Supplementary Information

Figure S1. HR-ESI-MS spectrum of compound 1.

Figure S2. ¹H-NMR spectrum (800 MHz) of compound **1**, in CDCl₃.

Nov21-2011_kaiyoudai Tube ID_N-14 HL90MeP14 -17000 -16000 -15000 -14000 -13000 12000 -11000 -10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 n no sharesini yeli dema shakuna menye uniya angele i painta his open and the second open and the second -1000 180 170 160 150 140 130 120 110 100 90 f1 (ppm) so 70 60 50 40 30 10 20 0

Figure S3. ¹³C-NMR spectrum (200 MHz) of compound 1, in CDCl₃.

Figure S4. ¹H-¹H COSY spectrum of compound **1**, in CDCl₃.

Figure S5. ¹H-¹³C HSQC spectrum of compound **1**, in CDCl₃.

Figure S7. ¹H-¹H NOESY spectrum of compound **1**, in CDCl₃.

Figure S8. DEPT 45 spectrum of compound 1, in CDCl₃.

Figure S9. DEPT 90 spectrum of compound 1, in CDCl₃.

Figure S10. DEPT 135 spectrum of compound 1, in CDCl₃.

Figure S12. ¹H-NMR spectrum (800 MHz) of compound **2**, in CDCl₃.

Figure S13. ¹³C-NMR spectrum (200 MHz) of compound 2, in CDCl₃.

Figure S18. DEPT 45 spectrum of compound 2, in CDCl₃.

Figure S19. DEPT 90 spectrum of compound 2, in CDCl₃.

Figure S20. DEPT 135 spectrum of compound 2, in CDCl₃.

Figure S21. UV spectrum of compound 2.

Figure S22. CD spectrum of compounds 1^a, 2^b, 3^b, 4^b and 5^b.

^a The CD spectrum of compound **1** were achieved in our study; ^b The curves of CD spectrum are based on the reference [1] and then processed by Microsoft Excel.

Figure S23. ¹H-NMR spectrum about conformational ratio of compound **1**, in CDCl₃.

Figure S24. ¹H-NMR spectrum about conformational ratio of compound **2**, in CDCl₃.

Figure S25. ¹H-NMR spectrum (600 MHz) of compound **1**, in CD₃OD.

Figure S26. Optical rotations of IL-Vs and their related compounds (1).

Figure S27. Optical rotations of IL-Vs and their related compounds (2).

The numbers in parentheses corresponded to the numbers of references in the original paper.

Figure S28. Isolation and purification scheme of 12-epi-lyngbyatoxin A from the cyanobacterium.

Moorea producens (Hawaii, 823 g dry wt.)

Figure S29. HPLC chromatogram for analysis of compound 1 (above) and 2 (below).

		Cis conformer		Trans conformer
position	δC^{b}	$\delta H (J \text{ in Hz})^{c}$	δC^{b}	$\delta H (J \text{ in Hz})^{c}$
2	121.0	6.82, 1H, br s	124.4	6.95, 1H, d, <i>J</i> = 2.3 Hz
3	114.2		ND	
3a	118.9		ND	
4	146.5		ND	
5	106.6	6.47, 1H, d, <i>J</i> = 8.1 Hz	122.6	7.01, 1H, d, <i>J</i> = 7.8 Hz
6	120.1	6.97, 1H, d, <i>J</i> = 8.1 Hz	120.7	7.09, 1H, d, <i>J</i> = 7.8 Hz
7	121.7		ND	
7a	137.7		ND	
8	34.0	3.15, 1H, dd, <i>J</i> = 17.4, 3.7 Hz	28.8	3.08, 1H, dd, <i>J</i> = 14.8, 1.5 Hz
		3.04, 1H, dd, <i>J</i> = 17.4, 3.7 Hz		2.80, 1H, dd, <i>J</i> = 14.8, 1.5 Hz
9	56.0	4.33, 1H, br s	55.1	4.45, 1H, br m
11	174.8		ND	
12	71.2	4.34, 1H, d, <i>J</i> = 10.1 Hz	ND	
14	65.3	3.74, 1H, dd, <i>J</i> = 11.6, 3.5 Hz	63.3	3.47, 1H, dd, <i>J</i> = 11.2, 6.4 Hz
		3.57, 1H, dd, <i>J</i> = 11.6, 8.5 Hz		3.40, 1H, dd, <i>J</i> = 11.2, 7.3 Hz
15	28.7	2.59, 1H, m	24.7	2.38, 1H, br m
16	19.7	0.64, 3H, d, <i>J</i> = 6.8 Hz	19.8	0.93, 3H, d, <i>J</i> = 6.5 Hz
17	21.8	0.92, 3H, d, <i>J</i> = 6.3 Hz	19.7	1.25, 3H, d, <i>J</i> = 6.6 Hz
18	33.3	2.90, 3H, s	35.9	2.74, 3H, s
19	43.4		ND	
20	25.8	1.65, 3H, s	25.8	1.63, 3H, s
21	148.6	6.16, 1H, dd, <i>J</i> = 17.8, 10.7 Hz	148.1	6.22, 1H, dd, <i>J</i> = 17.7, 10.7 Hz
22	112.6	5.30, 1H, dd, <i>J</i> = 17.8, 1.2 Hz	113.0	5.35, 1H, dd, <i>J</i> = 17.8, 1.1 Hz
		5.28, 1H, dd, <i>J</i> = 10.8, 1.2 Hz		5.33, 1H, dd, <i>J</i> = 10.8, 1.1 Hz
23	38.7	1.92, 1H, td, <i>J</i> = 12.7, 12.7, 4.1 Hz	ND	
		1.83, 1H, td, <i>J</i> = 12.7, 12.7, 4.1 Hz		
24	23.2	1.97, 1H, br m	ND	
		1.71, 1H, br m		
25	124.7	5.08, 1H, br m	124.4	5.05, 1H, br m
26	131.7		ND	
27	24.3	1.47, 3H, s	24.8	1.49, 3H, s
28	17.7	1.50, 3H, s	17.6	1.44, 3H, s
OH on 14		Not observed		

Table S1. ¹H and ¹³C-NMR data for conformers *cis* and *trans* of compound **2** ^a.

^a All data were recorded in CDCl₃; ¹H-¹³C connectivities assigned by HSQC experiment; ^b Recorded at 200 MHz; ^c Recorded at 800 MHz. Coupling constants (Hz) are in parentheses; Abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad; ND: Not unambiguously Determined.

(+)-Epi-indolactam V

compound 1 (12-*Epi*-lyngbyatoxin A)

((+)- <i>Epi</i> -indolactam V	Compound 1		
proton	$\delta H (J \text{ in } Hz)^{a,b}$	proton	$\delta H (J \text{ in Hz})^{a,c}$	
H2	6.90 (s)	H2	6.91 (s)	
H5	6.66	H5	6.71 (d, <i>J</i> = 7.9 Hz)	
H6	6.92	H6	6.89 (d, $J = 7.9$ Hz)	
H7	6.91			
H8	2.94 (dd, <i>J</i> = 15.1, 2.2 Hz)	H8	2.92 (dd, <i>J</i> = 15.3, 2.5 Hz)	
	3.10 (dd, <i>J</i> = 15.1, 3.7 Hz)		3.14 (dd, <i>J</i> = 15.3, 2.7 Hz)	
H9	3.80 (m)	H9	3.77 (m)	
H12	4.03 (d, <i>J</i> = 10.5 Hz)	H12	4.00 (d, J = 10.7 Hz)	
H14	3.72 (dd, <i>J</i> = 11.5, 8.1 Hz)	H14	3.72 (dd, <i>J</i> = 11.4, 3.5 Hz)	
	3.77 (dd, <i>J</i> = 11.5, 5.8 Hz)		3.76 (dd, <i>J</i> = 11.4, 4.8 Hz)	
H15	2.57 (dsept, $J = 10.5$, 6.9 Hz)	H15	2.56 (m)	
H16,17	0.69 (d, J = 6.9 Hz)	H16,17	0.67 (d, $J = 6.6$ Hz)	
	0.75 (d, J = 6.9 Hz)		0.73 (d, J = 6.6 Hz)	
H18	3.08 (s)	H18	3.07 (s)	

^a All data were recorded in MeOD; ^b These ¹H-NMR data are achieved from the reference [2]; ^c Recorded at 600 MHz. Coupling constants (Hz) are in parentheses.

References

- 1. Muratake, H.; Okabe, K.; Natsume, M. Synthesis of teleocidins A, B and their congeners. Part 2. Synthesis of lyngbyatoxin A (teleocidin A-1), teleocidin A-2, pendolmycin, and (R,E)- and (S,E)-7-(3,7,11-trimethyl-1,6,10-dodecatrien-3-yl)-(-)-indolactams V. Tetrahedron 1991, 47, 8545-8558.
- 2. Endo, Y.; Shudo, K.; Itai, A.; Hasegawa, M.; Sakai, S.I. Synthesis and stereochemistry of indolactam-V, an active fragment of teleocidins. Structural requirements for tumor-promoting activity. Tetrahedron 1986, 42, 5905-5924.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

Table S2. ¹H-NMR data of (+)-*epi*-indolactam V and compound **1**.