Supplementary Materials: The Missing Piece in Biosynthesis of Amphidinols: First Evidence of Glycolate as a Starter Unit in New Polyketides from *Amphidinium carterae*

Adele Cutignano, Genoveffa Nuzzo, Angela Sardo and Angelo Fontana

Figure S1. ¹H NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S2. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S3. ¹³C Jmod spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S4. ¹H-¹H COSY spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S5. TOCSY spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S6. edHSQC spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S7. HMBC (*J* = 7 Hz) spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1**.

Figure S8. NOESY (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S9. ¹H NMR spectrum (600 MHz, CD₃OD) of **2**.

Figure S10. ¹³C Jmod spectrum (600 MHz, CD₃OD) of 2.

Figure S11. ¹H-¹H COSY spectrum (600 MHz, CD₃OD) of 2.

Figure S12. TOCSY spectrum (600 MHz, CD₃OD) of 2.

Figure S13. edHSQC spectrum (600 MHz, CD₃OD) of 2.

Figure S14. HMBC (*J* = 7 Hz) spectrum in CD3OD (600 MHz) of **2**.

Figure S15. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [1-¹³C]-acetate.

Figure S16. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [2-¹³C]-acetate.

Figure S17. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [1,2-¹³C₂]-acetate.

Figure S18. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1** from the experiment with [1-¹³C]-glycolate. **Figure S19.** ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1** from the experiment with [1-¹³C]-glycolate/SHAM.

Figure S20. ¹³C NMR spectrum (600 MHz, CD₃OD) of 2 from the experiment with [1-¹³C]-glycolate/SHAM.

Figure S21. ESI⁺ MS/MS of **1** on molecular ion sodium adduct [M+Na]⁺ at *m*/*z* 1361.8.

Figure S22. ESI⁻ MS/MS of 2 on molecular ion [M-H]⁻ at *m*/*z* 1417.8.

Figure S23. ESI⁺ MS/MS of 2 on molecular ion sodium adduct [M-H+2Na]⁺ at *m*/*z* 1463.8.

Figure S1. ¹H NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S2. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S3. ¹³C Jmod spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1**.

Figure S4. ¹H-¹H COSY spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1**.

Figure S5. TOCSY spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S6. edHSQC spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1.

Figure S7. HMBC (J = 7 Hz) spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1**.

Figure S8. NOESY (600 MHz, CD3OD/C5D5N 2:1) of 1.

Figure S9. ¹H NMR spectrum (600 MHz, CD₃OD) of 2.

Figure S10. ¹³C Jmod spectrum (600 MHz, CD₃OD) of **2**.

Figure S11. ¹H-¹H COSY spectrum (600 MHz, CD₃OD) of **2**.

Figure S12. TOCSY spectrum (600 MHz, CD₃OD) of 2.

Figure S13. edHSQC spectrum (600 MHz, CD₃OD) of 2.

Figure S14. HMBC (J = 7 Hz) spectrum in CD₃OD (600 MHz) of **2**.

Figure S15. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1** from the experiment with $[1-1^{3}C]$ -acetate (upper) in comparison with the natural compound (lower).

Figure S16. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [2-¹³C]-acetate (upper) in comparison with the natural compound (lower).

Figure S17. Two enlargments of 13 C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [1,2- 13 C₂]-acetate.

Figure S18. Two enlargments of ${}^{13}C$ NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of 1 from the experiment with [1- ${}^{13}C$]-glycolate.

Figure S19. ¹³C NMR spectrum (600 MHz, CD₃OD/C₅D₅N 2:1) of **1** from the experiment with [1-¹³C]-glycolate/SHAM (upper) in comparison with the natural compound (lower).

Figure S20. Two enlargements of ¹³C NMR spectrum (600 MHz, CD₃OD) of **2** from the experiment with [1-¹³C]-glycolate/SHAM (upper) in comparison with the natural compound (lower).

Figure S21. ESI⁺ MS/MS of **1** on molecular ion sodium adduct $[M+Na]^+$ at m/z 1361.8.

Figure S22. ESI⁻ MS/MS of **2** on molecular ion [M-H]⁻ at m/z 1417.8.

Figure S23. ESI⁺ MS/MS of **2** on molecular ion sodium adduct [M-H+2Na]⁺ at *m*/*z* 1463.8.