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Abstract: Two sponge-derived actinomycetes, Actinokineospora sp. EG49 and 

Nocardiopsis sp. RV163, were grown in co-culture and the presence of induced 

metabolites monitored by 
1
H NMR. Ten known compounds, including angucycline, 

diketopiperazine and β-carboline derivatives 1–10, were isolated from the EtOAc extracts 

of Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Co-cultivation of  

Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 induced the biosynthesis of three 

natural products that were not detected in the single culture of either microorganism, 

namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 

5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). 

When tested for biological activity against a range of bacteria and parasites, only the 

phenazine 12 was active against Bacillus sp. P25, Trypanosoma brucei and interestingly, 

against Actinokineospora sp. EG49. These findings highlight the co-cultivation approach as 

an effective strategy to access the bioactive secondary metabolites hidden in the genomes 

of marine actinomycetes. 
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1. Introduction 

The search for novel biologically active natural products sourced from marine microbes continues 

to be an important endeavour fuelled by the emergence of new infections diseases and chemotherapy 

resistance. Marine-derived actinomycete collections have recently yielded new compounds with not 

only potent biological activity, but also novel molecular scaffolds, for example salinosporamide A [1] 

and marinopyrroles A and B [2]. Salinosporamide A was shown to be an irreversible inhibitor of the 

20S proteasome and entered clinical trials against multiple myeloma, only three years after its 

discovery [3]. However, finding new microbial secondary metabolites is becoming difficult, as the rate 

of rediscovery of known compounds is increasing [4,5]. On the other hand, genomic sequencing has 

revealed the presence of a large number of putative biosynthetic gene clusters in the genomes of some 

microorganisms that encode for secondary metabolites that are not seen under classical cultivation 

conditions [6–8]. Different strategies have been proposed to activate these cryptic biosynthetic 

pathways. Co-fermentation of microorganisms in a single environment is one of the proposed methods 

to de-silence biosynthetic pathways for the production of new secondary metabolites [7,9–11]. Mixed 

fermentation of two or more microbes can make a competitive environment, which may induce 

unexpressed pathways and result in the synthesis of bioactive secondary metabolites due to 

interspecies crosstalk or chemical defence mechanisms [11–13]. 

Examples of the production of induced new natural products by mixed fermentation of  

marine-sourced microorganisms include a chlorinated benzophenone pestalone [14] sourced from 

Pestalotia sp. strain CNL-365 and marine α-proteobacterium strain CNJ-328, the diterpenoids 

libertellenones A–D isolated from a co-culture of the same bacterial strain CNJ-328 with the fungus, 

Libertella sp. CNL-52 [15], and cyclic depsipeptides emericellamides A and B isolated from a  

co-culture of marine-derived fungus Emericella sp. (CNL-878) and marine bacterium Salinispora 

arenicola [16]. In this work, we focus on the induced metabolites from the co-cultivation of two 

sponge-sourced actinomycetes. Several in-house strains were co-cultured and the presence of 

differential secondary metabolite production monitored by UV-Vis, MS and NMR techniques.  

Two strains, namely Actinokineospora sp. and Nocardiopsis sp., when grown in co-culture showed 

different chemical profiles to that of the mono-cultures and were prioritised for large-scale natural 

product isolation work. 

Members of the genus Actinokineospora were isolated from soil, plants [17,18] and marine  

sponges [19]. Although this genus is not well known for secondary metabolite production, we recently 

reported two new angucycline-like compounds named actinosporins A (1) and B (2) from 

Actinokineospora sp. EG49, where actinosporin A displayed anti-parasitic activity against 

Trypanosoma brucei brucei [20]. On the other hand, the genus, Nocardiopsis, is frequently isolated 

from terrestrial, as well as marine environments, including marine sponges [21–23]. Members of this 

genus are prolific producers of a multitude of secondary metabolites with diverse activities [24–27].  
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In this study, two sponge-derived actinomycetes were co-cultured in liquid media; these being 

Nocardiopsis sp. RV163 from the Mediterranean sponge Dysidea avara, and Actinokineospora sp. 

EG49 from the Red Sea sponge, Spheciospongia vagabunda. To the best of our knowledge, this is the 

first report of induced metabolites from the mixed fermentation of two sponge-associated actinomycetes. 

Traditionally, the detection of induced metabolite biosynthesis has relied either on LC-PDA [5,28,29] or 

LC-PDA-MS [12,15,16,30], methods to monitor the production of the secondary metabolite by 

comparison of the small molecule profiles of the mono- and co-cultures of microorganisms. However, 

these analytical techniques are dependent either on the existence of a chromophore (PDA detection) or 

the ability of a compound to be ionised (MS detection) and might not detect all of the changes of the 

secondary metabolome between the mono- and co-cultures. In order to further interrogate the existence 

of the induced change in the secondary metabolome profiles, we used LC-PDA, as well as 
1
H-NMR 

fingerprinting techniques. Following the detection of the production of the induced metabolites, an 

isolation process was performed, which led to the identification of N-(2-hydroxyphenyl)-acetamide 

(11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3, 

2-b][1,4]benzoxazine (13a). 

2. Results and Discussion 

The mono- and co-culture secondary metabolite profiles were monitored with a combination of  

UV-PDA and NMR-based spectroscopic techniques. Figure 1 depicts the LC-PDA metabolic profile of 

the three actinomycetes cultures and shows that the co-culture extract displayed a very different 

chemotype compared to that of the two single cultures. In order to further investigate the differences of 

the secondary metabolite profiles by 
1
H-NMR and to have a sufficient quantity to identify the 

metabolites, a large-scale study was undertaken on 50 mg of the EtOAc extract. The methodology 

utilised identical reversed-phase C18 stationary support as for the analytical HPLC run, but allowed for 

a longer elution gradient, which gave better sensitivity and resolution of the secondary metabolites 

present. 
1
H-NMR spectra were then used to compare the differences between each chromatography 

fraction sourced from the mono- and co-cultures. 

2.1. Monoculture Chemical Profiles 

Previously, we reported on the structures of two new angucycline-type metabolites, actinosporins A 

(1) and B (2) (Figure 2), isolated from Actinokineospora sp. EG49 [20]. In this work, compounds 1 and 

2 were confirmed to be the major metabolites present in this extract, and further attempts at the 

structure elucidation of minor metabolites were not made. The majority of the natural products present 

in the EtOAc extract of Nocardiopsis sp. RV163 belonged to the diketopiperazine class of compounds. 

They were identified as 2,5-diketopiperazines cyclo-(prolyl-valyl) (3) [31], cyclo-(isoleucyl-prolyl)  

(4) [32], cyclo-(leucyl-prolyl) (5) [31], cyclo-(prolyl-tyrosyl) (6) [33], cyclo-(phenylalanyl-prolyl)  

(7) [32] and cyclo-(prolyl-tryptophyl) (8) [34,35]. The purity of the compounds (at <90%) prevented 

us from confirming the absolute configuration of the diketopiperazines, 3–8. Two other secondary 

metabolites in Nocardiopsis sp. RV163 EtOAc extract were identified as known natural products  

1-hydroxy-4-methoxy-2-naphthoic acid (9) [36] and 1-acetyl-β-carboline (10) [37]. 
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Figure 1. HPLC chromatograms of the EtOAc extracts of Actinokineospora sp. EG49 and 

Nocardiopsis sp. RV163 co-culture (top), Actinokineospora sp. EG49 monoculture 

(middle) and Nocardiopsis sp. RV163 monoculture (bottom). The depicted 

chromatograms were extracted at 210, 254, 280 and 380 nm, and the bottom two spectra 

show representative examples of the natural products isolated from the two strains. 

 

Figure 2. The structure of the major compounds identified from the EtOAc extracts of 

Actinokineospora sp. EG49 actinosporins A (1) and B (2); Nocardiopsis sp. RV163  

cyclo-(prolyl-valyl) (3), cyclo-(isoleucyl-prolyl) (4), cyclo-(leucyl-prolyl) (5),  

cyclo-(prolyl-tyrosyl) (6), cyclo-(phenylalanyl-prolyl) (7), cyclo-(prolyl-tryptophyl) (8),  

1-hydroxy-4-methoxy-2-naphthoic acid (9) and 1-acetyl-β-carboline (10); and the  

co-culture, N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12), 

5a,6,11a,12-tetrahydro-5a,11a-dimethyl-1,4-benzoxazino[3,2-b][1,4]benzoxazine (13a) 

and 2,2′,3,3′-tetrahydro-2,2′-dimethyl-2,2′-bibenzoxazole (13b). 
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2.2. Co-Culture Chemical Profile 

Having established the UV-PDA, MS and the 
1
H-NMR profile of the two monocultures, the  

co-culture extract was investigated. The 
1
H-NMR spectra of the same chromatography fractions of 

mono- and co-culture extracts were compared, and since the retention times of compounds can vary, 

the neighbouring fractions were also considered. The presence of the first induced metabolite was 

apparent in the 
1
H-NMR spectra of fraction 5 of co-culture compared to that of the mono-cultures. 

Aromatic signals in the region 6.70 to 7.70 ppm were observed in co-culture that were not present in 

the spectra of the Actinokineospora sp. EG49- and Nocardiopsis sp. RV163-sourced fractions  

(Figure 3a). The absence of these NMR signals in both monocultures suggested that this was an 

induced metabolite produced through mixed fermentation of the two actinomycetes. A literature search 

based on the molecular ion and structural information generated from the 
1
H-NMR spectrum identified 

this compound to be the known natural product, N-(2-hydroxyphenyl)-acetamide (11) [38]. 

Figure 3. 
1
H-NMR fingerprints of HPLC fractions sourced from the EtOAc extracts of 

Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 co-culture (top in black), 

Actinokineospora sp. EG49 monoculture (middle in blue) and Nocardiopsis sp. RV163 

monoculture (bottom in red). (a) 
1
H-NMR spectra of fraction 5; chemical shifts for the 

induced metabolite N-(2-hydroxyphenyl)-acetamide (11) are highlighted; (b) 
1
H-NMR 

fingerprints of fraction 24; the possible presence of compound 12 in the Actinokineospora 

sp. EG49 monoculture is highlighted. 

 

In addition to fraction 5, two other chromatography fractions showed the presence of induced 

metabolites. In regions concentrated around fraction 24, aromatic signals between 7.15 and 7.80 ppm 

and an exchangeable one at 10.45 ppm were detected in co-culture, and while initially this compound 

was not apparent in either of the two monocultures, the 
1
H-NMR fingerprint suggested that this 

metabolite may be present in very small amounts in the Actinokineospora sp. EG 49 extract  

(Figure 3b). In order to further interrogate whether compound 12 was present in the Actinokineospora sp. 

EG49 monoculture extract, we performed an NMR titration experiment (see Supplementary Information). 

NMR-detected titration of pure 12 into fraction 24 sourced from the Actinokineospora sp. EG49 extract 
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demonstrated that compound 12 was not present in the mono-culture sample and confirmed that this 

small molecule is another induced metabolite from the mixed fermentation experiment. Based on the 

comparison of the mass and the NMR information with the literature, the induced metabolite was 

identified to be 1,6-dihydroxyphenazine (12) [39]. Compound 12 was produced in a very high yield 

(12% crude weight), and being in such a high abundance we found that this major component was 

present in the NMR fingerprints of many of the consequent fractions of the co-culture extract. 

Fractions 26 and 27, in addition to having 
1
H-NMR signals of 1,6-dihydroxyphenazine, showed 

additional proton signals in the aromatic region, which were not present in either of the monoculture 

extracts (for the NMR fingerprint comparison, see Supplementary Information). The spectroscopic  

and spectrometric data of the third induced metabolite were consistent with the structures of 

5a,6,11a,12-tetrahydro[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a) and 2,2′,3,3′-tetrahydro-2, 

2′-dimethyl-2,2′-bibenzoxazole (13b) (Figure 2). Both compounds have previously been reported  

as the condensation product of 2-propyn-1-ol and dibenzo-2-amino alcohol, with the cis-fused 

benzoxazino-benzoxazine structure, 13a, confirmed as the correct product via single crystal X-ray 

analysis [40]. In this work, an insufficient amount of the compound has been isolated to provide a good 

quality crystal for an X-ray, and the assignment was based on NMR data. However, in contrast to 

[2,2′]bifuranyl-pyranopyran models [41], the 
13

C chemical shifts of the ring fusion atoms in 13a and 

13b do not provide the distinction of the ring size [42]. Based on the literature evidence of compound 

13a being the major isomer in solution [43], we propose the structure of the induced natural product  

to be 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). Since 

this is the first report of compound 13a as a natural product, a complete set of NMR data is given  

in pyridine-d5. 

In addition to tracking the production of the induced metabolites in the co-culture extract, the NMR 

experiment was also useful in showing the suppression of the production of some natural products. For 

example, while in Figure 3b, the main compound in fraction 24 sourced from the Actinokineospora sp. 

EG49 crude extract is actinosporin B (2) (blue, middle spectrum), in the co-culture NMR spectrum 

(black, top spectrum), all resonances for compound 2 are missing, indicating that the mixed 

fermentation suppressed the production of actinosporin B. In support of the NMR observations, the 

mixed culture of the two microbes was dominated by the Nocardiopsis sp. RV163, which is 

characterized by large brown colonies and the production of spores, while very little growth was 

observed by the yellow cells of the Actinokineospora sp. EG49. 

2.3. Anti-Infective Activity of Induced Metabolites 

The three induced compounds, N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) 

and 5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a), were 

tested for their activities against Bacillus sp. P25, Escherichia coli and Fusarium sp. P21, human 

parasites Leishmania major and Trypanosoma brucei, as well as Nocardiopsis sp. RV163 and 

Actinokineospora sp. EG49 cultures. Biological activity was documented for compound 12 against 

Bacillus sp. (11 mm inhibition zone diameter), Trypanosoma brucei (IC50 value of 19 μM) and, 

interestingly, against Actinokineospora sp. EG49 (15 mm inhibition zone diameter) (see 

Supplementary Information). 



Mar. Drugs 2014, 12 3052 

 

 

3. Experimental Section 

3.1. General Experimental Procedures 

Optical rotations were measured on a JASCO P-1020 polarimeter with a 10-cm cell. UV spectra 

were acquired on a Jasco V650 UV/vis spectrophotometer. A Jasco J-715 spectropolarimeter was used 

to record circular dichroism spectra. NMR spectra were recorded at 30 °C on a Varian Inova 600 MHz 

spectrometer equipped with a triple resonance 5-mm cold probe. For NMR fingerprint experiments, the 

samples were dissolved in 230 μL of DMSO-d6 and run in a 3-mm NMR tube. The standard VnmrJ 3.2 

Proton pulse sequence was run with the following parameters: pw = 45°, p1 = 0 μs, d2 = 0 s, d1 = 1 s, 

at = 1.7 s, sw = 9615 Hz, nt = 8 scans. LC-MS spectra were obtained using a Waters ZQ electrospray 

mass spectrometer with a Phenomenex Luna C18 column (4.6 mm × 50 mm, 3 μm) (Phenomenex, 

Torrance, CA, USA). Analytical HPLC was done with a Phenomenex Onyx Monolithic C18 column 

(4.6 × 100 mm) (Phenomenex, Torrance, CA, USA). A Phenomenex Onyx Monolithic C18 column 

(10 mm × 100 mm) (Phenomenex, Torrance, CA, USA) was used for semi-preparative HPLC 

separation. All HPLC and LC-MS experiments were performed with a MeOH-H2O gradient solvent 

system. Millipore Milli-Q PF filtered H2O and HPLC grade solvents were used for chromatography. 

3.2. Microbial Fermentation and Extracts Preparation 

Nocardiopsis sp. RV163 was isolated from the Mediterranean sponge, Dysidea avara, while 

Actinokineospora sp. EG49 was cultivated from the Red Sea sponge, Spheciospongia vagabunda [19]. 

Each strain was fermented in 8 Erlenmeyer flasks (2 L), each containing 1 L of ISP 2 (International 

Streptomyces Project) medium in artificial sea water and incubated at 30 °C for 7 days with shaking at 

150 rpm. For co-cultivation experiment, 10 mL of 5-day-old culture of Nocardiopsis sp. RV163 was 

inoculated into 8 Erlenmeyer flasks (2 L), each containing 1 L of ISP 2 medium inoculated with 10 mL 

of 5-day-old culture of Actinokineospora sp. EG49. After fermentation of single cultures and  

co-culture, filtration was done, and the supernatant was extracted with ethyl acetate (2 × 500 mL) to 

give the ethyl acetate extract. XAD16 resin was then added to the mother liquor, shaken, filtered and 

finally extracted with acetone (acetone extract). The cells and mycelia were macerated in a double 

volume of methanol with shaking for 3 h, then filtered (methanolic extract). 

3.3. Extraction and Isolation 

3.3.1. General Chromatographic Procedures for Large-Scale Isolation and Fingerprinting Work 

Crude extract (50 mg) was chromatographed using HPLC on a semi-preparative Phenomenex Onyx 

Monolithic reversed-phase C18 column (10 mm × 100 mm). Initially, isocratic conditions of 10% MeOH 

were used for 10 min, then a linear gradient from 10% to 100% MeOH was performed over 40 min 

and continued isocratically for 10 min at a flow rate of 9 mL/min. Sixty fractions collected in 

one minute increments over 60 min were dried for NMR and mass studies. 
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3.3.2. Actinokineospora sp. EG49 

EtOAc extract (50 mg) was pre-adsorbed to C18-bonded silica and then packed into a stainless steel 

HPLC guard cartridge (10 × 30 mm) that was subsequently attached to a C18 HPLC column. Standard 

gradient conditions described above were employed to give actinosporin B (10) in fraction 24 and 

actinosporin A (1) in fraction 31. 

3.3.3. Nocardiopsis sp. RV163 

EtOAc extract (50 mg) was pre-adsorbed to C18-bonded silica and then packed into a stainless steel 

HPLC guard cartridge (10 × 30 mm) that was subsequently attached to a C18 HPLC column. Standard 

gradient conditions described above were employed. Fraction 9 was a mixture of cyclo-(prolyl-valyl) 

(3), cyclo-(isoleucyl-prolyl) (4) and cyclo-(leucyl-prolyl) (5). Semi-pure cyclo-(prolyltyrosyl) (6) (1.6 mg) 

and cyclo-(phenylalanyl-prolyl) (7) (1.0 mg) were identified from fractions 15 and 16, respectively, cyclo 

(prolyl-tryptophyl) (8) was identified from fraction 17. 1-hydroxy-4-methoxy-2-naphthoic acid (9)  

(0.7 mg) and 1-acetyl-β-carboline (10) (0.2 mg) were identified in fractions 26, 27 and 30, respectively. 

3.3.4. Actinokineospora sp. EG49 and Nocardiopsis sp. RV163 Co-Culture 

EtOAc extract (50 mg) was pre-adsorbed to C18-bonded silica and then packed into a stainless steel 

HPLC guard cartridge (10 × 30 mm) that was subsequently attached to a C18 HPLC column. Standard 

gradient conditions described above were employed to give N-(2-hydroxyphenyl)-acetamide (11) (0.3 mg) 

purified from fraction 5; diketopiperazines (3–8) were eluted in the same fractions as the mono-culture 

extract of Nocardiopsis sp.; the major induced compound, 1,6-dihydroxyphenazine (12) (5.9 mg), 

started to elute in fraction 24 and continued to elute off the column until fraction 42. Fractions 25 to 28 

were combined and re-run on a reverse-phase HPLC using Phenomenex Onyx Monolithic C18 column 

(10 mm × 100 mm) eluting with a gradient from H2O/MeOH (80:20 to 40:60 over 60 min) to purify 

compound 13a (0.6 mg). 

3.4. Bioactivity Testing 

3.4.1. Antibacterial Activity 

The induced compounds 11, 12 and 13a were tested for their antimicrobial activity using the 

standard disk diffusion assay against Bacillus sp. P25, Escherichia coli and Fusarium sp. P21, as well 

as the actinomycetes from where the compounds were derived, Nocardiopsis sp. RV163 and 

Actinokineospora sp. EG49. Sterile filter disks (6-mm diameter) loaded with the test compounds 

(25 μL of 1 mg/mL in methanol) were placed on agar plates that had been inoculated with 100 μL of 

the test microorganism (cultures with an optical density of OD600 = 0.2). After incubation (24 h for 

Bacillus, Escherichia coli and Fusarium sp. and 72 h for Nocardiopsis sp. RV163 and 

Actinokineospora sp. EG49) at 37 °C (Bacillus, Escherichia coli) and 30 °C (Fusarium sp., 

Nocardiopsis sp. RV163 and Actinokineospora sp. EG49), the antimicrobial potential was 

quantitatively assessed as the diameter of the inhibition zone (n = 2). 
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3.4.2. Anti-Trypanosomal Activity 

Anti-trypanosomal activity was tested following the protocol of Huber and Koella [44]. In complete 

Baltz medium, 10
4
 trypanosomes per millilitre of Trypanosoma brucei strain TC 221 were cultivated. 

Trypanosomes were tested in 96-well plate chambers against different concentrations of test 

substances at 0.25–40 μM in 1% DMSO to a final volume of 200 μL. For controls, 1% DMSO, as well 

as parasites without any test compounds were used simultaneously in each plate to show no effect of 

1% DMSO. The plates were then incubated at 37 °C in an atmosphere of 5% CO2 for 24 h. After the 

addition of 20 μL of Alamar Blue, the activity was measured after 48 and 72 h by light absorption using  

an MR 700 Microplate Reader at a wavelength of 550 nm with a reference wavelength of 650 nm.  

The IC50 value effect of the test compound was quantified by the linear interpolation of three 

independent measurements. 

The following equation was used to calculate IC50: 

log(IC50) = log(X1) + {[(Y1 − 0.5)/(Y1 − Y2)] × [log(X2) − log(X1)]} 

Y1 mean of the duplicate determination of the first measured cell density that is less than half the 

average of the growth control divided by the average of control growth. 

X1 concentration of the substance that belongs to the cell density of Y1. 

Y2 mean of the duplicate determination of the first measured cell density that is greater than half 

the average of the growth control divided by the average of control growth. 

X2 concentration of the substance that belongs to the cell density of Y2. 

3.4.3. Anti-Leishmanial Activity 

Anti-leishmanial activity was tested following the method of Ponte-Sucre et al. [45]. Briefly,  

10
7
 cells/mL Leishmania major promastigotes were incubated in complete medium for 24 h at 26 °C, 

5% CO2 and 95% humidity in the absence or presence of different concentrations of the test 

compounds (0.25–40 μM in 1% DMSO) to a final volume of 200 μL. Following the addition of 

Alamar Blue, the plates were incubated again, and the optical densities were determined after 48 h 

with a Multiskan Ascent enzyme-linked immunosorbent assay (ELISA) reader (Multiskan Ascent, 

Germany). The effects of cell density, incubation time and the concentration of DMSO were examined 

in control experiments. The results were expressed in IC50 values by linear interpolation of three 

independent experiments. 

3.5. Structure Elucidation of Compounds 1–13 

The structures of all known compounds were confirmed upon comparison of spectrometric  

(low-resolution MS) and spectroscopic (
1
H, 

13
C and 2D, where necessary) data with that of the 

published literature values. 

5a,6,11a,12-tetrahydro-5a,11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a): Yellow oil; 

[α]
25 

D  = 0 (c 0.012, MeOH); UV (MeOH) λmax (log ε), 295 (3.61), 235 (3.77), 208 (4.36) nm; 
1
H, 

13
C 

NMR data in DMSO-d6 in good agreement with published values; 
1
H-NMR (pyridine-d5, 600 MHz) δ 

(J in Hz) 1.75 (s, 2CH3), 6.80 (t, 7.6, H-3/9), 6.90 (t, 7.6, H-2/8), 6.98 (d, 2H, H-4/10), 7.03 (d, 2H,  
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H-1/7), 8.00 (s, 2NH); 
13

C NMR (pyridine-d5, 125 MHz) 22.2 (2CH3), 83.5 (C-5a/11a), 115.5 (C-1/7), 

117.6 (C-4/10), 120.2 (C-3/9), 121.9 (C-2/8), 131.8 (C-6a/12a), 143.5 (C-4a/10a), LRESIMS m/z 

269.3 [M + H]
+
. 

4. Conclusions 

The genomes of microorganisms, particularly of the order, Actinomycetales, consist of a large 

number of putative biosynthetic gene clusters that encode for secondary metabolites that are not 

produced using standard fermentation protocols. To reach this cryptic treasure trove of natural products, 

approaches, such as co-cultivation, are required to induce them. In this study, two sponge-derived 

actinomycetes, Nocardiopsis sp. RV163 and Actinokineospora sp. EG49, were co-fermented in liquid 

media. The presence of induced metabolites was studied by comparison of the 
1
H-NMR fingerprints of 

the crude extracts of the two monocultures and the co-culture. The NMR fingerprint allowed the 

confidence of detecting all small molecules containing proton nuclei and was instrumental in 

demonstrating that the induced metabolites were co-culture specific and not present in either of the 

single cultures. Co-cultivation of Nocardiopsis sp. RV163 and Actinokineospora sp. EG49 induced the 

biosynthesis of three compounds, which were not detected in either microorganism in a single culture, 

namely N-(2-hydroxyphenyl)-acetamide (11), 1,6-dihydroxyphenazine (12) and 5a,6,11a,12-tetrahydro-5a, 

11a-dimethyl[1,4]benzoxazino[3,2-b][1,4]benzoxazine (13a). When tested for biological activity 

against a range of bacteria and parasites, only the phenazine, 12, was active against Bacillus sp. P25, 

Trypanosoma brucei and interestingly against Actinokineospora sp. EG49. Moreover, while not 

detectable by 
1
H-NMR in the monocultures, compound 12 was produced in a very high yield  

(12% crude weight) by the co-culture of the two microbes. These findings highlight the co-cultivation 

approach as an effective strategy to increase the yield of metabolites undetected in the single microbial 

culture and enhance the chemical diversity of the secondary metabolites hidden in the genomes of 

marine actinomycetes. 
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