Next Article in Journal
Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells
Previous Article in Journal
Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro
Article Menu

Export Article

Open AccessArticle
Mar. Drugs 2015, 13(10), 6082-6098; doi:10.3390/md13106082

Investigation of Interspecies Interactions within Marine Micromonosporaceae Using an Improved Co-Culture Approach

1
Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
2
Molecular & Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53705, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Peer B. Jacobson
Received: 24 August 2015 / Revised: 10 September 2015 / Accepted: 14 September 2015 / Published: 24 September 2015
View Full-Text   |   Download PDF [2390 KB, uploaded 24 September 2015]   |  

Abstract

With respect to bacterial natural products, a significant outcome of the genomic era was that the biosynthetic potential in many microorganisms surpassed the number of compounds isolated under standard laboratory growth conditions, particularly among certain members in the phylum Actinobacteria. Our group, as well as others, investigated interspecies interactions, via co-culture, as a technique to coax bacteria to produce novel natural products. While co-culture provides new opportunities, challenges exist and questions surrounding these methods remain unanswered. In marine bacteria, for example, how prevalent are interspecies interactions and how commonly do interactions result in novel natural products? In an attempt to begin to answer basic questions surrounding co-culture of marine microorganisms, we have tested both antibiotic activity-based and LC/MS-based methods to evaluate Micromonosporaceae secondary metabolite production in co-culture. Overall, our investigation of 65 Micromonosporaceae led to the identification of 12 Micromonosporaceae across three genera that produced unique metabolites in co-culture. Our results suggest that interspecies interactions were prevalent between marine Micromonosporaceae and marine mycolic acid-containing bacteria. Furthermore, our approach highlights a sensitive and rapid method for investigating interspecies interactions in search of novel antibiotics, secondary metabolites, and genes. View Full-Text
Keywords: Co-culture; Micromonosporaceae; marine invertebrate; metabolomics; cryptic biosynthesis; marine bacteria Co-culture; Micromonosporaceae; marine invertebrate; metabolomics; cryptic biosynthesis; marine bacteria
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Adnani, N.; Vazquez-Rivera, E.; Adibhatla, S.N.; Ellis, G.A.; Braun, D.R.; Bugni, T.S. Investigation of Interspecies Interactions within Marine Micromonosporaceae Using an Improved Co-Culture Approach. Mar. Drugs 2015, 13, 6082-6098.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top