Next Article in Journal
Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis
Next Article in Special Issue
Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells
Previous Article in Journal
Biological Potential of Chitinolytic Marine Bacteria
Previous Article in Special Issue
Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai
Article Menu

Export Article

Open AccessArticle
Mar. Drugs 2016, 14(12), 232; doi:10.3390/md14120232

Protective Effects of Hydrolyzed Nucleoproteins from Salmon Milt against Ethanol-Induced Liver Injury in Rats

1
Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585, Japan
2
Life Science Institute Co., Ltd., Tokyo 103-0012, Japan
*
Author to whom correspondence should be addressed.
Academic Editor: Se-Kwon Kim
Received: 17 October 2016 / Revised: 4 December 2016 / Accepted: 15 December 2016 / Published: 19 December 2016
(This article belongs to the Special Issue Marine Proteins and Peptides)
View Full-Text   |   Download PDF [3741 KB, uploaded 19 December 2016]   |  

Abstract

Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM) on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model. Plasma aspartate transaminase and alanine transaminase were significantly less active in the DNSM-treated group than in the ethanol plus carbon tetrachloride (CCl4)-treated group. Collagen accumulation in the liver and hepatic necrosis were observed histologically in ethanol plus CCl4-treated rats; however, DNSM-treatment fully protected rats against ethanol plus CCl4-induced liver fibrosis and necrosis. Furthermore, we examined whether DNSM had a preventive effect against alcohol-induced liver injury by regulating the cytochrome p450 2E1 (CYP2E1)-mediated oxidative stress pathway in an in vivo model. In this model, CYP2E1 activity in ethanol plus CCl4-treated rats increased significantly, but DNSM-treatment suppressed the enzyme’s activity and reduced intracellular thiobarbituric acid reactive substances (TBARS) levels. Furthermore, the hepatocytes treated with 100 mM ethanol induced an increase in cell death and were not restored to the control levels when treated with DNSM, suggesting that digestive products of DNSM are effective for the prevention of alcohol-induced liver injury. Deoxyadenosine suppressed the ethanol-induced increase in cell death and increased the activity of alcohol dehydrogenase. These results suggest that DNSM treatment represents a novel tool for the prevention of alcohol-induced liver injury. View Full-Text
Keywords: DNA-rich nucleic acid prepared from salmon milt (DNSM); in vivo ethanol-carbon tetrachloride cirrhosis model; plasma aminotransferases (AST and ALT); collagen accumulation; CYP2E1 activity; alcohol-induced liver injury; rats DNA-rich nucleic acid prepared from salmon milt (DNSM); in vivo ethanol-carbon tetrachloride cirrhosis model; plasma aminotransferases (AST and ALT); collagen accumulation; CYP2E1 activity; alcohol-induced liver injury; rats
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kojima-Yuasa, A.; Goto, M.; Yoshikawa, E.; Morita, Y.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Matsui-Yuasa, I. Protective Effects of Hydrolyzed Nucleoproteins from Salmon Milt against Ethanol-Induced Liver Injury in Rats. Mar. Drugs 2016, 14, 232.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top