Supplementary Information

Figure S1. ¹H NMR spectrum of **1** (400 MHz, DMSO- d_6).

Figure S2. ¹³C NMR spectrum of 1 (100 MHz, DMSO- d_6).

Figure S3. DEPT (135 °) spectrum of 1 (400 MHz, DMSO-*d*₆).

Figure S4. DEPT (90 °) spectrum of **1** (400 MHz, DMSO-*d*₆).

Figure S5. ¹H-¹H COSY spectrum of **1** (400 MHz, DMSO- d_6).

Figure S6. HSQC spectrum of **1** (400/100 MHz, DMSO-*d*₆).

Figure S7. HMBC spectrum of **1** (400/100 MHz, DMSO-*d*₆).

Figure S8. NOESY spectrum of 1 (400 MHz, DMSO- d_6).

Figure S9. HRESIMS spectrum of 1.

Figure S10. DFT-optimized low-energy conformations for 6*S*, 7*R*, 8*S*, 8a*S*, 10*R*, 10a*R*, 6'*R*, 7'*S*-1.

Table S1. Ground to excited state transition dipole moments calculated with TDDFT for global minima **1-1**.

Table S2. Ground to excited state transition dipole moments calculated with TDDFT for global minima of 6*S*, 7*R*, 8*S*, 8a*S*, 10*R*, 10a*R*, 6'*S*, 7'*R*-**1**.

 Table S3. TDDFT calculated rotatory strengths and oscillator strengths for global minima 1-1.

Chart S1. Stimulated CD spectra for low-energy conformers of 6*S*, 7*R*, 8*S*, 8a*S*, 10*R*, 10a*R*, 6'*R*, 7'S-1.

Chart S2. Stimulated CD spectra for low-energy conformers of 6*S*, 7*R*, 8*S*, 8a*S*, 10*R*, 10a*R*, 6'*S*, 7'*R*-1.

Chart S3. The most relevant occupied and unoccupied molecular orbitals of 1-1 for $S_0 \rightarrow S_3$ and $S_0 \rightarrow S_4$ transitions.

Table S4. Identification of the most relevant excitations of **1-1** as calculated by the TDB3LYP/6-311++G(2d,p) method.

Figure S11. ¹H NMR spectrum of **2** (400 MHz, DMSO- d_6).

Figure S12. ¹³C NMR spectrum of 2 (100 MHz, DMSO- d_6).

Figure S13. DEPT (135 °) spectrum of **2** (400 MHz, DMSO-*d*₆).

Figure S14. ¹H-¹H COSY spectrum of **2** (400 MHz, DMSO- d_6).

Figure S15. HSQC spectrum of **2** (400/100 MHz, DMSO-*d*₆).

Figure S16. HMBC spectrum of **2**(400/100 MHz, DMSO-*d*₆).

Figure S17. NOESY spectrum of 2 (400 MHz, DMSO-*d*₆).

Figure S18. HRESIMS spectrum of 2.

Figure S19. DFT-optimized low-energy conformations for aS-2.

Table S5. TDDFT calculated rotatory strengths and oscillator strengths for global minima **2-1**.

ki **di** kina bili k

230 220 210 200

190

180 170 160 150 140 130 120 110 100 f1 (ppm)

Figure S1. ¹H NMR spectrum of **1** (400 MHz, DMSO- d_6).

0 -10

10

40 30 20

90 80 70 60 50

Figure S3. DEPT (135 °) spectrum of **1** (400 MHz, DMSO-*d*₆).

Figure S4. DEPT (90 °) spectrum of **1** (400 MHz, DMSO-*d*₆).

Figure S5. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **1** (400 MHz, DMSO-*d*₆).

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

Figure S7. HMBC spectrum of **1** (400/100 MHz, DMSO-*d*₆).

Figure S8. NOESY spectrum of 1 (400 MHz, DMSO- d_6).

4.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f2 (ppm)

fl (ppm)

Figure S9. HRESIMS spectrum of 1.

Figure S10. DFT-optimized low-energy conformations (1-1–1-4) for 6*S*, 7*R*, 8*S*, 8a, 10*R*, 10a*R*, 6'*R*, 7'*S*-1.

State	Electric Dipole Moments (Au)				Velocity Dipole Moments (Au)				Magnetic Dipole Moments (Au)		
	X	Y	Z	Dip. S.	X	Y	Z	Dip. S.	X	Y	Z
1	0.3536	-0.1076	0.0289	0.1375	-0.0271	0.0083	-0.0021	0.0008	0.0106	0.0027	-0.0079
2	-1.9718	0.1638	0.0974	3.9244	0.1801	-0.0148	-0.0087	0.0327	-0.0032	0.1096	-0.2142
3	-0.0215	0.0019	-0.0143	0.0007	0.0022	-0.0005	0.0018	0.0000	-0.0772	-0.5129	-0.2929
4	-0.0735	-0.0018	-0.0113	0.0055	0.0085	0.0001	0.0015	0.0001	0.0305	0.7935	-0.5700
5	-0.0831	-0.0563	-0.1018	0.0204	0.0095	0.0065	0.0118	0.0003	-0.0672	-0.5616	0.1390
6	0.0439	-0.0488	-0.0273	0.0051	-0.0055	0.0061	0.0035	0.0001	0.0862	0.0296	-0.0247
7	0.4275	-1.2836	-0.0752	1.8362	-0.0544	0.1606	0.0095	0.0288	0.2697	0.2460	-0.7086
8	0.0384	0.0721	0.0306	0.0076	-0.0051	-0.0094	-0.0038	0.0001	0.0318	0.0617	-0.0443
9	-0.0446	0.0668	0.0779	0.0125	0.0059	-0.0087	-0.0102	0.0002	0.0912	0.1097	0.0067
10	-0.1162	-0.2352	-0.1151	0.0821	0.0161	0.0323	0.0157	0.0015	0.0551	-0.0988	-0.0864

Table S1. Ground to excited state transition dipole moments calculated with TDDFT for global minima **1-1**.

Table S2. Ground to excited state transition dipole moments calculated with TDDFT for global minima of 6*S*, 7*R*, 8*S*, 8a*S*, 10*R*, 10a*R*, 6'*S*, 7'*R***-1**.

State	Electric Dipole Moments (Au)				Velocity Dipole Moments (Au)				Magnetic Dipole Moments (Au)		
	X	Y	Z	Dip. S.	X	Y	Z	Dip. S.	X	Y	Z
1	0.3330	-0.1131	0.0319	0.1247	-0.0255	0.0087	-0.0023	0.0007	0.0121	0.0044	-0.0176
2	-1.9705	0.2100	0.0811	3.9334	0.1800	-0.0191	-0.0072	0.0328	0.0045	0.1171	-0.1914
3	0.0165	0.0206	0.0415	0.0024	-0.0018	-0.0027	-0.0045	0.0000	-0.0517	-0.0805	-0.5116
4	0.0625	-0.0026	0.0076	0.0040	-0.0073	0.0003	-0.0010	0.0001	-0.0735	-0.9074	0.4120
5	-0.0749	-0.0501	-0.0883	0.0159	0.0086	0.0057	0.0102	0.0002	-0.0906	-0.6011	0.0906
6	0.0642	-0.1215	0.0225	0.0194	-0.0081	0.0151	-0.0028	0.0003	0.0992	0.0394	-0.0794
7	0.3908	-1.2905	-0.0919	1.8266	-0.0498	0.1614	0.0116	0.0287	0.2691	0.2461	-0.7048
8	0.0421	0.0690	0.0292	0.0074	-0.0055	-0.0090	-0.0037	0.0001	0.0332	0.0572	-0.0367
9	0.0481	-0.0419	-0.1054	0.0152	-0.0063	0.0056	0.0138	0.0003	0.1099	-0.0938	0.1054
10	-0.1428	-0.2347	-0.1518	0.0985	0.0197	0.0322	0.0208	0.0019	0.0469	-0.1475	-0.0791

Table S3. TDDFT calculated rotatory strengths and oscillator strengths for global minima 1-1.

1/2[<0 r b>*+(<0 rxdel b>*)*]									
Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)									
State	XX	YY	ZZ	R (length)	R (au)				
1	-2.6584	0.2039	0.1615	-0.7644	-0.0016				
2	-4.4039	-12.6917	14.7576	-0.7794	-0.0017				
3	-1.1760	0.6913	-2.9635	-1.1494	-0.0024				
4	1.5885	1.0127	-4.5694	-0.6561	-0.0014				
5	-3.9481	-22.3673	10.0022	-5.4377	-0.0115				
6	-2.6719	1.0203	-0.4771	-0.7096	-0.0015				
7	-81.5216	223.3304	-37.6938	34.7050	0.0736				
8	-0.8622	-3.1446	0.9582	-1.0162	-0.0022				
9	2.8772	-5.1838	-0.3670	-0.8912	-0.0019				
10	4.5259	-16.4283	-7.0309	-6.3111	-0.0134				

1/2[<0 del b>* + (<0 r b>*)*] (Au)								
State	X	Y	Z	Dipole Strength	Oscillator (Frdel)			
1	-0.0096	-0.0009	-0.0001	0.0105	0.0070			
2	-0.3551	-0.0024	-0.0008	0.3584	0.2389			
3	0.0000	0.0000	0.0000	0.0001	0.0001			
4	-0.0006	0.0000	0.0000	0.0006	0.0004			
5	-0.0008	-0.0004	-0.0012	0.0024	0.0016			
6	-0.0002	-0.0003	-0.0001	0.0006	0.0004			
7	-0.0232	-0.2061	-0.0007	0.2300	0.1534			
8	-0.0002	-0.0007	-0.0001	0.0010	0.0007			
9	-0.0003	-0.0006	-0.0008	0.0016	0.0011			
10	-0.0019	-0.0076	-0.0018	0.0113	0.0075			

Table S3. Cont.

Quantum mechanically, each electronic transition between two distinct electronic states generated different electric fields (*m*) and magnetic fields (*µ*). By calculating the electric ($\vec{\mathbf{m}}_{fi}\neq 0$) and magnetic transition dipole ($\vec{\mu}_{fi}\neq 0$), which were allied to electron cloud redistribution taking place during the transition, the rotatory strengths (R_{fi}) of each state were generated (Equation (1)), which were defined to indicate the CE observed in the relevant regions (Equation (2)) [1,2].

$$R_{fi} = Im(\boldsymbol{\mu}_{fi} \cdot \boldsymbol{m}_{fi}) = |\overrightarrow{\boldsymbol{\mu}_{fi}}| \cdot |\overrightarrow{\boldsymbol{m}_{fi}}| \cdot \cos(\overrightarrow{\boldsymbol{\mu}_{fi}}, \overrightarrow{\boldsymbol{m}_{fi}})$$
(1)

$$R = \frac{2.303 \cdot 3000 \cdot hc}{32\pi^3 N_A} \int \frac{\Delta \varepsilon}{\lambda} d_\lambda$$
(2)

It is critical that an electric and a magnetic transition dipole defined by each electronic transition were not orthogonal (Table S1, Table S2). By defining the angle between the two dipoles $(\cos(\overrightarrow{\mu_{fi}}, \overrightarrow{m_{fi}}) \neq 0)$, *R* of diastereomers was of the opposite sign, indicating negative and positive CE in the relevant region, respectively (Table S3).

Chart S1. Stimulated CD spectra for low-energy conformers of 6S, 7R, 8S, 8aS, 10R, 10aR, 6'R, 7'S-1.

Chart S2. Stimulated CD spectra for low-energy conformers of 6S, 7R, 8S, 8aS, 10R, 10aR, 6'S, 7'R-1.

Chart S3. The most relevant occupied and unoccupied molecular orbitals (MOs) of **1-1** for $S_0 \rightarrow S_3$ and $S_0 \rightarrow S_4$ transitions.

162 (LUMO)

Table S4. Identification of the most relevant excitations of 1-1 as calculated by the TDB3LYP/6-311++G(2d,p) method.

State	AF (aV)	f	$R \cdot 10^{-40}$	Transition	Waight	Transition Dipole (au) ^a			
State	AL (ev)	J	(erg·cm ³)	(erg·cm ³)		Χ	Y	Z	
				155→162	6.06%	0.035772	0.082408	0.144359	
			-1.1494	156→162	69.53%	-0.123833	-0.163566	-0.360379	
S	2 0212	0.0001		157→162	3.85%	-0.010089	-0.011743	-0.009224	
\mathbf{b}_3	2.9312	0.0001		158→162	4.33%	0.005645	0.027352	0.029306	
				159→162	12.23%	0.044599	0.040925	0.073040	
						-0.047907	-0.024625	-0.122898	
				155→162	8.54%	0.042459	0.097813	0.171345	
		0.0004	-0.6561	156→162	10.84%	-0.048897	-0.064587	-0.142301	
S_4	2 0599			157→162	2.44%	0.008035	0.009351	0.007346	
	5.0500			158→162	48.51%	-0.018903	-0.091597	-0.098140	
				159→162	27.75%	-0.067198	-0.061662	-0.110050	
						-0.084504	-0.110681	-0.171800	

^a Transition dipole moments for each pair of MOs were calculated with Multiwfn 3.3 [3].

For 1-1 (Figure S10), the most relevant excited states involved in the first CD absorption were $S_0 \rightarrow S_3$ and $S_0 \rightarrow S_4$. The nature of the excited states giving rise to the CE in 315–400 nm was analyzed. As shown above, the CE had mostly the character of $n-\pi^*$ - and $\pi-\pi^*$ -type transitions, which mainly participated in the southern moiety of the molecular. The most relevant occupied molecular orbital 156 (HOMO₋₅) possessed complex shapes, representing actually a conjugation of n-orbitals of the oxygen atoms, the carbonyl and the hydroxyl, with the σ -type orbitals of the saturated ring. While in the case of the orbital 158 (HOMO₋₃), π -type orbitals of the ring interacts with σ orbitals. The lowest unoccupied molecular orbital162 (LUMO) was a π^* orbital of the aromatic ring combined with π^* MOs of the carbonyl functions at C-9' and C-10'. For more effective analysis, NTO (natural transition orbital) formalism [4] should be used.

Figure S12. ¹³C NMR spectrum of 2 (100 MHz, DMSO- d_6).

Figure S13. DEPT (135 °) spectrum of **2** (400 MHz, DMSO-*d*₆).

Figure S14. 1 H $^{-1}$ H COSY spectrum of **2** (400 MHz, DMSO-*d*₆).

Figure S16. HMBC spectrum of 2 (400/100 MHz, DMSO-*d*₆).

Figure S17. NOESY spectrum of 2 (400 MHz, DMSO- d_6).

Figure S18. HRESIMS spectrum of 2.

m/z	Theoretical Mass	Delta (ppm)	RDB Equivalent	Composition			
617.13354	617.12897	7.41	20.5	C32 H25 O13			
Elements in use: ${}^{12}C$ (1~40), ${}^{16}O$ (1~20), ${}^{1}H$ (1~80).							

Figure S19. DFT-optimized low-energy conformations (2-1–2-2) for aS-2.

2-1 ($\Delta E = 0$ Kcal/mol)

1/2[<0 r b>* + (<0 rxdel b>*)*]											
	Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)										
State	XX	YY	ZZ	R (length)	R (au)						
1	48.0493	-90.7944	46.3943	1.2164	0.0026						
2	29.6287	19.4358	-12.6477	12.1390	0.0257						
3	-25.4646	27.8235	13.6600	5.3396	0.0113						
4	-25.3061	-0.3706	56.0028	10.1087	0.0214						
5	-40.4521	-9.5944	23.4906	-8.8519	-0.0188						
6	-27.0618	-2.4955	-20.3487	-16.6353	-0.0353						
7	-37.8221	-4.3778	-21.9333	-21.3777	-0.0453						
8	-0.4007	3.3924	-1.9988	0.3310	0.0007						
9	226.7585	-23.2613	-127.1331	25.4547	0.0540						
10	62.1490	4.5466	-39.8805	8.9384	0.0190						
	1/	/2[<0 del b>* <b r 0></b r 0>	> + (<0 r b>* <b del< td=""><td>(0>)*] (Au)</td><td></td></b del<>	(0>)*] (Au)							
state	Χ	Y	Z	Dip. S.	Osc. (frdel)						
1	-0.0054	-0.0099	-0.0153	0.0305	0.0203						
2	-0.0214	-0.0021	-0.0040	0.0275	0.0183						
3	-0.1156	-0.0026	-0.0019	0.1201	0.0800						
4	-0.0582	0.0000	-0.0028	0.0611	0.0407						
5	-0.1576	-0.0003	-0.0008	0.1587	0.1058						
6	-0.0024	-0.0001	-0.0002	0.0028	0.0019						
7	-0.0313	-0.1039	-0.0032	0.1384	0.0923						
8	-0.0007	-0.0005	0.0000	0.0013	0.0008						
9	-0.0696	-0.0294	-0.0024	0.1014	0.0676						
10	-0.0310	-0.0083	-0.0013	0.0406	0.0271						

Table S5. TDDFT calculated rotatory strength and oscillator strength results for global minima **2-1**.

References

- 1. Diedrich, C.; Grimme, S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. *J. Phys. Chem. A* **2003**, *107*, 2524–2539.
- 2. Schellman, J.A. Circular dichroism and optical rotation. *Chem. Rev.* 1975, 75, 323–331.
- 3. Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580–592.
- 4. Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).