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Abstract: In this study, we examined the protective effects of porphyra-334 against  

UVA-irradiated cellular damage and elucidated the underlying mechanisms. Porphyra-334 

prevented UVA-induced cell death and exhibited scavenging activities against intracellular 

oxidative stress induced by UVA irradiation in skin fibroblasts. We found that porphyra-334 

significantly reduced the secretion and expression of IL-6 and TNF-α, reduced nuclear 

expression of Nuclear factor-κB (NF-κB), and sustained NF-E2-related factor 2 (Nrf2) 

activation. Further mechanism research revealed that porphyra-334 promoted the Nrf2 

signaling pathway in UVA-irradiated skin fibroblasts. Our results show that the antioxidant 

effect of porphyra-334 is due to the direct scavenging of oxidative stress and its inhibitory 

effects on NF-κB-dependent inflammatory genes, such as IL-6 and TNF-κ. Therefore, we 

hypothesize that boosting the Nrf2- NF-κB-dependent response to counteract environmental 

stress is a promising strategy for the prevention of UVA-related damage.  
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1. Introduction 

Human skin is an efficient protective barrier from constant exposure to environmental stressors, such 

as ultraviolet (UV) radiation and harmful chemicals. Specifically, solar UV irradiation is a major 

environmental hazard that generates reactive oxygen species (ROS), induces DNA damage and 

ultimately results in skin inflammation, photoaging and cancer development [1]. During environmental 

stress, ROS levels increase dramatically and induce significant damage to cell structures, causing skin 

aging [2,3]. Additionally, the skin cells have evolved cytoprotective antioxidant defense systems and 

detoxifying enzymes, scavenging harmful ROS [3,4].  

Several studies have demonstrated that NF-E2-related factor 2 (Nrf2) activation efficiently protects 

cells from ROS-induced damage in vivo and in vitro by inducing the expression of numerous detoxifying 

enzymes and antioxidant proteins. Activation of the Nrf2/ARE pathway could increase nuclear 

localization of Nrf2 and induce the expression of the Nrf2/ARE-dependent genes, such as heme 

oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO-1) [5,6]. 

In skin, Nrf2 activation can be triggered by UV radiation or phytochemicals in keratinocytes, 

fibroblasts and melanocytes in vitro [7–9]. Nrf2 activation was frequently associated with the protective 

effects against UVA irradiation [7,10,11].  

Mycosporine-like amino acids (MAAs) possess significant chemoprotective effects against  

photo-induced skin senescence [12]. MAAs found in and isolated from a number of marine organisms, 

such as cyanobacteria, algae, and heterotrophic bacteria, have attracted a great deal of interest, especially 

for potential UV protection. A recent study suggested that MAAs have antioxidant properties and UV 

absorbance activities [13]. An important MAA is porphyra-334, which reportedly acts mainly in 

photoprotection but also possesses antioxidative abilities. Results from a recent study showed that algae 

extracts prevent UV-induced photodamage in human keratinocytes [9]. Previously, we extracted 

porphyra-334, the most abundant MAA in Porphyra yezoensis, which inhibited UVA-induced cellular 

senescence in human skin fibroblasts [14]. In this study, we evaluated the effect of porphyra-334 on 

UVA irradiation-treated skin fibroblasts, identified the possible mechanisms involved, and investigated 

Nrf2/NF-κB signaling pathways.  

2. Results  

2.1. Effect of Porphyra-334 on UVA-Induced Proinflammatory Cytokine Production 

First, to determine whether porphyra-334 protects against UVA-induced proinflammatory cytokine 

production in skin fibroblasts, we measured the levels of several cytokines from culture supernatants 

after UVA irradiation with or without porphyra-334. As shown in Figure 1, the production levels of 

TNF-α, IL-1β, and IL-6 in the cell supernatant were markedly increased after 10 J/cm2 UVA  

stimulation, but they were not increased during treatment with porphyra-334. Proinflammatory cytokine 

secretion by UVA-irradiated human skin fibroblasts was protected by porphyra-334 treatment in a  

dose-dependent manner. These results indicated that the presence of porphyra-334 effectively recovered 

the increased production of inflammatory cytokines by UVA irradiation.  
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Figure 1. Effect of porphyra 334 on UVA-induced proinflammatory cytokine production 

Cells were exposed to UVA irradiation and incubated with porphyra 334 for 24 h. The 

concentration of cytokines in the supernatants was determined by ELISA. Values are the 

mean ± S.E. of triplicate experiments. * p < 0.05 vs. corresponding control, # p < 0.05 vs. 

corresponding only UVA irradiation.  

2.2. Effect of Porphyra-334 on UVA-Induced Inflammatory Response 

To determine the protective effects of porphyra-334 on UVA-induced inflammation, the basal and 

UVA irradiation-modulated expression of TNF-α, IL-1β, and IL-6 in human skin fibroblasts were 

evaluated using RT-PCR and western blot analysis. As shown in Figure 2A,B, TNF-α mRNA and protein 

expressions were significantly increased by UVA irradiation compared with basal levels. However, 

treatment with porphyra-334 at a concentration of 10 μM dramatically suppressed its expression. 

Additionally, IL-6 mRNA and protein expression was reduced in response to porphyra-334 at a 

concentration of 20 μM. In accordance with the cytokine secretion, porphyra-334 was the most efficient 

in preventing the expression of proinflammatory cytokines TNF- and IL-6, except IL-1β, mRNA and 

protein levels despite cells sustaining damage from UVA irradiation.  

Because porphyra-334 suppressed the expression of proinflammatory cytokines, we evaluated the 

effect of porphyra-334 on the NF-κB transcription factor responsible for cytokine expression (Figure 2C). 

To estimate changes in the translocation of NF-κB induced by porphyra-334 in UVA-treated skin 

fibroblasts, western blotting was used. As expected, UVA irradiation significantly increased  

the expression of nuclear NF-κB p65, whereas the nuclear NF-κB p65 level was significantly  

reduced in porphyra-334-treated cells. These results indicated that porphyra-334 modulates NF-κB  

activation showing changes in nuclear NF-κB levels were caused by porphyra-334 treatment in  

UVA-irradiated cells.  
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Figure 2. Porphyra 334 treatment can reduce inflammatory factors. (A) Cells were exposed 

to UVA irradiation and incubated with porphyra-334 for 24 h. The expression levels of 

cytokine genes were detected using RT-PCR. GAPDH was used as an internal standard;  

(B) The expression levels of cytokine proteins were determined by western blot analysis. 

GAPDH was used as an internal standard; (C) Some cells were fractionated into cytosolic 

and nuclear fractions and immunoblotted for p65, β-Actin and Histone H3.  

2.3. Porphyra-334 Induces the Nuclear Translocation of Nrf2 and Triggers Nrf2-Dependent Induction 

of HO-1 Expression Levels in Human Skin Fibroblasts 

Important anti-inflammatory mechanisms are mediated by Nrf2 [6]. Nrf2 activation is associated with 

its dissociation from the Keap1-Cul3 complex that sequesters Nrf2 translocation to the nucleus and its 

binding to antioxidative response elements [7]. We examined the effect of porphyra-334 on the 

subcellular localization of Nrf2 (Figure 3A). Western blot analysis showed the Nrf2 unclear translocation 

was increased by porphyra-334. Additionally, porphyra-334 (10 μM) resulted in an induction of HO-1 

expression. At an increased Nrf2 expression, treatment with porphyra-334 dose-dependently reduced the 

protein expression of HO-1 accompanying the reduction in GST levels in UVA-irradiated cells. These 

results suggest that porphyra-344 naturally induced Nrf2 activation and led to the recovery of  

UVA-induced skin fibroblast damage via expression of antioxidative enzymes such as HO-1 and GST, 

increasing the antioxidative capacity of porphyra-334-treated cells.  
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Figure 3. Treatment with porphyra-334 inhibited the impact of oxidative stress induced by 

UVA irradiation and recovered UVA-induced cell damage. (A) Cells were fractionated into 

cytosolic and nuclear fractions and immunoblotted for Nrf2, -actin and Histone H3; (B) 

Cell lysates were immunoblotted for nitrotyrosine; (C) Cell lysates were immunoblotted for 

Bax and Bcl2. Bax/GAPDH and Bcl2/GAPDH ratio are shown below. Mean ± SE, n = 3.  

* p < 0.05 vs. corresponding control, # p < 0.05 vs. corresponding only UVA irradiation.  
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2.4. Porphyra-334 Inhibits UVA-Induced Oxidative Stress and Prevents Cell Death 

To clarify the relationship between the protective role of porphyra-334 and the change in oxidative 

stress, we evaluated nitrotyrosine (NT) expression, which reflects oxidative stress. As shown in  

Figure 3B, treating the skin fibroblast cells with UVA irradiation resulted in the upregulation of NT 

expression levels, especially 50–250 kDa. However, the porphyra-334 treatment decreased the NT 

expression levels, indicating reduced oxidative stress in porphyra-344-treated skin fibroblast cells. Our 

experiments showed that porphyra-334 can effectively resist UVA irradiation and remove intracellular 

oxidative stress.  

To determine whether porphyra-334 led to changes in Bcl2 family protein levels in UVA  

irradiation-treated skin fibroblasts, Bcl2 and Bax protein expressions were examined. As shown in 

Figure 3C, the Bax protein was maximally detected with UVA irradiation and was reduced  

dose-dependently in porphyra-334 treated cells. Additionally, porphyra-334 significantly increased Bcl2 

protein levels as opposed to Bax protein levels. These results indicate that UVA irradiation-induced cell 

death is mediated by oxidative stress and that porphyra-334 exerts a potent scavenging effect, preventing 

UVA-induced cell death. 

3. Discussion 

Recent studies have demonstrated the therapeutic potential of porphyra-334 in photoaging [13,14].  

In the current study, we showed that porphyra-334 exerted protective effects on skin cell death in  

UVA-damaged cells and suppressed inflammatory responses and oxidative stress, which might be 

associated with the regulation of Nrf2 and NF-κB activity.  

The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 system regulates the expression of cytoprotective 

genes in response to oxidative stresses. Nrf2 regulates the basal and inducible expression of detoxifying 

and antioxidant genes such as NQO1 and HO-1.  

Nrf2 includes the gene expression of antioxidant and detoxification enzymes and has been reported 

to exert anti-inflammatory effects by regulating several proinflammatory genes. Therefore, we believe 

that boosting the Nrf2-dependent response to counteract environmental stress is a promising strategy for 

preventing inflammation-related damage. Furthermore, Nrf2 is considered a key target of antioxidant 

enzyme inducers in the primary defense mechanism against ROS, converting highly toxic ROS to less 

reactive and less damaging forms. 

HO-1 is also involved in anti-inflammation, and proinflammatory cytokines and LPS triggered  

HO-1 expression. However, HO-1 inhibition blocked LPS and proinflammatory cytokines-stimulated 

iNOS expression and NO production [15]. It is indicating that HO-1’s induction commonly occurs in the 

setting of increased cellular stress to help maintain physiological homeostasis and the potential for a 

proinflammatory environmental develops. Recently, the increased liver and adipose tissue HO-1 levels 

predicted unhealthy obesity in humans, and HO-1 deletion prevented metabolic disease [16]. These 

findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease. In this paper, 

porphyra 334 inhibited UVA-induced inflammatory response, and porphyra 334 dose-dependently 

reduced the HO-1 protein expression in UVA-irradiated cells. Thus, we assembled HO-1 expression 
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predicts UVA-induced skin damage, and these findings might consider HO-1 inhibition as a potential 

therapeutic strategy for skin damage.  

As Nrf2 is a transcription factor with potent antioxidant effects against cell death caused by  

ROS-induced damage, targeting Nrf2 might play an essential role in the protection against various 

inflammatory diseases. Because porphyra-334 activated Nrf2 in our study, it is possible that the Nrf2 

triggered by porphyra-334 suppresses NF-κB activation, contributing to the anti-inflammatory effect  

of porphyra-334. Reportedly, Nrf2 can directly inhibit the expression of NF-κB, resulting in the reduced 

expression of proinflammatory cytokines caused by lipopolysaccharide (LPS) [17,18]. Although these 

results reveal the possibility that porphyra-334 suppresses NF-κB via Nrf2, the relationship between 

Nrf2 and NF-κB activity remains to be elucidated. Nevertheless, our results suggest that porphyra-334 

has potent anti-inflammatory and antioxidative capabilities, which may operate by both suppressing  

NF-κB and activating Nrf2.  

Inflammatory cytokines have critical roles in various pathologies including skin damage [19,20]. 

Proinflammatory cytokines amplify the inflammatory cascade by activating inflammation-associated 

oxidative bursts in some cells. The crosstalk between oxidative stress and inflammation is due to the 

activation of NF-κB and inhibition of Nrf2 [21]. The organized regulation of Nrf2 and NF-κB has a 

crucial role in converting cellular signals into anti-inflammatory responses. Extensive evidence suggests 

that disruption or inhibition of Nrf2 signaling augments the expression and/or activity of proinflammatory 

regulators and sustains inflammation [21,22]. Many natural compounds have exhibited simultaneous 

induction of Nrf2-regulated cytoprotective protein expression and inhibition of NF-κB-regulated 

proinflammatory signaling [22,23]. Taken together, our results showed that porphyra-334 prevented the 

UVA irradiation-induced inflammation and inhibited skin cell death by regulating Nrf2 and NF-κB 

signaling pathways. Nrf2 and NF-κB signaling pathways may be critical to porphyra-334’s  

prevention of UVA damage (Figure 4). Therefore, porphyra-334 may be an attractive prevention agent for  

UVA-related diseases. 

 

Figure 4. Model of porphyra-334’s role in UVA-irradiated skin fibroblasts. Boosting the 

Nrf2/NF-κB-dependent response to counteract environmental stress with porphyra-334 is  

a promising strategy for UVA-related damage prevention. The antioxidant effect of  

porphyra-334 is due to the direct scavenging of oxidative stress and its inhibitory effects  

on NF-κB-dependent inflammation genes, leading to inhibition of skin cell death. 
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4. Experimental Section  

4.1. Extraction and Isolation of Water-Soluble Porphyra-334  

The porphyra-334 extraction method was performed as previously described [14]. Briefly, dried  

P. yezoensis (100 g) was extracted in hydrophilic solvent consisting of 80% aqueous methanol (v/v) at 

45 °C for 2 h. The dried extract was dissolved in 150 mL ultrapure water and transferred to a separating 

funnel containing 666 mL chloroform-methanol-ultrapure water (2:1:1, v/v/v). The upper layer 

containing crude MAAs was collected. Porphyra 334 was purified using an Agilent 1100 series HPLC 

system equipped with a diode array detector (DAD; Agilent Technologies, Inc., Palo Alto, CA, USA). 

Purified porphyra 334 was stored in the dark at −70 °C until analysis.  

4.2. Cell Culture 

Human skin fibroblasts (CCD-986sk) were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA, USA). Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, 

Grand Island, NY, USA) containing 10% (v/v) fetal bovine serum (FBS; HyClone, Logan, UT, USA)  

and 1% (v/v) penicillin-streptomycin (Gibco, Grand Island, NY, USA) under a humidified atmosphere of 

5% CO2 at 37 °C. 

4.3. UVA Irradiation and Porphyra-334 Treatment 

Prior to UV irradiation, cells were washed with PBS and exposed to a 10 J/cm2 radiation dose of UVA 

light (BLX-254; Vilber Lourmat, Marne La Vallee, France) in PBS. Subsequent to irradiation, the treated 

cells were washed with PBS and replaced with different concentrations of porphyra-334 for 24 h. 

Concomitantly, no irradiation control cells were treated in the same manner, although the wells were 

covered with aluminum foil to prevent irradiation. 

4.4. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Total RNA from each sample was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 

According to the manufacturer’s instructions, total RNA (1 μg) was subjected to first strand cDNA 

synthesis using a Reverse Transceipase PreMix kit (Intron Biotechnology, Inc., Gyeonggi-do, Korea). 

Polymerase chain reaction (PCR) amplification of the cDNA products was performed with  

2× TOPsimple™ DyeMIX (aliquot)-nTag (Enzynomics, Daejeon, Korea) and primer pairs. Amplified 

products were separated using 1% agarose gel electrophoresis and visualized with 1 mg/mL ethidium 

bromide; mRNA levels were normalized using GAPDH as an internal control. The primers used in 

amplification are shown in Table 1. 

Table 1. Oligonucleotide primer sequences used in RT-PCR. 

Gene 
Primer Sequence (5′–3′) 

Forward Primer Reverse Primer 

TNF-α TGCACCACAGTTTAAACCCA GACTCCTTCAGGTGCTCAGG 
IL-6 AGGAGACTTGCCTGGTGAAA CAGGGGTGGTTATTGCATCT 

IL-1β CTGTCCTGCGTGTTGAAAGA TTCTGCTTGAGAGGTGCTGA 
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4.5. Subcellular Fractionation  

Cytoplasmic and nuclear lysates were separated using the NE-PER extraction kit (Pierce Biotechnology, 

Inc., Rockford, IL, USA) according to the manufacturer’s protocol.  

4.6. Western Blot Analysis 

After treatment, cells were washed twice with PBS, harvested, and lysed in RIPA buffer [50 mM Tris 

(pH 7.4), 1 mM ethylene glycol tetraacetic acid (EGTA), 150 mM NaCl, 1% Triton X-100, 0.025% 

sodium deoxycholate] containing protease inhibitor cocktail (Geno Technology, Inc., St. Louis, MO, USA). 

The lysates were centrifuged at 12,000 rpm for 15 min at 4 °C (Smart-R17; Hanil Science Industrial, 

Incheon, Korea). Supernatants were collected and their protein concentrations determined using a BCA 

protein assay kit (Pierce Biotechnology, Inc., Rockford, IL, USA). Equal amounts of protein (30 μg) 

were boiled for 10 min and separated using 7.5%–12% SDS-PAGE. The resolved proteins were then 

transferred to polyvinylidene difluoride (PVDF) membranes (Millipore Corp., Billerica, MA, USA).  

The membranes were blocked by incubation with 1% bovine serum albumin (BSA) in TBS-T [10 mM 

Tris-HCl, 150 mM NaCl (pH 7.5) containing 0.1% Tween-20] at room temperature for 1 h and incubated 

with specific primary antibodies (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) for 3 h.  

The membranes were washed three times with TBS-T and incubated for 2 h with the appropriate  

HRP-conjugated goat anti-rabbit, goat anti-mouse, or rabbit anti-goat secondary antibody (Santa Cruz 

Biotechnology, Inc., Dallas, TX, USA) diluted at 1:10,000 in TBS-T 1% BSA. The respective proteins 

were detected with SuperSignal® West Pico (Thermo Fisher Scientific, Inc., Rockford, IL, USA). The 

antibodies are shown in Table 2.  

Table 2. Primary antibodies used in western blot analysis. 

Primary Antibody COMPANY Dilution Rate

μ-Actin Santa Cruz Biotechnology, Inc. 1:1000 
Bax Cell Signaling TECHNOLOGY 1:1000 
Bcl2 Cell Signaling TECHNOLOGY 1:1000 

GAPDH Santa Cruz Biotechnology, Inc 1:1000 
HO-1 Santa Cruz Biotechnology, Inc 1:1000 
IL-1β Santa Cruz Biotechnology, Inc 1:1000 
NF-κB Cell Signaling TECHNOLOGY 1:1000 
Nrf2 Enzo Life Science 1:1000 

Nitrotyrosine Cell Signaling TECHNOLOGY 1:1000 
TNF-α Santa Cruz Biotechnology, Inc. 1:1000 

4.7. Measurement of TNF-α, IL-6 and IL-1β Production 

Quantitative detection of human TNF-α, IL-6, and IL-1β production was based on standard sandwich 

ELISA technology using human TNF-α, IL-6, and IL-1β ELISA kits (Koma Biotech Inc., Seoul, Korea) 

according to the manufacturer’s instructions.  
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4.8. Statistical Analysis 

The results were presented as means ± standard error of the means (SEM) from at least three 

independent experiments. Data were analyzed using one-way analysis of variance (ANOVA) with 

Student’s t-test using SPSS 10.0 (SPSS, Inc., Chicago, IL, USA). A p-value <0.05 was considered to 

indicate statistical significance.  
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