Supplementary Materials: Bioactive Chaetoglobosins from the Mangrove Endophytic Fungus *Penicillium chrysogenum*

Song Huang, Haiyan Chen, Wensheng Li, Xinwei Zhu, Weijia Ding and Chunyuan Li

Contents

Figure S1. ¹ H NMR spectrum (600 MHz) of compound 1 in CD ₃ COCD ₃	S2
Figure S2. ¹³ C NMR spectrum (150 MHz) of compound 1 in CD ₃ COCD ₃	S2
Figure S3. DEPT90 spectrum (150 MHz) of compound 1 in CD ₃ COCD ₃	S3
Figure S4. DEPT135 spectrum (150 MHz) of compound 1 in CD ₃ COCD ₃	S3
Figure S5. HSQC spectrum (600/150 MHz) of compound 1 in CD ₃ COCD ₃	S4
Figure S6. HMBC spectrum (600/150 MHz) of compound 1 in CD ₃ COCD ₃	S4
Figure S7. Expansion of HMBC spectrum (600/150 MHz) of compound 1 in CD ₃ COCD ₃	S5
Figure S8. ¹ H- ¹ HCOSY spectrum (600 MHz) of compound 1 in CD ₃ COCD ₃	S5
Figure S9. NOESY spectrum (600 MHz) of compound 1 in CD ₃ COCD ₃	S6
Figure S10. HRESIMS spectrum of compound 1	S6
Figure S11. IR spectrum of compound 1	S7
Figure S12. UV spectrum of compound 1	S7
Figure S13. ¹ H NMR spectrum (600 MHz) of compound 2 in CD ₃ COCD ₃	S8
Figure S14. ¹³ C NMR spectrum (150 MHz) of compound 2 in CD ₃ COCD ₃	S8
Figure S15. HSQC spectrum (600/150 MHz) of compound 2 in CD ₃ COCD ₃	S9
Figure S16. HMBC spectrum (600/150 MHz) of compound 2 in CD ₃ COCD ₃	S9
Figure S17. Expansion of HMBC spectrum (600/150 MHz) of compound 2 in CD ₃ COCD	3 S100
Figure S18. ¹ H- ¹ HCOSY spectrum (600 MHz) of compound 2 in CD ₃ COCD ₃	S100
Figure S19. NOESY spectrum (600 MHz) of compound 2 in CD ₃ COCD ₃	S111
Figure S20. HRESIMS spectrum of compound 2	S111
Figure S21. IR spectrum of compound 2	S122
Figure S22. UV spectrum of compound 2	S122
ECD computational details of Compounds 1 and 2	S13
Figure S23. Cartesian coordinate of optimized (3S,4R,5S,8S,9S,16S,19R)-1	S133
Table S1. Standard orientation of 1a	S133
Table S2. Standard orientation of 1b	S155
Figure S24. Cartesian coordinate of optimized (3S,4R,5S,8S,9S,16S)-2	S166
Table S3. Standard orientation of 2a	S177
Table S4. Standard orientation of 2b	S18
Table S5. Standard orientation of 2c	S20
Table S6. Standard orientation of 2d	S211

Figure S1. ¹H NMR spectrum (600 MHz) of compound 1 in CD₃COCD₃.

Figure S2. ¹³C NMR spectrum (150 MHz) of compound 1 in CD₃COCD₃.

Figure S3. DEPT90 spectrum (150 MHz) of compound 1 in CD₃COCD₃.

Figure S4. DEPT135 spectrum (150 MHz) of compound 1 in CD₃COCD₃.

Figure S5. HSQC spectrum (600/150 MHz) of compound 1 in CD₃COCD₃.

Figure S6. HMBC spectrum (600/150 MHz) of compound 1 in CD₃COCD₃.

Figure S7. Expansion of HMBC spectrum (600/150 MHz) of compound 1 in CD₃COCD₃.

Figure S8. ¹H-¹HCOSY spectrum (600 MHz) of compound 1 in CD₃COCD₃.

fl (ppm)

Mass Spectrum SmartFormula Report

Figure S11. IR spectrum of compound 1.

Figure S13. ¹H NMR spectrum (600 MHz) of compound 2 in CD₃COCD₃.

Figure S14. ¹³C NMR spectrum (150 MHz) of compound 2 in CD₃COCD₃.

Figure S15. HSQC spectrum (600/150 MHz) of compound 2 in CD₃COCD₃.

Figure S16. HMBC spectrum (600/150 MHz) of compound 2 in CD₃COCD₃.

fl (ppm)

Figure S17. Expansion of HMBC spectrum (600/150 MHz) of compound 2 in CD₃COCD₃.

Figure S18. ¹H-¹HCOSY spectrum (600 MHz) of compound 2 in CD₃COCD₃.

S10 of S22

Figure S19.	NOESY spectrum	(600 MHz) of com	pound 2 in	CD_3COCD_3
inguic 017	s nolor spectrum	1 (000 1011 12) or comp		CD3COCD3.

0

Figure S22. UV spectrum of compound 2.

ECD Computational Details of Compounds 1 and 2

la (0.0, 99.79%)

1b (3.76, 0.18%)

Figure S23. Cartesian coordinate of optimized (3*S*,4*R*,5*S*,8*S*,9*S*,16*S*,19*R*)-1.

Contor Number	A torn in Nierraham	A to main Trans	Coordinates (Angstroms)			
Center Number	Atomic Number	Atomic Type	X	Y	Z	
1	6	0	-0.279914	-0.450739	1.998085	
2	7	0	0.935255	-0.280169	2.568889	
3	6	0	1.990761	0.069606	1.627701	
4	6	0	1.429194	-0.506881	0.307318	
5	6	0	2.164752	0.088001	-0.917356	
6	6	0	1.683173	1.525009	-1.152016	
7	6	0	0.449189	1.895377	-0.786431	
8	6	0	-0.628308	1.072192	-0.099204	
9	6	0	-0.097751	-0.321711	0.448492	
10	6	0	3.378671	-0.491203	1.921469	
11	6	0	1.889143	-0.737866	-2.202252	
12	6	0	2.592807	2.497185	-1.861414	
13	6	0	-1.307497	1.944601	0.943632	
14	6	0	-2.429373	2.662014	0.794712	
15	6	0	-3.323007	2.765447	-0.413273	
16	6	0	-4.827924	2.440593	-0.161208	
17	6	0	-4.994595	1.016486	0.305197	
18	6	0	-5.442130	-0.039255	-0.391168	
19	6	0	-5.487702	-1.407703	0.284895	
20	6	0	-4.642043	-2.453707	-0.470330	

 Table S1. Standard orientation of 1a.

21	6	0	-3.172751	-2.357719	-0.585515
22	6	0	-2.396271	-1.410885	-0.032767
23	6	0	-0.905787	-1.472395	-0.176958
24	6	0	-5.483579	3.422642	0.826822
25	6	0	-5.950277	-0.017314	-1.810620
26	7	0	4.667341	0.098536	-1.493610
27	6	0	3.644414	-0.011249	-0.562875
28	6	0	4.194156	-0.286748	0.673740
29	6	0	5.621264	-0.341246	0.505149
30	6	0	6.704312	-0.573842	1.372195
31	6	0	7.996127	-0.553082	0.857950
32	6	0	8.231684	-0.305117	-0.511046
33	6	0	7.181161	-0.072080	-1.393523
34	6	0	5.882971	-0.093811	-0.872080
35	8	0	-1.333410	-0.682386	2.582558
36	8	0	-0.367105	-2.411883	-0.741878
37	8	0	-5.225811	-3.410093	-0.976284
38	8	0	-6.817591	-1.887826	0.362875
39	1	0	1.619833	-1.585354	0.319332
40	1	0	3.832196	0.019566	2.779712
41	1	0	3.303601	-1.555240	2.187143
42	1	0	2.073781	1.161736	1.549623
43	1	0	-1.373017	0.845870	-0.874410
44	1	0	0.124356	2.907615	-1.020421
45	1	0	4.548859	0.289479	-2.475617
46	1	0	7.361288	0.118546	-2.447303
47	1	0	9.251722	-0.296058	-0.883749
48	1	0	8.840264	-0.730716	1.517958
49	1	0	6.534550	-0.766546	2.428003
50	1	0	1.028528	-0.209787	3.573689
51	1	0	-0.766842	2.050466	1.882411
52	1	0	-2.723610	3.280863	1.641571
53	1	0	-3.271650	3.797967	-0.789207
54	1	0	-2.963919	2.125226	-1.224563
55	1	0	-5.323182	2.566364	-1.129865
56	1	0	-2.806478	-0.598379	0.550423
57	1	0	-4.677377	0.840606	1.334757
58	1	0	-2.712663	-3.162895	-1.152728
59	1	0	-5.070491	-1.316075	1.298023
60	1	0	-5.334048	4.458749	0.504615
61	1	0	-5.070877	3.319921	1.835869
62	1	0	-6.560591	3.240390	0.892792
63	1	0	-5.246724	-0.510910	-2.493819
64	1	0	-6.895525	-0.565830	-1.872093
65	1	0	-6.116184	0.994319	-2.183221
66	1	0	-6.819347	-2.708562	-0.166232
67	1	0	2.097078	3.460804	-2.002856
68	1	0	3.516782	2.666759	-1.298079
69	1	0	2.889127	2.130442	-2.852217
70	1	0	0.822512	-0.750469	-2.431066
71	1	0	2.404256	-0.307206	-3.066503
72	1	0	2.227720	-1.770325	-2.081040

Contor Number	Atomia Number	A tomia Truno	Coordinates (Angstroms)			
	Atomic Number		X	Y	Ζ	
1	6	0	-0.371849	0.094316	1.776503	
2	7	0	0.824033	0.219563	2.407457	
3	6	0	1.952702	0.327790	1.500322	
4	6	0	1.444082	-0.427715	0.248719	
5	6	0	2.242409	0.076256	-0.984726	
6	6	0	1.791920	1.520405	-1.274056	
7	6	0	0.498482	1.834924	-1.112837	
8	6	0	-0.591184	0.831556	-0.787172	
9	6	0	-0.095277	-0.260325	0.277433	
10	6	0	3.293718	-0.239236	1.954170	
11	6	0	2.011015	-0.810377	-2.234159	
12	6	0	2.798664	2.542519	-1.731814	
13	6	0	-1.947537	1.441647	-0.503411	
14	6	0	-2.197207	2.540286	0.211930	
15	6	0	-3.559906	3.100680	0.533729	
16	6	0	-4.796216	2.375025	-0.043322	
17	6	0	-4.911291	0.952577	0.465044	
18	6	0	-5,331736	-0 128473	-0 210222	
19	6	0	-5 384203	-1 483213	0.210222	
20	6	0	-4 577629	-2 564378	-0.264097	
20	6	0	-3 111292	-2 487087	-0.435834	
21	6	0	-2 317508	_1 589291	0.40004	
22	6	0	-0.837645	-1.509291 -1.572016	-0.058893	
23	6	0	-6.071674	2 160/12	0.0000000	
24 25	0	0	-6.071674	-0.124740	-1 620187	
25	0	0	-3.813041	-0.134749	1 422065	
26	1	0	4.768363	-0.043641	-1.432965	
27	6	0	3.699933	-0.035982	-0.549203	
28	6	0	4.179996 E.(10((7	-0.204211	0.735906	
29	6	0	5.610667	-0.315368	0.644984	
30	6	0	6.642977	-0.490955	1.584406	
31	6	0	7.957617	-0.559462	1.136850	
32	6	0	8.266150	-0.456935	-0.236356	
33	6	0	7.267357	-0.281733	-1.189509	
34	6	U	5.945778	-0.212258	-0.735096	
35	8	U	-1.466184	0.183017	2.324459	
36	8	0	-0.257004	-2.538285	-0.530158	
37	8	0	-5.193934	-3.517488	-0.735402	
38	8	0	-6.721452	-1.937560	0.607649	
39	1	0	1.661722	-1.492212	0.382001	
40	1	0	3.166245	-1.260478	2.339940	
41	1	0	3.718390	0.360015	2.769154	
42	1	0	2.111384	1.384069	1.249466	
43	1	0	-0.730337	0.244065	-1.706261	
44	1	0	0.163294	2.846918	-1.326344	
45	1	0	4.699920	0.028702	-2.435605	
46	1	0	7.503972	-0.201777	-2.246428	
47	1	0	9.302414	-0.515162	-0.556118	
48	1	0	8.763007	-0.694496	1.852988	
49	1	0	6.416349	-0.571807	2.644012	

Table	S2.	Standard	orientation	of 1b.

Mar. Drugs 2016, 14, 172

50	1	0	0.844235	0.582741	3.352046
51	1	0	-2.785419	0.892740	-0.919163
52	1	0	-1.362825	3.094862	0.644431
53	1	0	-3.593243	4.150851	0.209863
54	1	0	-3.656628	3.143150	1.630100
55	1	0	-4.699416	2.363377	-1.135584
56	1	0	-2.705618	-0.831781	0.837157
57	1	0	-4.622191	0.817144	1.508785
58	1	0	-2.687327	-3.242562	-1.092800
59	1	0	-4.944280	-1.380444	1.494823
60	1	0	-6.957104	2.706342	-0.134978
61	1	0	-6.003765	4.200227	-0.054441
62	1	0	-6.221797	3.204720	1.395105
63	1	0	-6.773093	-0.662465	-1.700564
64	1	0	-5.956058	0.869673	-2.040378
65	1	0	-5.115892	-0.664029	-2.299679
66	1	0	-6.748042	-2.770057	0.097826
67	1	0	3.598341	2.679430	-0.995288
68	1	0	3.283861	2.238752	-2.667876
69	1	0	2.319389	3.509601	-1.904861
70	1	0	2.571665	-0.431144	-3.094363
71	1	0	2.328459	-1.838869	-2.041636
72	1	0	0 958186	-0.830808	-2.520557

2a (0.62, 21.59%)

Contor Number	A torre to NTrees hore	Atomic Turne	Coord	Coordinates (Angstroms)			
Center Number	Atomic Number	Atomic Type	X	Y	Z		
1	6	0	-0.327673	0.772108	-1.057831		
2	7	0	-1.685698	0.800002	-1.034391		
3	6	0	-2.286669	1.510116	0.088998		
4	6	0	-1.121173	2.425640	0.554174		
5	6	0	-1.303312	3.963875	0.022042		
6	6	0	0.135616	4.383342	0.098375		
7	6	0	0.900322	3.723589	-0.812469		
8	6	0	1.579165	2.526876	-0.234812		
9	6	0	0.178870	1.618247	0.124988		
10	6	0	-2.844309	0.565118	1.184144		
11	6	0	-2.007253	4.140386	-1.332065		
12	6	0	0.650179	4.810481	1.448685		
13	6	0	2.606336	1.839795	-1.086980		
14	6	0	3.803512	1.459480	-0.623159		
15	6	0	4.902960	0.787619	-1.415513		
16	6	0	4.798046	-0.770375	-1.463393		
17	6	0	4.613813	-1.323511	-0.058112		
18	6	0	4 432288	-2.590021	0.352857		
19	6	0	4 046275	-2 844244	1 812838		
20	6	0	2 535728	-2 623983	1.012000		
20	6	0	2.035953	-1 207487	2 185580		
21	6	0	1 210928	-0.646996	1 018644		
23	6	0	0.644667	0.732014	1.307620		
20	6	0	3 680534	-1.184272	-2 442984		
2 1 25	6	0	4 471051	-3 822344	_0 512020		
25	0	0	-6 149267	_0 899350	0.312727		
20	6	0	-0.149207	-0.899550	0.005027		
27	0	0	-4.016210	-0.260225	0.903037		
20	6	0	-4.010319	-0.200333	0.729001		
29	0	0	-4.001900	-1.011409	-0.464741		
30 21	0	0	-2.980380	-2.307308	1 1 2 2 2 2 7		
22	6	0	-3.336766	-3.333363	-1.132227		
3Z 22	6	0	-4.009405	-3.675079	-1.347404		
33 24	6	0	-3.717276	-5.055050	-0.895295		
34	6	0	-5.360354	-1.880791	-0.221661		
35	8	0	0.345054	0.151411	-1.8/9023		
36	8	0	1.746258	-3.534289	1.700915		
37	8	0	0.615590	1.1/6589	2.445334		
38	1	0	-1.120384	2.492422	1.641729		
39	1	0	-2.040511	-0.082213	1.553733		
40	1	U	-3.151780	1.194453	2.027289		
41	1	0	-3.129828	2.103534	-0.272157		
42	1	U	-1.917703	4.466684	0.779744		
43	1	0	2.009134	2.738356	0.746510		
44	1	0	0.427475	3.493829	-1.769205		
45	1	0	-2.218370	0.208428	-1.658352		
46	1	0	2.355807	1.702720	-2.135311		
47	1	0	4.009593	1.623379	0.435513		
48	1	0	5.870045	1.062681	-0.977822		
49	1	0	4.904936	1.157798	-2.447054		

Table S3. Standard orientation of 2a.

50	1	0	5.750596	-1.138154	-1.873277
51	1	0	0.373679	-1.322497	0.797648
52	1	0	1.801084	-0.600761	0.101059
53	1	0	4.587506	-0.568813	0.725424
54	1	0	2.868126	-0.536456	2.408954
55	1	0	1.410893	-1.253619	3.084129
56	1	0	4.572456	-2.159348	2.483390
57	1	0	4.269533	-3.873945	2.104600
58	1	0	3.581814	-2.268444	-2.523267
59	1	0	3.903430	-0.798026	-3.444485
60	1	0	2.712454	-0.780427	-2.135395
61	1	0	5.127862	-4.575562	-0.060775
62	1	0	3.476914	-4.281443	-0.587439
63	1	0	4.836057	-3.620134	-1.520475
64	1	0	-1.936950	5.188378	-1.637952
65	1	0	-3.069800	3.897574	-1.259126
66	1	0	-1.582929	3.525750	-2.128341
67	1	0	1.740035	4.891245	1.462527
68	1	0	0.238285	5.796553	1.699401
69	1	0	0.343734	4.131236	2.255039
70	1	0	-2.557902	-4.199254	-1.495671
71	1	0	-4.932108	-4.793468	-1.873713
72	1	0	-6.759304	-3.314449	-1.056876
73	1	0	-1.940111	-2.122257	-0.308561
74	1	0	-7.157308	-0.893638	0.350151
75	1	0	-5.778696	0.915898	1.406132

Table S4. Standard orientation of 2b.

Conton Number	A to us to NTerroll out	A	Coordinates (Angstroms)			
Center Number	Atomic Number	Atomic Type	X	Y	Ζ	
1	6	0	-0.366223	0.879793	1.557769	
2	7	0	0.840308	0.591437	2.111108	
3	6	0	1.942383	0.412593	1.171638	
4	6	0	1.414229	1.149477	-0.087193	
5	6	0	2.038805	2.652783	-0.233463	
6	6	0	0.969745	3.235795	-1.112575	
7	6	0	-0.217453	3.349073	-0.458121	
8	6	0	-1.119778	2.184115	-0.703713	
9	6	0	-0.161681	0.990337	0.034521	
10	6	0	2.290261	-1.084704	0.957388	
11	6	0	2.350492	3.401458	1.070745	
12	6	0	1.069318	2.948865	-2.588692	
13	6	0	-2.533528	2.289662	-0.208074	
14	6	0	-3.594265	1.921249	-0.937596	
15	6	0	-5.045747	2.012901	-0.521174	
16	6	0	-5.565786	0.772906	0.273348	
17	6	0	-5.218620	-0.509112	-0.467940	
18	6	0	-5.453668	-1.787523	-0.126689	
19	6	0	-4.797649	-2.904270	-0.943479	
20	6	0	-3.365558	-3.040384	-0.423987	
21	6	0	-2.284847	-2.173266	-1.068137	
22	6	0	-1.694632	-1.157758	-0.079729	
23	6	0	-0.599940	-0.305332	-0.693890	

24	6	0	-5.021917	0.813641	1.716780
25	6	0	-6.238808	-2.258276	1.069763
26	7	0	4.715173	-1.754603	-1.775118
27	6	0	3.434058	-1.664611	-1.271135
28	6	0	3.470671	-1.305593	0.056590
29	6	0	4.866768	-1.162538	0.397071
30	6	0	5.558051	-0.829452	1.577115
31	6	0	6.947416	-0.789533	1.558787
32	6	0	7.669399	-1.077538	0.380618
33	6	0	7.017140	-1.414119	-0.800835
34	6	0	5.617815	-1.453098	-0.778383
35	8	0	-1.415662	1.000257	2.186962
36	8	0	-3.097054	-3.773331	0.516453
37	8	0	-0.110777	-0.585907	-1.778393
38	1	0	1.735886	0.615565	-0.979991
39	1	0	2.487187	-1.519845	1.945756
40	1	0	1.415116	-1.609361	0.560763
41	1	0	2.836929	0.902657	1.563190
42	1	0	2.987008	2.523826	-0.770929
43	1	0	-1.128914	1.893523	-1.756481
44	1	0	-0.163959	3.595060	0.604157
45	1	0	0.911256	0.375931	3.096804
46	1	0	-2.672123	2.730440	0.775271
47	- 1	0	-3.404881	1.487432	-1.920506
48	1	0	-5.662261	2.140230	-1.418952
49	1	0	-5.203657	2.901507	0.100647
50	1	0	-6.660047	0.871483	0.330028
51	1	0	-1.279165	-1.677287	0.793871
52	1	0	-2.466700	-0.493409	0.315481
53	1	0	-4.663493	-0.363916	-1.392573
54	1	0	-2.671695	-1.654180	-1.947647
55	1	0	-1.492440	-2.845116	-1.415851
56	1	0	-4.793644	-2.660938	-2.009365
57	1	0	-5.316908	-3.854831	-0.794780
58	- 1	0	-5.382701	-0.024646	2.315955
59	1	0	-5.346998	1.736627	2.211014
60	1	0	-3.928983	0.791710	1.731813
61	1	0	-6.752662	-1.446178	1.585470
62	1	0	-6.993096	-2.990317	0.755883
63	1	0	-5.588244	-2.771903	1.789199
64	- 1	0	2.663747	4.421614	0.829708
65	1	0	3.176137	2.930801	1.609630
66	1	0	1.502164	3.461577	1.755430
67	1	0	0.149459	3.211397	-3.117409
68	1	0	1.884101	3.544924	-3.019846
69	1	0	1.305364	1.898550	-2.805174
70	1	0	7,489687	-0.533450	2.464337
70	1	0	8,754569	-1.037628	0.397010
72	1	0	7.571824	-1.638810	-1.707080
73	1	0	5.014872	-0.608550	2.492159
74	1	0	4,949090	-2.009629	-2.721914
75	1	0	2.579062	-1.866086	-1.901164
		-			

Center Number	Atomic Number	Atomic Type	Coord	dinates (Ang	ngstroms)
	A conne rounider	monite Type	X	Y	Ζ
1	6	0	0.469950	1.320463	-1.575139
2	7	0	-0.641211	1.199002	-2.344130
3	6	0	-1.887093	0.920851	-1.638841
4	6	0	-1.535214	1.333620	-0.182361
5	6	0	-2.139080	2.805454	0.202273
6	6	0	-1.199878	3.129977	1.326713
7	6	0	0.073005	3.318488	0.884743
8	6	0	0.902647	2.082063	0.997022
9	6	0	0.040688	1.121004	-0.109398
10	6	0	-2.361301	-0.545204	-1.825293
11	6	0	-2.233514	3.827954	-0.940408
12	6	0	-1.521178	2.537464	2.674722
13	6	0	2.376663	2.208054	0.739290
14	6	0	3.306678	1.630751	1.510597
15	6	0	4.805721	1.719481	1.326371
16	6	0	5.398376	0.651102	0.353420
17	6	0	4.900901	-0.736759	0.726738
18	6	0	5.171088	-1.922894	0.156169
19	6	0	4.370554	-3.155209	0.588530
20	6	0	3.032452	-3.093329	-0.149628
21	6	0	1.883277	-2.337758	0.516636
22	6	0	1.464638	-1.098369	-0.286590
23	6	0	0.346136	-0.316590	0.376657
24	6	0	5.081694	1.040217	-1.105900
25	6	0	6.143368	-2.163961	-0.968853
26	7	0	-6.026310	-0.815030	-1.288176
27	6	0	-4.915958	-0.476642	-2.032303
28	6	0	-3.766218	-0.788000	-1.342062
29	6	0	-4.195168	-1.363349	-0.087679
30	6	0	-3.524468	-1.892474	1.032666
31	6	0	-4.271401	-2.393614	2.092564
32	6	0	-5.682559	-2.381602	2.064900
33	6	0	-6.375364	-1.869177	0.973835
34	6	0	-5.620743	-1.365964	-0.092834
35	8	0	1.603158	1.523367	-2.007189
36	8	0	2.896772	-3.579693	-1.262553
37	8	0	-0.266015	-0.772002	1.332009
38	1	0	-1.999298	0.640055	0.517052
39	1	0	-2.299916	-0.768346	-2.897471
40	1	0	-1.664700	-1.229882	-1.329809
41	1	0	-2.676953	1.557706	-2.043936
42	1	0	-3.159398	2.617612	0.560064
43	1	0	0.747052	1.575225	1.951557
44	1	0	0.183523	3.788798	-0.094423
45	1	0	-0.569319	1.213949	-3 352942
46	1	0	2 672297	2 837212	-0.095603
40	1	0	2 962350	1 012302	2 340753
48	1	0	5 287622	1 611176	2.305346
10	1	0	E 0001E1	2 710211	0.046199

 Table S5. Standard orientation of 2c.

50	1	0	6.491286	0.686064	0.473720
51	1	0	1.137221	-1.389602	-1.293175
52	1	0	2.308674	-0.421171	-0.439643
53	1	0	4.192692	-0.760974	1.552122
54	1	0	2.145280	-2.048051	1.536276
55	1	0	1.037012	-3.029927	0.588686
56	1	0	4.208705	-3.159263	1.669887
57	1	0	4.886519	-4.075259	0.301200
58	1	0	5.495373	0.324868	-1.819848
59	1	0	5.515119	2.021543	-1.331879
60	1	0	4.003874	1.101286	-1.277348
61	1	0	6.741457	-1.283538	-1.207787
62	1	0	6.829453	-2.977307	-0.702098
63	1	0	5.618796	-2.485874	-1.877665
64	1	0	-2.516298	4.800610	-0.527124
65	1	0	-3.007248	3.546837	-1.658555
66	1	0	-1.300653	3.954160	-1.493459
67	1	0	-0.687933	2.642495	3.374188
68	1	0	-2.386090	3.059509	3.103999
69	1	0	-1.794979	1.475407	2.620620
70	1	0	-3.761941	-2.802352	2.960537
71	1	0	-6.237030	-2.780566	2.909268
72	1	0	-7.461021	-1.860157	0.946839
73	1	0	-2.439659	-1.903319	1.074545
74	1	0	-6.982172	-0.698494	-1.586519
75	1	0	-5.030727	-0.040422	-3.014901

Table S6. Standard orientation of 2d.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			x	Y	Ζ
1	6	0	-0.064990	0.605630	-1.112642
2	7	0	-1.408189	0.409033	-1.126684
3	6	0	-2.134977	0.896790	0.039332
4	6	0	-1.136601	1.924043	0.639791
5	6	0	-1.530668	3.465929	0.259095
6	6	0	-0.173995	4.081169	0.446651
7	6	0	0.712442	3.642888	-0.487624
8	6	0	1.537457	2.496683	-0.001109
9	6	0	0.280247	1.367817	0.180344
10	6	0	-2.549376	-0.240054	1.007450
11	6	0	-2.210014	3.682094	-1.101480
12	6	0	0.225127	4.431611	1.857085
13	6	0	2.689726	2.058830	-0.859293
14	6	0	3.902129	1.775616	-0.366478
15	6	0	5.116790	1.344116	-1.158654
16	6	0	5.209192	-0.195224	-1.406779
17	6	0	5.025616	-0.949851	-0.098781
18	6	0	5.015822	-2.273604	0.132397
19	6	0	4.589709	-2.782033	1.513035
20	6	0	3.060208	-2.774389	1.533125
21	6	0	2.355838	-1.494665	1.981522
22	6	0	1.549328	-0.853370	0.843548
23	6	0	0.828972	0.411871	1.270895

24	6	0	4.201609	-0.609351	-2.499323
25	6	0	5.295065	-3.353028	-0.880731
26	7	0	-4.233737	-3.105397	-0.653971
27	6	0	-3.125596	-2.480206	-0.119606
28	6	0	-3.470884	-1.244507	0.377091
29	6	0	-4.886431	-1.093570	0.131959
30	6	0	-5.824100	-0.079540	0.403156
31	6	0	-7.149947	-0.267102	0.029987
32	6	0	-7.565363	-1.452980	-0.612855
33	6	0	-6.664809	-2.475335	-0.892475
34	6	0	-5.330392	-2.282716	-0.514993
35	8	0	0.710991	0.208563	-1.979887
36	8	0	2.414733	-3.737763	1.147069
37	8	0	0.734907	0.721346	2.448936
38	1	0	-1.172118	1.873406	1.727856
39	- 1	0	-1.654187	-0.743739	1.386774
40	- 1	0	-3.035102	0.227950	1.873200
41	1	0	-3.051786	1.389611	-0.293269
42	- 1	0	-2.237669	3.788905	1.033913
43	1	0	1.890491	2.656001	1.019955
44	- 1	0	0.311924	3.452966	-1.485369
45	- 1	0	-1.831520	-0.192904	-1.820206
46	1	0	2.511181	2.020726	-1.930313
47	- 1	0	4.033305	1.832368	0.715161
48	1	0	6.017862	1.669721	-0.625315
49	1	0 0	5.128163	1.844268	-2.133817
50	1	0 0	6.218859	-0.391304	-1.797206
51	1	0 0	0.803540	-1.562784	0.461198
52	1	0 0	2.188959	-0.614287	-0.009179
53	1	0	4.834832	-0.319062	0.767166
54	1	0	3.072102	-0.773659	2.381132
55	1	0 0	1.680118	-1.763537	2.800846
56	1	0 0	4.983684	-2.140979	2.306358
57	1	0 0	4.936453	-3.806050	1.675724
58	- 1	0	4.414861	-0.066134	-3.427437
59	1	0 0	3.175047	-0.378722	-2.203073
60	1	0 0	4.254131	-1.676702	-2.723161
61	- 1	0	5.675420	-2.959209	-1.824052
62	1	0 0	6.038153	-4.055400	-0.483536
63	1	0 0	4.391549	-3.940830	-1.087697
64	1	0	-2.299459	4.756041	-1.289836
65	1	0	-3.221512	3.269709	-1.107674
66	1	0	-1.667119	3.235757	-1.936836
67	1	0 0	-0.339258	5.313902	2.185689
68	- 1	0	-0.000876	3.633122	2.576240
69	- 1	0	1.289033	4.670425	1.931669
70	1	0 0	-7.881045	0.509406	0.235345
71	1	0 0	-8.608053	-1.570496	-0.892936
72	1	0 0	-6.983654	-3.389370	-1.384543
73	- 1	0	-5.518508	0.837099	0.900420
74	1	0	-4.238085	-4.025919	-1.064908
75	1	0	-2.164065	-2.974310	-0.124496