Next Article in Journal
Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material
Next Article in Special Issue
Dietary Polysaccharide from Enteromorpha Clathrata Modulates Gut Microbiota and Promotes the Growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp.
Previous Article in Journal
A New Dihydrochromone Dimer and Other Secondary Metabolites from Cultures of the Marine Sponge-Associated Fungi Neosartorya fennelliae KUFA 0811 and Neosartorya tsunodae KUFC 9213
Previous Article in Special Issue
Degradation of Polysaccharides from Grateloupia filicina and Their Antiviral Activity to Avian Leucosis Virus Subgroup J
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(12), 376; https://doi.org/10.3390/md15120376

The Anti-Inflammatory Effect and Structure of EPCP1-2 from Crypthecodinium cohnii via Modulation of TLR4-NF-κB Pathways in LPS-Induced RAW 264.7 Cells

The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
*
Authors to whom correspondence should be addressed.
Received: 3 November 2017 / Revised: 15 November 2017 / Accepted: 17 November 2017 / Published: 1 December 2017
(This article belongs to the Collection Marine Polysaccharides)
View Full-Text   |   Download PDF [2153 KB, uploaded 5 December 2017]   |  

Abstract

Exopolysaccharide from Crypthecodinium cohnii (EPCP1-2) is a marine exopolysaccharide that evidences a variety of biological activities. We isolated a neutral polysaccharide from the fermentation liquid of Crypthecodinium cohnii (CP). In this study, a polysaccharide that is derived from Crypthecodinium cohnii were analyzed and its anti-inflammatory effect was evaluated on protein expression of toll-like receptor 4 and nuclear factor κB pathways in macrophages. The structural characteristics of EPCP1-2 were characterized by GC (gas chromatography) and GC-MS (gas Chromatography-Mass Spectrometer) analyses. The molecular weight was about 82.5 kDa. The main chain of EPCP1-2 consisted of (1→6)-linked mannopyranosyl, (1→6)-linked glucopyranosyl, branched-chain consisted of (1→3,6)-linked galactopyranosyl and terminal consisted of t-l-Rhapyranosyl. The in vitro anti-inflammatory activity was representated through assay of proliferation rate, pro-inflammatory factor (NO) and expressions of proteins on RAW 264.7, the macrophage cell line. The results revealed that EPCP1-2 exhibited significant anti-inflammatory activity by regulating the expression of toll-like receptor 4, mitogen-activated protein kinases, and Nuclear Factor-κB protein. View Full-Text
Keywords: Crypthecodinium cohnii; exo-polysaccharide; anti-inflammatory; TLR4-MAPKs/NF-κB pathways Crypthecodinium cohnii; exo-polysaccharide; anti-inflammatory; TLR4-MAPKs/NF-κB pathways
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Ma, X.; Xie, B.; Du, J.; Zhang, A.; Hao, J.; Wang, S.; Wang, J.; Cao, J. The Anti-Inflammatory Effect and Structure of EPCP1-2 from Crypthecodinium cohnii via Modulation of TLR4-NF-κB Pathways in LPS-Induced RAW 264.7 Cells. Mar. Drugs 2017, 15, 376.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top