1.80		
14α	1.66	ddd	14.0 (12β), 3.0 (13α), 3.0 (13β)	13α, 13β, 14β	-	40.2	14α	1.66		
14β	1.55	ddd	14.0 (12α),14.0 (13α), 3.0 (13β)	13α, 13β, 14α	3, 17	-	14β	1.55		
15	-	-	-	-	-	72.9	15	-		
16	1.26	s	-	-	10, 12	21.6	16	1.26		
17	1.17	d	7.2 (3)	3	2a, 13b, 14b, 19	21.3	(q)	2, 3, 4		
18ax	1.01	s	-	-	6, 7a, 12, 13a	24.2	(q)	4, 5, 6, 19		
19eq	1.03	s	-	-	2a, 6, 13b, 17	25.1	(q)	4, 5, 6, 18		
20	1.05	s	-	-	2b, 3, 7b, 9, 11	22.0	(a)	7, 8, 9, 12		

Table S1. Spectral	data including 2I	D NMR data for 1 .
--------------------	-------------------	---------------------------

^a ¹H chemical shift values (δ ppm from SiMe₄) followed by multiplicity and then the coupling constants (*J*/Hz). Figures in parentheses indicate the proton coupling with that position. ^b The correlations with geminal and vicinal protones are removed. ^c Long range ¹H-¹³C correlations from H to C observed in the HMBC experiment.

S2/S36

Position	б	H ^a	J/Hz	¹ H- ¹ H COSY	NOESY ^b	б	ċ	HMBC (C) ^c	
1α	1.90	ddd	14.4 (1β), 2.4 (2α), 2.4 (2β)	1β, 2α, 2β	19	35.5	(t)	2, 6, 7	
1β	1.98	ddd	14.4 (2β), 10.8 (2α), 6.0 (2β)	1α, 2α, 2β	3, 20	-	-	2, 5, 6, 7	
2α	1.64	m	-	1α, 1β, 2β, 3	17, 19	29.5	(t)	1, 3, 17	
2β	2.12	m	-	1α, 1β, 2α, 3	-	-	-	-	
3	2.14	m	-	2α, 2β	1β, 11, 20	26.0	(d)	2, 5, 12, 17	
4	-	-	-	-	-	41.0	(s)	-	
5	-	-	-	-	-	44.1	(s)	-	
6	-	-	-	-	-	74.9	(s)	-	
7α	1.56	m	-	7β	-	51.2	(t)	1, 6, 8, 9, 20	
7β	1.62	m	-	7α	20	-	-	1, 5, 6, 8, 12, 20	
8	-	-	-	-	-	39.1	(s)		
9	1.51	m	-	10	20	54.4	(t)	7, 8, 20	
10	4.39	ddd	8.4 (9), 4.8 (11), 1.2 (9)	9, 11	12, 16	72.8	(d)	8, 15	
11	1.88	dd	12.6 (12), 4.8 (10)	10, 12	3, 20	55.1	(d)	10, 12, 15, 16	
12	1.25	d	12.6 (11)	11	10, 18	50.4	(d)	3, 4, 5, 8, 9, 10, 11, 13, 15, 20	
13α	1.23	ddd	14.0 (13β), 14.0 (14β), 3.0 (14α)	13β, 14α, 14β	18	26.4	(t)	14, 15	
13β	1.73	ddd	14.0 (13α), 3.0 (14β), 3.0 (14α)	13α, 14α, 14β	17, 19	-	-	14	
14α	1.66	m	-	13α, 13β, 14β	-	40.6	(t)	-	
14β	1.59	m	-	13α, 13β, 14α	17	-	-	-	
15	-	-	-	-	-	73.1	(s)	-	
16	1.23	s	-	-	10	21.5	(q)	11, 14, 15	
17	1.05	d	6.6 (3)	3	2α, 13β, 14β	22.9	(q)	2, 3, 4	
18ax	0.93	s	-	-	12, 13α	18.3	(q)	4, 5, 6, 19	
19eq	1.02	s	-	-	1α, 2α, 13β	19.4	(q)	4, 5, 6, 18	
20	1.29	s	-	-	1β, 3, 7β, 9, 11	20.9	(q)	7, 8, 9, 12	

Table S2. Spectral data including 2D NMR data for 2.

^a ¹H chemical shift values (δ ppm from SiMe₄) followed by multiplicity and then the coupling constants (*J*/Hz). Figures in parentheses indicate the proton coupling with that position. ^b The

Mar. Drugs 2017, 15, x

correlations with geminal and vicinal protones are removed. c Long range 1 H- 13 C correlations from H to C observed in the HMBC experiment.

Position	δ	H ^a	J/Hz	¹ H- ¹ H COSY	NOESY ^b	δ	δς ΗΜΒϹ	
1	4.11	d	5.4 (2)	2	7β, 20	80.4	(d)	2, 5, 6, 7
2	3.88	dd	7.8 (3), 5.4 (1)	1, 3	17, 19	83.7	(d)	1, 3, 17
3	1.88	qd	7.8 (17), 7.8 (3)	2α, 2β, 17	11, 20	36.6	(d)	2, 4, 5, 12, 17
4	-	-	-	-	-	41.2	(s)	-
5	-	-	-	-	-	39.4	(s)	-
6	1.50	dd	4.8 (7 α), 3.0 (7 β)	7α, 7β	18, 19	53.2	(d)	4
7α	1.78	dd	13.8 (7β), 4.8 (6)	6, 7β	9α, 12, 18	40.9	(t)	1, 6, 8, 9, 20
7β	1.70	dd	13.8 (7α), 3.0 (6)	6, 7α	1, 20	-	-	5, 12
8	-	-	-	-	-	39.6	(s)	-
9α	1.03	m	-	9β, 10α, 10β	7α, 12	43.5	(t)	-
9β	1.43	m	-	9α, 10α, 10β	20	-	-	20
10α	1.59	m	-	9α, 9β, 10β, 11	16	21.6	(t)	8, 15
10β	1.80	m	-	9α, 9β, 10α, 11	-	-	-	-
11	1.81	dd	13.2 (12), 4.2 (10)	10α, 10β, 12	3, 14β, 20	44.2	(d)	10, 12, 15, 16
12	1.32	d	13.2 (11)	11	7α, 9α, 16, 18	51.8	(d)	3, 4, 5, 8, 11, 15, 20
13α	1.23	ddd	13.8 (13β), 13.8 (14β), 3.6 (14α)	13β, 14α, 14β	18	26.3	(t)	-
13β	1.72	ddd	13.8 (13α), 3.6 (14β), 3.6 (14α)	13α, 14α, 14β	17, 19	-	-	5, 12
14α	1.64	ddd	13.8 (12β), 3.6 (13α), 3.6 (13β)	13α, 13β, 14β	16	41.1	(t)	-
14β	1.46	ddd	13.8 (12α), 13.8 (13α), 3.6 (13β)	13α, 13β, 14α	11, 17	-	-	11
15	-	-	-	-	-	73.6	(s)	-
16	1.18	s	-	-	10α, 12, 14α	20.5	(q)	11, 14, 15
17	1.23	d	7.2 (3)	3	2, 13β, 14β, 19	20.0	(q)	2, 3, 4
18 <i>a</i> x	0.99	s	-	-	6, 7α, 12, 13α	25.7	(q)	4, 5, 6, 19
19eq	1.04	s	-	-	2, 6, 13β, 17	25.2	(q)	4, 5, 6, 18
20	0.98	s	-	-	1, 3, 7β, 9β, 11	19.8	(q)	7, 8, 9, 12

Table S3. Spectral data including 2D NMR data for 3.

^a ¹H chemical shift values (δ ppm from SiMe₄) followed by multiplicity and then the coupling constants (*J*/Hz). Figures in parentheses indicate the proton coupling with that position. ^b The correlations with geminal and vicinal protones are removed. ^c Long range ¹H-¹³C correlations from H to C observed in the HMBC experiment.

Destrict	$\delta_{\mathrm{H}^{\mathrm{a}}}$		J/Hz	$\delta_{\mathrm{H}^{\mathrm{a}}}$		J/Hz
Position			1a			1b
1	-	-	-	-	-	_
2α	2.26	dd	19.8 (2β), 7.2 (3)	2.26	dd	20.4 (2β), 7.8 (3)
2β	2.87	dd	19.8 (2 <i>α</i>), 7.8 (3)	2.87	dd	20.4 (2 <i>a</i>), 9.0 (3)
3	2.30	m	-	2.32	m	-
4	-	-	-	-	-	-
5	-	-	-	-	-	-
6	2.04	dd	4.2 (7 α), 3.0 (7 β)	2.03	dd	4.8 (7 α), 3.6 (7 β)
7α	1.78	m		1.76	dd	13.8 (7β), 4.8 (6)
7β	1.96	dd	13.8 (7 <i>α</i>), 3.0 (6)	1.92	dd	13.8 (7 <i>α</i>), 3.6 (6)
8	-	-	-	-	-	-
9	1.60	m	-	1.55	m	-
10	5.41	dd	7.8 (9), 4.8 (11)	5.41	dd	7.2 (9), 4.8 (11)
11	2.00	dd	14.4 (12), 4.8 (10)	2.09	dd	14.4 (12), 4.8 (10)
12	1.53	d	14.4 (11)	1.51	d	14.4 (11)
13a		bbb	14.4 (13β), 14.4 (14β), 3.6		ddd	14.4 (13β), 14.4 (14β),
100	1.27	uuu	(14 <i>a</i>)	1.28	uuu	3.6 (14 <i>α</i>)
13β	18	ddd	14.4 (13 α), 3.6 (14 β), 3.6 (14 α)	1 81	ddd	14.4 (13 α), 3.6 (14 β), 3.6 (14 α)
	1.0		$13.2 (14\beta), 3.6 (13\alpha), 3.6$	1.01		(14α) 13.2 (14 β), 3.6 (13 α), 3.6
14α	1.69	ddd	(13β)	1.70	ddd	(13β)
14β	1.52	m	-	1.54	m	-
15	-	-	-	-	-	-
16	1.34	s	-	1.34	s	-
17	1.16	d	7.2 (3)	1.16	d	7.2 (3)
18ax	1.02	s	-	1.02	s	-
19eq	1.05	s	-	1.04	s	-
20	0.87	s	-	0.79	s	-
OCH ₃	3.54	s	-	3.57	s	-
Ar.H	7.38-7.43	m	-	7.38-7.43	m	-
Ar.H	7.49-7.57	m	-	7.52-7.61	m	-

Table S4. ¹H NMR spectral data of MTPA esters 1a and 1b in CDCl₃.

^a ¹H chemical shift values (δ ppm from SiMe₄) followed by multiplicity and then the coupling constants (*J*/Hz). Figures in parentheses indicate the proton coupling with that position.

D	$\delta_{ m H^a}$		J/Hz	$\delta_{\mathrm{H}^{\mathrm{a}}}$		J/Hz	
Position			2a			2b	
1α	1.89	m	-	1.89	m		-
1β	1.97	m	-	1.97	m		-
2α	1.64	m	-	1.64	m		-
2β	2.10	m	-	2.10	m		-
3	2.01	m	-	2.02	m		-
4	-	-	-	-	-		-
5	-	-	-	-	-		-
6	-	-	-	-	-		-
7α	1.60	m	-	1.57	m		-
7β	1.74	d	13.8 (7α)	1.64	m		-
8	-	-	-	-	-		-
9	1.60	m	-	1.55	m		-
10	5.41	dd	8.4 (9), 4.8 (11)	5.41	dd	8.4 (9), 4.8 (11)
11	1.96	dd	14.4 (12), 4.8 (10)	2.04	dd	14.4 (12), 4.8 (10)	
12	1.33	d	14.4 (11)	1.31	d	14	.4 (11)
12 -		444	14.4 (13β), 14.4 (14β), 3.6	1 26	ddd	14.4 (13β), 14.4 (14β), 3.6	
154	1.25	uuu	(14 <i>α</i>)	1.20			(14a)
138		14.4 (13α), 3.6 (14	14.4 (13α), 3.6 (14α), 3.6	4α), 3.6 1.74 ddd	$14.4.(13\alpha)$ 3.6.(14 α) 3.6.(14 β		
15p	1.73	uuu	(14β)		uuu	14.4 (15 <i>a),</i> 5.6 (14 <i>a),</i> 5.6 (14p)	
140		ddd	14.4 (14β), 3.6 (13α), 3.6	1.61	m		
144	1.60	uuu	(13β)	1.01	111		-
148		ddd	14.4 (13α), 14.4 (14α), 3.6	1 50	ddd	14.4 (13α), 14.4 (14α), 3.	
т т р	1.48	uuu	(13β)	1.50	uuu		(13β)
15	-	-	-	-	-	-	-
16	1.31	s	-	1.31	s	-	-
17	1.04	d	7.2 (3)	1.04	d	7.2 (3)	-
18ax	0.95	s	-	0.94	s	-	-
19eq	1.03	s	-	1.02	-	-	-
20	1.14	s	-	1.06	-	-	-
OCH ₃	3.56	s	-	3.56	s	-	-
Ar.H	7.26-7.42	m	-	7.26-7.41	m	-	-
Ar.H	7.52	m	-	7.55	m	-	-

Table S5. ¹H NMR spectral data of MTPA esters 2a and 2b in CDCl₃.

^a ¹H chemical shift values (δ ppm from SiMe₄) followed by multiplicity and then the coupling constants (*J*/Hz). Figures in parentheses indicate the proton coupling with that position.

Figure S1. ¹H NMR spectrum of 1.

Figure S2. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S3. ¹H-¹H COSY of 1.

Figure S4. NOESY of 1.

Figure S5. HMQC of 1.

Figure S6. HMBC of 1.

Figure S7. ¹H NMR pectrum of 2 in CDCl₃.

-

Figure S8. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S9. ¹H-¹H COSY of 2.

Figure S10. NOESY of 2.

Figure S11. HMQC of 2.

Figure S12. HMBC of 2.

Figure S13. ¹H NMR spectrum of 3 in CDCl₃.

Figure S14. ¹³C NMR spectrum of 3 in CDCl₃.

Figure S15. ¹H-¹H COSY of 3.

Figure S16. NOESY of 3.

Figure S17. HMQC of 3.

Figure S18. HMBC of 3.

Figure S19. ¹H NMR spectra of 1a in CDCl₃.

Figure S20. ¹H-¹H COSY of 1a.

Figure S21. NOESY of 1a.

Figure S22. ¹H NMR spectra of 1b in CDCl₃.

Figure S23. ¹H-¹H COSY of 1b.

Figure S24. NOESY of 1b.

Figure S25. ¹H NMR spectra of 2a in CDCl₃.

Figure S26. ¹H-¹H COSY of 2a.

Figure S27. NOESY of 2a.

Figure S28. ¹H NMR spectra of 2b in CDCl₃.

Figure S29. ¹H-¹H COSY of 2b.

Figure S30. NOESY of 2b.