Supplementary Information

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ S2
Figure S2. Amplifying ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ S2
Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of 1 S3
Figure S4. DEPT135 spectrum of 1 S3
Figure S5. HSQC spectrum of $\mathbf{1}$ S4
Figure S6. HMBC spectrum of $\mathbf{1}$ S4
Figure S7. NOESY spectrum of $\mathbf{1}$ S5
Figure S8. Amplifying NOESY spectrum of 1 S5
Figure S9. HRESIMS spectrum of 1 S6
Figure S10. IR spectrum of 1 S6
Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 S7
Figure S12. ${ }^{13} \mathrm{C}$ NMR and DEPT135 spectra of 2 S7
Figure S13. HSQC spectrum of 2 S8
Figure S14. HMBC spectrum of 2 S8
Figure S15. H-H COSY spectrum of 2 S9
Figure S16. NOESY spectrum of 2 S9
Figure S17. HRESIMS spectrum of 2 S10
Figure S18. IR spectrum of 2 S10
Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ S11
Figure S20. ${ }^{13} \mathrm{C}$ NMR and DEPT135 spectra of $\mathbf{3}$ S11
Figure S21. HSQC spectrum of $\mathbf{3}$ S12
Figure S22. HMBC spectrum of $\mathbf{3}$ S12
Figure S23. H-H COSY spectrum of $\mathbf{3}$ S13
Figure S24. NOESY spectrum of $\mathbf{3}$ S13
Figure S25. HRESIMS spectrum of $\mathbf{3}$ S14
Figure S26. IR spectrum of $\mathbf{3}$ S14
Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of 9 S15
Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 S15
Figure S29. HSQC spectrum of 9 S16
Figure S30. HRESIMS spectrum of 9 S16
Figure S31. IR spectrum of 9 S17
Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ S17
Figure S33. ${ }^{13} \mathrm{C}$ NMR and DEPT135 spectra of $\mathbf{1 0}$ S18
Figure S34. HSQC spectrum of $\mathbf{1 0}$ S18
Figure S35. HMBC spectrum of 10 S19
Figure S36. H-H COSY spectrum of 10 S19
Figure S37. HRESIMS spectrum of $\mathbf{1 0}$ S20
Figure S38. IR spectrum of 10 S20
Figure S39. Comparison of the experimental CD spectra of 9, 11, 12 S21
S1. Isolation and purification of compounds 1-17 S21
S2. Structures of compounds 1-17 S22

Figure S1. ${ }^{1} \mathrm{H}$-NMR spectrum of 1.

Figure S2. Amplifying ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 1 .

Figure S3. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 1.

Figure S4. DEPT135 spectrum of 1.

Figure S5. HSQC spectrum of $\mathbf{1}$.

Figure S6. HMBC spectrum of $\mathbf{1}$.

Figure S7. NOE spectrum of $\mathbf{1}$.

Figure S8. Amplifying NOE spectrum of 1.

Figure S9. HR-ESIMS spectrum of $\mathbf{1}$.

Figure S10. IR spectrum of 1 .

Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$.

Figure S12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT135 spectra of $\mathbf{2}$.

Figure S13. HSQC spectrum of $\mathbf{2}$.

Figure S14. HMBC spectrum of 2.

Figure S15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{2}$.

Figure S16. NOE spectrum of $\mathbf{2}$.

Figure S17. HR-ESIMS spectrum of $\mathbf{2}$.

Figure S18. IR spectrum of 2.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of 3 .

Figure S20. ${ }^{13} \mathrm{C}$ NMR and $D E P T 135$ spectrum of $\mathbf{3}$.

Figure S21. HSQC spectrum of $\mathbf{3}$.

Figure S22. HMBC spectrum of $\mathbf{3}$.

Figure S23. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$.

Figure S24. NOESY spectrum of $\mathbf{3}$.

Figure S25. HR-ESIMS spectrum of $\mathbf{3}$.

Figure S26. IR spectrum of 3 .

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of 9 .

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 .

Figure S29. HSQC spectrum of $\mathbf{9}$.

Figure S30. HR-ESIMS spectrum of 9 .

Figure S31. IR spectrum of 9 .

Figure S32. ${ }^{1} \mathrm{H}$-NMR spectrum of 10 .

Figure S33. ${ }^{13} \mathrm{C}$ NMR and DEPT135 spectra of $\mathbf{1 0}$.

Figure S34. HSQC spectrum of $\mathbf{1 0}$.

Figure S35. HMBC spectrum of $\mathbf{1 0}$.

Figure S36. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of $\mathbf{1 0}$.

Figure S37. HR-ESIMS spectrum of $\mathbf{1 0}$.

Figure S38. IR spectrum of $\mathbf{1 0}$.

Figure S39. Comparison of the experimental CD spectra of 9, 11, 12 and 4-(4-hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one (18).

-compound 11
—compound 9
—compound 12
——compound 18

S1. Isolation and Purification of Compounds 1-17

The extract was subjected to silica gel CC using gradient elution with a $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ solvent system at the ratios of $100: 0,98: 2,95: 5,90: 10,80: 20,50: 50$, and $0: 100(\mathrm{v} / \mathrm{v})$ to give eight fractions (Fr.1-Fr.8). Fr. $1(3.9 \mathrm{~g})$ was subjected to a silica gel CC eluting with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CO} \mathrm{CH}_{3}$ at the ratios of 90:10, 80:20, 70:30, 50:50, 100:0 (v:v), to offer Fr.1-1~8. Subfraction Fr.1-2 was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (from 10:90 to $100: 0,90 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr.1-2-1~6. Subfraction Fr.1-2-5 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ (37:53), to obtain 13 ($t_{\mathrm{R}}=55 \mathrm{~min}, 15 \mathrm{mg}$). Subfraction Fr.1-2-6 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(65: 35)$, to obtain $6\left(t_{\mathrm{R}}=77 \mathrm{~min}, 2 \mathrm{mg}\right)$. Subfraction Fr.1-3 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(60: 40)$, to obtain $\mathbf{1 2}\left(t_{\mathrm{R}}=70 \mathrm{~min}, 15 \mathrm{mg}\right), \mathbf{4}\left(t_{\mathrm{R}}=53 \mathrm{~min}, 15 \mathrm{mg}\right)$. Subfraction Fr. $1-5$ was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(55: 45)$, to obtain $\mathbf{1 7}\left(t_{\mathrm{R}}=30 \mathrm{~min}, 3 \mathrm{mg}\right)$, 7 ($t_{\mathrm{R}}=60 \mathrm{~min}, 4 \mathrm{mg}$). Subfraction Fr.1-6 was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (from 10:90 to 100: $0,60 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr.1-6-1~4. Fr.1-6-3 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(70: 30)$, to obtain $\mathbf{8}\left(t_{\mathrm{R}}=33 \mathrm{~min}, 2 \mathrm{mg}\right), \mathbf{3}\left(t_{\mathrm{R}}=41 \mathrm{~min}, 4 \mathrm{mg}\right)$. Subfraction Fr.1-7 was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (from 10:90 to 100:0, $60 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr.1-7-1~4. And subfraction Fr.1-7-2 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (45:55), to obtain $\mathbf{1}\left(t_{\mathrm{R}}=36 \mathrm{~min}, 3 \mathrm{mg}\right), 5\left(t_{\mathrm{R}}=45 \mathrm{~min}, 6 \mathrm{mg}\right)$, $2\left(t_{\mathrm{R}}=47 \mathrm{~min}, 4 \mathrm{mg}\right)$. Fr. $2(11 \mathrm{~g})$ was subjected to a silica gel CC eluting with $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{COCH}_{3}$ at the ratios of $90: 10,80: 20,70: 30,50: 50,100: 0$ (v:v), to offer Fr.2-1~6. Subfraction Fr.2-2 was seperated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (from 10:90 to 100:0, $60 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr.2-2-1~3. And subfraction Fr.2-2-1 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ ($57: 43$), to obtain $\mathbf{1 4}\left(t_{\mathrm{R}}=30 \mathrm{~min}, 10 \mathrm{mg}\right)$. Fr. $4(1.45 \mathrm{~g})$ was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (from $15: 85$ to $100: 0,90 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give $\mathrm{Fr} .4-1 \sim 5$. $\mathrm{Fr} .4-5$ was
purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O}$ (46:54), to afford $\mathbf{1 1}$ ($t_{\mathrm{R}}=23 \mathrm{~min}, 30 \mathrm{mg}$) and 9 ($\left.t_{\mathrm{R}}=19.0 \mathrm{~min}, 4 \mathrm{mg}\right) . \mathrm{Fr} .5(1.2 \mathrm{~g})$ was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (from 15:85 to $100: 0,90 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr. $5-1 \sim 5$. Subfraction Fr.5-3 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(55: 45)$, to obtain $\mathbf{1 0}\left(t_{\mathrm{R}}=39 \mathrm{~min}, 8 \mathrm{mg}\right)$. Fr. 7 (3 g) was subjected to Sephadex LH-20 CC eluting with $\mathrm{CH}_{3} \mathrm{OH}$ to collect Fr.7-1~4. Further subfraction Fr.7-4 (1.8 g) was isolated by MPLC with an ODS column, eluting with $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ (from 15:85 to 100:0, $90 \mathrm{~min}, 20 \mathrm{~mL} / \mathrm{min}$) to give Fr.7-4-1~4. And then subfraction Fr.7-4-4 was purified by SP-RP HPLC, eluting with $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(63: 37)$, to obtain $\mathbf{1 5}\left(t_{\mathrm{R}}=37 \mathrm{~min}, 8 \mathrm{mg}\right), \mathbf{1 6}\left(t_{\mathrm{R}}=14 \mathrm{~min}, 6 \mathrm{mg}\right)$.

S2. Structures of Compounds 1-17

R^{3}
$1 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{OMe}$
$2 \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$
$4 \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{OMe}$
$5 \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{OMe}$
$6 \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{H}$

7

10

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

