Supplementary data

Supplementary Figure 1. C.neogracile AFP isoform nucleotide and amino acid sequence. Under line indicated the signal peptide and star marks exhibit the possible glycosylation site. The red color letters show the N -myristoylation site.

Supplementary Figure 2. Alignment of C.neogracile AFP and AFP isoform. The alignment was carried out by ClustalW method. The Black squares show a consensus sequences. The identity of these two sequences is 74.8%.

Supplementary Figure 3. Genomic Southern blot analysis. The gDNA of C.neogracile digest with EcoRV, KpnI and XbaI. The Cn-isoAFP ORF gene was used as probe. The DNA size markers are shown to left side. E; EcoRV, K; KpnI, X, XbaI, U; Uncut gDNA.

Supplementary Figure 4. Multiple alignments of Cn -isoAFP with other AFP, IBP and IRIP of psychrophilic organisms. The multiple alignments were produced by ClustalW, and black squares revealed consensus regions. AFP; antifreeze protein, IBP; ice binding protein, IAFP; ice antifreeze protein, IRIP; ice recrystallization inhibition protein.

Supplementary Figure 5. Phylogenetic tree of selected AFPs, IAFP, IRIP, or IBP amino acid sequences from psychrophilic organisms. The phylogenetic tree produced by MEGA5 and Neighbor-joining method. Bootstrap values obtained with 5,000 repetitions. IBP; ice-binding protein, IAFP; ice antifreeze protein, IRIP; ice recrystallization inhibition protein.

Supplementary Figure 6. Ice crystal morphology of Cn -isoAFP and its mutant proteins under various protein concentration. The scale bar indicated $100 \mu \mathrm{~m}$.

Supplementary Figure 7. Circular dichroism spectroscopy of purified Cn -isoAFP and its mutants. Each spectrum is the average of five scans. A correction was made by subtracting the spectra obtained in the presence of buffer only.

Supplementary Table 1. The primer information used in this study. The underline showed a restriction enzyme site.

Supplementary Table 2. Information of site-directed mutagenesis primers. The bold letters indicated the site-directed mutation sequences.

Supplementary Figure 1.

1	TTT	CAA	AAA	AAG	ACA	GAA	AAA	GAA	GAT	AAA	$\frac{\mathrm{ATG}}{\mathrm{M}}$	$\frac{A G T}{S}$	$\frac{T T C}{F}$	$\frac{A T C}{I}$	$\frac{\mathrm{AAA}}{\mathrm{~K}}$	$\frac{\pi T T}{F}$	$\begin{gathered} \star \\ \frac{A A T}{N} \end{gathered}$	$\begin{gathered} \star \\ \frac{\text { CAG }}{Q} \end{gathered}$	$\begin{gathered} \star \\ \frac{A C C}{T} \end{gathered}$	$\begin{gathered} \star \\ \frac{\text { CTC }}{L} \\ \hline \end{gathered}$	60
61	$\frac{G T T}{V}$	$\frac{A C G}{T}$	$\frac{A C T}{T}$	$\frac{\text { GCA }}{A}$	$\frac{T T G}{L}$	$\frac{C T A}{L}$	$\frac{\mathrm{GTC}}{\mathrm{~V}}$	$\frac{A C T}{T}$	$\frac{G C C}{A}$	$\frac{\mathrm{GTG}}{\mathrm{~V}}$	$\frac{\text { ATA }}{1}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{C T A}{L}$	$\frac{C T A}{L}$	$\frac{G G C}{G}$	$\frac{\text { GTA }}{V}$	$\frac{C C A}{P}$	$\frac{\mathrm{ATG}}{\mathrm{M}}$	$\frac{A C T}{T}$	$\frac{\mathrm{GAA}}{\mathrm{E}}$	120
121	$\frac{\text { GGA }}{\text { G }}$	$\frac{A T C}{I}$	$\frac{C T T}{L}$	$\frac{C A A}{Q}$	$\frac{\text { GAG }}{E}$	$\frac{\mathrm{AAA}}{\mathrm{~K}}$	$\frac{\text { CAT }}{H}$	$\frac{\text { GGA }}{G}$	$\frac{A A T}{N}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{A G G}{R}$	$\frac{C G T}{R}$	$\frac{C A G}{Q}$	$\frac{C T C}{L}$	$\frac{G A T}{D}$	$\frac{\text { GCT }}{A}$	$\frac{G A A}{E}$	$\frac{C C T}{P}$	$\frac{T C T}{S}$	$\frac{C C G}{P}$	180
181	$\frac{C C A}{P}$	$\frac{C A A}{Q}$	$\frac{T C T}{S}$	$\frac{\mathrm{CGT}}{\mathrm{R}}$	$\frac{G T T}{V}$	$\frac{\mathrm{AAG}}{\mathrm{~K}}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{\text { CTA }}{\mathrm{L}}$	$\frac{A C T}{T}$	$\frac{\text { GCA }}{A}$	$\frac{G G A}{G}$	$\frac{A A G}{K}$	$\frac{\pi T T}{F}$	$\frac{\text { GCT }}{\mathrm{A}}$	$\frac{G T T}{V}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{\text { TCG }}{S}$	$\frac{\mathrm{AAA}}{\mathrm{~K}}$	$\frac{A C A}{T}$	$\frac{\mathrm{GGC}}{\mathrm{G}}$	240
241	$\frac{\text { GTG }}{\mathrm{V}}$	$\frac{A C G}{T}$	$\frac{A C A}{T}$	$\frac{A C T}{T}$	$\frac{\text { GGT }}{\mathrm{G}}$	$\frac{A C A}{T}$	$\frac{A C A}{T}$	$\frac{\text { GGC }}{\text { G }}$	$\frac{\text { GTG }}{\mathrm{V}}$	$\frac{A C T}{T}$	$\frac{\text { GGT }}{G}$	$\frac{G C C}{A}$	$\frac{A T G}{M}$	G	$\frac{A C A}{T}$	$\frac{A G C}{S}$	$\frac{C C C}{P}$	$\frac{A T C}{I}$	$\frac{T C T}{S}$	$\frac{G C T}{A}$	300
301	$\frac{A C G}{T}$	$\frac{\text { GCG }}{\mathrm{A}}$	$\frac{A T G}{M}$	$\frac{\mathrm{ACG}}{\mathrm{~T}}$	$\frac{\text { GGA }}{\text { G }}$	$\frac{T T C}{F}$	$\frac{\text { GGA }}{\text { G }}$	$\frac{T T G}{L}$	$\frac{\text { ATA }}{1}$	$\frac{\mathrm{ATG}}{\mathrm{M}}$	$\frac{G A C}{D}$	$\frac{T C T}{S}$	$\frac{\text { GGT }}{\mathrm{G}}$	$\frac{A A C}{N}$	$\frac{G C T}{A}$	$\frac{T T C}{F}$	$\frac{\text { TCG }}{S}$	$\frac{A C G}{T}$	$\frac{T C C}{S}$	$\frac{A C T}{T}$	360
361	$\frac{C T T}{L}$	$\frac{\text { GTG }}{\mathrm{V}}$	$\frac{T C G}{S}$	$\frac{\text { GGC }}{\mathrm{G}}$	$\frac{A A T}{N}$	$\frac{G T T}{V}$	$\frac{T A T}{Y}$	$\frac{G C A}{A}$	$\frac{G C C}{A}$	$\frac{G A C}{D}$	$\frac{T A T}{Y}$	$\frac{G A A}{E}$	$\frac{T C T}{S}$	$\frac{C C C}{P}$	$\frac{A C G}{T}$	$\frac{C C C}{P}$	$\frac{A A C}{N}$	$\frac{\mathrm{ATG}}{\mathrm{M}}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{A C A}{T}$	420
421	$\frac{\text { GTA }}{V}$	$\frac{\text { GCA }}{A}$	$\frac{\text { GTC }}{V}$	$\frac{\text { CTC }}{L}$	$\frac{G A C}{D}$	$\frac{\mathrm{ATG}}{\mathrm{M}}$	$\frac{C A G}{Q}$	$\frac{\text { GGC }}{G}$	$\frac{G C A}{A}$	$\frac{T A C}{Y}$	$\frac{\text { GTC }}{V}$	$\frac{G A T}{D}$	$\frac{G C T}{A}$	$\frac{G C A}{A}$	$\frac{\text { GGT }}{G}$	$\frac{\mathrm{CGC}}{\mathrm{R}}$	$\frac{C C C}{P}$	$\frac{G A C}{D}$	$\frac{C C A}{P}$	$\frac{G A C}{D}$	480
481	$\frac{T A T}{Y}$	$\frac{\text { GCA }}{A}$	$\frac{G A C}{D}$	$\frac{\mathrm{CTC}}{\mathrm{~L}}$	$\frac{\text { GGC }}{\mathrm{G}}$	$\frac{\text { GCT }}{A}$	$\frac{\text { GGA }}{\text { G }}$	$\frac{A G C}{S}$	$\frac{A T T}{I}$	$\frac{\mathrm{GAG}}{\mathrm{E}}$	$\frac{\text { GGT }}{G}$	$\frac{T T A}{L}$	$\frac{A C T}{T}$	$\frac{C T C}{L}$	$\frac{G A T}{D}$	$\frac{C C T}{P}$	$\frac{\text { GGC }}{\text { G }}$	$\frac{\mathrm{CTG}}{\mathrm{~L}}$	$\frac{T A C}{Y}$	$\frac{\mathrm{AAG}}{\mathrm{~K}}$	540
541	$\frac{\text { TGG }}{\text { W }}$	$\frac{\text { GGG }}{\mathbf{G}}$	$\frac{A C A}{T}$	$\frac{A A T}{N}$	$\frac{\text { GTC }}{\mathrm{V}}$	$\frac{\mathrm{GAA}}{\mathrm{E}}$	$\frac{\mathrm{CTC}}{\mathrm{~L}}$	$\frac{A C C}{T}$	$\frac{A G C}{S}$	$\frac{A G C}{S}$	$\frac{\mathrm{CTC}}{\mathrm{~L}}$	$\frac{A C C}{T}$	$\frac{T T C}{F}$	$\frac{A A T}{N}$	$\frac{\text { GGT }}{G}$	$\frac{T C T}{S}$	$\frac{\mathrm{AGC}}{\mathrm{~S}}$	$\frac{A C G}{T}$	$\frac{G A C}{D}$	$\frac{\mathrm{ATC}}{\mathrm{I}}$	600
601	$\frac{\text { TGG }}{\text { W }}$	$\frac{\mathrm{ATC}}{1}$	$\frac{\text { TTA }}{L}$	$\frac{C A G}{Q}$	$\underline{\text { ATC }}$	$\frac{\mathbf{G G C}}{\mathbf{G}}$	$\frac{\text { GGA }}{\text { G }}$	$\frac{G A T}{D}$	$\frac{\mathrm{GTA}}{\mathrm{~V}}$	$\frac{A A G}{K}$	$\frac{G T A}{V}$	$\frac{\mathrm{GGC}}{\mathrm{G}}$	$\frac{A G C}{S}$	$\frac{\text { GGT }}{\mathbf{G}}$	$\frac{\text { GCA }}{A}$	ATC	$\frac{G T T}{V}$	$\frac{G A A}{E}$	$\frac{C T C}{L}$	$\frac{A C T}{T}$	660
661	$\frac{\text { GGT }}{\text { G }}$	$\frac{\text { GGT }}{\mathbf{G}}$	$\frac{\mathrm{GCC}}{\mathrm{~A}}$	$\frac{\text { TTG }}{\mathrm{L}}$	$\frac{\text { GCA }}{A}$	$\frac{\mathrm{GAA}}{\mathrm{E}}$	$\frac{A A C}{N}$	$\frac{A T T}{I}$	$\frac{T T C}{F}$	$\frac{\text { TGG }}{\text { W }}$	$\frac{C A G}{Q}$	$\frac{A T C}{I}$	$\frac{\text { GCA }}{A}$	$\frac{\text { GGC }}{\mathrm{G}}$	$\frac{A A G}{K}$	$\frac{A C T}{T}$	$\frac{A C T}{T}$	$\frac{C T C}{L}$	$\frac{\text { GGC }}{G}$	$\frac{A C C}{T}$	720
721	$\frac{\text { TCA }}{S}$	$\frac{T C C}{S}$	$\frac{C A T}{H}$	$\frac{\text { GTA }}{\mathrm{V}}$	$\frac{\text { GAG }}{E}$	$\frac{\text { GGT }}{\mathbf{G}}$	$\frac{G T T}{V}$	$\frac{T T C}{F}$	$\frac{C T T}{L}$	$\frac{\mathrm{TGC}}{\mathrm{C}}$	$\frac{A A T}{N}$	$\frac{A C A}{T}$	$\frac{C A A}{Q}$	$\frac{A T C}{I}$	$\frac{\text { GCA }}{A}$	$\frac{T T C}{F}$	$\frac{\text { GAA }}{E}$	$\frac{A C C}{T}$	$\frac{\text { GGA }}{G}$	$\frac{A G C}{S}$	780
781	$\frac{A G T}{S}$	$\frac{A T G}{M}$	$\frac{A A T}{N}$	$\frac{\text { GGA }}{\text { G }}$	$\frac{G C T}{A}$	$\frac{\text { GCA }}{A}$	$\frac{C T G}{L}$	$\frac{\text { GCA }}{A}$	$\frac{C A G}{Q}$	$\frac{A C G}{T}$	$\frac{\text { GCA }}{A}$	$\frac{\text { GTG }}{\mathrm{V}}$	$\frac{A C A}{T}$	$\frac{C T G}{L}$	$\frac{\text { GAT }}{\mathrm{D}}$	$\frac{G C T}{A}$	$\frac{G C T}{A}$	$\frac{A C C}{T}$	$\frac{A T T}{1}$	$\frac{G T C}{V}$	840
841	$\frac{A A G}{K}$	$\frac{A C T}{T}$	$\frac{T C G}{S}$	$\frac{\text { GTG }}{\mathrm{V}}$	$\frac{\mathrm{TGT}}{\mathrm{C}}$	$\frac{G A C}{D}$	$\frac{\text { GCC }}{\mathrm{A}}$	$\frac{A C T}{T}$	$\frac{\mathrm{GTC}}{\mathrm{~V}}$	$\frac{\text { GGG }}{\mathrm{G}}$	$\frac{\mathrm{TGT}}{\mathrm{C}}$	$\frac{\mathrm{GTG}}{\mathrm{~V}}$	$\frac{\mathrm{AAA}}{\mathrm{~K}}$	$\frac{G A C}{D}$	$\frac{\text { TAA }}{x}$	TTT	GCT	GAT	GAA	TCC	900
901	TTA	CCA	AG	CAG	ACA	GAG	GAT	AG	CGC	AAA	TAC	ACA	TCT	ACT	ATT	ACA	GTA	ATA	CAT	AT	96

Supplementary Figure 2.

Consensus MS. I. . N. TLV. TALL. . AV. . LLGVPMAEG. . QEK. G. LRRQLD. EP. . . . S. VKLLTAG. FA. L. KTGVTTTG. T. . . G. MGTSPI . . . A. TGFGLI.

Supplementary Figure 3.

Supplementary Figure 4.

Supplementary Figure 5.

Supplementary Figure 6.

Supplementary Figure 7.

Supplementary Table 1.

Number	Primer name	Sequences (5' $\rightarrow \mathbf{3} \mathbf{'}^{\prime}$)	Tm $\left({ }^{\circ} \mathbf{C}\right)$
1	AFP degenerated forward primer	AAR CAN GGN GTN CAN CAN AC	54
2	AFP degenerated reverse primer	ARN GTN CAN GCN GTY TGN GC	56
3	Isoform AFP DNA walking target specific primer 1	AGA GTA GTC TTG CCT GCG AT	57
4	Isoform AFP DNA walking target specific primer 2	GGA TCG AGA GTT AAA CCC TC	57
5	Isoform AFP DNA walking target specific primer 3	CCA TTA TCA ATC CGA ATC CCG T	58
6	Isoform AFP 3' race primer	AAC ATT TTC TGG CAG ATC GC	56
7	Isoform AFP inverse primer 1	CAC GGC AGT GAC TAG CAA TGC	63
8	Isoform AFP inverse primer 2	ATG GAG CTG CAC TGG CAC AGA	63
9	Isoform AFP 5' UTR probe forward primer	TGA GTT TAG GTC CAG CGT CCG	63
10	Isoform AFP 5' UTR probe reverse primer	GGT ACG CCT AGT AGC AGT ATC	63
11	Isoform AFP pCold pre-mature forward primer	GGT ACC ATC CTT CAG GAG AAA	59
12	Isoform AFP pCold mature forward primer	GGT ACC ATG AGT TTC ATC AAA TTT	58
13	Isoform AFP pCold reverse primer	AAG CTT TTA GTC TTT CAC ACA CCC	61

Supplementary Table 2.

Number	Primer name	Sequences (5' $\rightarrow \mathbf{3} \mathbf{3}^{\prime}$)	$\mathbf{T m ~}\left({ }^{\circ} \mathbf{C}\right)$
1	V100Y forward	CCA CGC CCA ACA TGC TGA CAT ACG CAG TCC TCG ACA TGC AGG G	84
2	V100Y reverse	CCC TGC ATG TCG AGG ACT GCG TAT GTC AGC ATG TTG GGC GTG G	84
3	T196Y forward	GGC AGA TCG CAG GCA AGA CTT ATC TCG GCA CCT CAT CCC ATG	93
4	T196Y reverse	CAT GGG ATG AGG TGC CGA GAT AAG TCT TGC CTG CGA TCT GCC	83
5	V239Y forward	CAC TGG ATG CTG CTA CCA TTT ACA AGA CTT CGG TGT GTG ACG CC	82
6	V239Y reverse	GGC GTC ACA CAC CGA AGT CTT GTA AAT GGT AGC AGC ATC CAG TG	82
7	T41L forward	TTC TGT CGA AAA CAG GCG TGC TGA CAA CTG GTA CAA CAG GCG T	81
8	T41L reverse	ACG CCT GTT GTA CCA GTT GTC AGC ACG CCT GTT TTC GAC AGA A	81
9	E145L forward	ACA AGT GGG GGA CAA ATG TCC TAT TCA CCA GCA GCC TCA CCT T	81
10	E145L reverse	AAG GTG AGG CTG CTG GTG AAT AGG ACA TTT GTC CCC CAC TTG T	81
11	T232L forward	CAC TGG CAC AGA CGG CAG TGC TAC TGG ATG CTG CTA CCA TTG T	83
12	T232L reverse	ACA ATG GTA GCA GCA TCC AGT AGC ACT GCC GTC TGT GCC AGT G	83
13	V40S forward	CTG TTC TGT CGA AAA CAG GCT CGA CGA CAA CTG GTA CAA CAG GCG	82
14	V40S reverse	CGC CTG TTG TAC CAG TTG TCG TCG AGC CTG TTT TCG ACA GAA CAG	82
15	I213S forward	GGG TGT TTT CCT TTG CAA TAC ACA ATC CGC ATT CGA AAC CGG AAG CAG	81
16	I213S reverse	CTG CTT CCG GTT TCG AAT GCG GAT TGT GTA TTG CAA AGG AAA ACA CCC	81

