Supplementary Information

Figure S1. ¹ H NMR spectrum of 1	S2
Figure S2. Amplifying ¹ H NMR spectrum of 1	S2
Figure S3. ¹³ C NMR spectrum of 1	S 3
Figure S4. DEPT135 spectrum of 1	S 3
Figure S5. HSQC spectrum of 1	S4
Figure S6. HMBC spectrum of 1	S4
Figure S7. NOESY spectrum of 1	S5
Figure S8. Amplifying NOESY spectrum of 1	S5
Figure S9. HRESIMS spectrum of 1	S 6
Figure S10. IR spectrum of 1	S 6
Figure S11. ¹ H NMR spectrum of 2	S 7
Figure S12. ¹³ C NMR and DEPT135 spectra of 2	S 7
Figure S13. HSQC spectrum of 2	S 8
Figure S14. HMBC spectrum of 2	S 8
Figure S15. H-H COSY spectrum of 2	S 9
Figure S16. NOESY spectrum of 2	S 9
Figure S17. HRESIMS spectrum of 2	S10
Figure S18. IR spectrum of 2	S10
Figure S19. ¹ H NMR spectrum of 3	S11
Figure S20. ¹³ C NMR and DEPT135 spectra of 3	S11
Figure S21. HSQC spectrum of 3	S12
Figure S22. HMBC spectrum of 3	S12
Figure S23. H-H COSY spectrum of 3	S13
Figure S24. NOESY spectrum of 3	S13
Figure S25. HRESIMS spectrum of 3	S14
Figure S26. IR spectrum of 3	S14
Figure S27. ¹ H NMR spectrum of 9	S15
Figure S28. ¹³ C NMR spectrum of 9	S15
Figure S29. HSQC spectrum of 9	S16
Figure S30. HRESIMS spectrum of 9	S16
Figure S31. IR spectrum of 9	S17
Figure S32. ¹ H NMR spectrum of 10	S17
Figure S33. ¹³ C NMR and DEPT135 spectra of 10	S18
Figure S34. HSQC spectrum of 10	S18
Figure S35. HMBC spectrum of 10	S19
Figure S36. H-H COSY spectrum of 10	S19
Figure S37. HRESIMS spectrum of 10	S20
Figure S38. IR spectrum of 10	S20
Figure S39. Comparison of the experimental CD spectra of 9, 11, 12	S21
S1. Isolation and purification of compounds 1–17	S21
S2. Structures of compounds 1–17	S22

Figure S1. ¹H-NMR spectrum of **1**.

Figure S2. Amplifying ¹H-NMR spectrum of **1**.

Figure S3. ¹³C-NMR spectrum of **1**.

Figure S4. DEPT135 spectrum of 1.

Figure S5. HSQC spectrum of 1.

Figure S6. HMBC spectrum of 1.

Figure S7. NOE spectrum of 1.

Figure S8. Amplifying NOE spectrum of **1**.

Figure S9. HR-ESIMS spectrum of 1.

Figure S10. IR spectrum of 1.

Figure S11. ¹H-NMR spectrum of 2.

Figure S12. ¹³C-NMR and *DEPT135* spectra of 2.

Figure S13. HSQC spectrum of 2.

Figure S14. HMBC spectrum of 2.

Figure S15. ¹H-¹H COSY spectrum of 2.

Figure S16. NOE spectrum of 2.

Figure S17. HR-ESIMS spectrum of 2.

Figure S18. IR spectrum of 2.

Figure S19. ¹H NMR spectrum of 3.

Figure S20. ¹³C NMR and *DEPT135* spectrum of 3.

Figure S21. HSQC spectrum of 3.

Figure S22. HMBC spectrum of 3.

Figure S24. NOESY spectrum of 3.

Figure S25. HR-ESIMS spectrum of 3.

Figure S26. IR spectrum of 3.

Figure S27. ¹H NMR spectrum of 9.

Figure S28. ¹³C NMR spectrum of 9.

Figure S29. HSQC spectrum of 9.

Figure S30. HR-ESIMS spectrum of 9.

Analysis Info	D.D. / 1140) / / 100400	hua-NQ-2 _pos.d					Acquisition Date			4/27/2013 4:24:50 PM			
Analysis Name Method										SCSIO			
Method POS_100-2000_Dirrect Infusion. Sample Name SCSIO			.m					Operator Instrument / Ser#			maXis 29		
Comment	30310						การแ	ument / Se	:1#	maxis	2:	9	
Johnnent													
Acquisition Paramete													
ource Type	ESI .		n Polarity		Positive 3800 V			Set Neb			0.3 Bar 180 °C		
			Set Capillary 3800 V Set End Plate Offset -500 V				Set Dry Heater Set Dry Gas			4.0 l/min			
Scan End 2000 m/z		Set Collision Cell RF			2000.0 V	/pp	Set Divert Valve			Waste			
Intens.			-										"'0 0
x105-											+MS, 0.1-	-U.5min	#(8-2
7.7													
4													
7:													
3 405	.1310												
3]													
4													
2													
1													
1													
1 383 1489											78	7.2721	
383.1489	430 9141 463 1359				503 1027							7.2721	
0 303.1409	430.9141 463.1359	500	· · · · · · · · · · · · · · · · · · ·	550	593.1927	, ,	650	, , , , , , , , , , , , , , , , , , , ,	700		765.2901	ļ.,	10 m
303.1409		500		550	593.1927	, , ,	650	, , , , , , , , , , , , , , , , , , , ,	700	- , , , , , , , , , , , , , , , , , , ,		7.2721)O m
0 400		500 Score	m/z	550 err [mDa]		mSigma	650 rdb	e Conf	700 N-Rule	- , , , , , , , , , , , , , , , , , , ,	765.2901	ļ.,	00 m
Meas. m/z 383.1489	# Formula 1 C 22 H 23 O 6	Score 100.00	383.1489	err [mDa] -0.0	600	29.0	rdb 11.5	e Conf			765.2901	ļ.,)0 m
Meas. m/z 383.1489	# Formula 1 C 22 H 23 O 6 2 C 19 H 15 N 10	Score 100.00 48.90	383.1489 383.1476	err [mDa] -0.0 -1.3	600 err [ppm] -0.0 -3.5	29.0 29.9	rdb 11.5 17.5	even even	N-Rule ok	(765.2901	ļ.,)O m
Meas. m/z 383.1489	# Formula 1 C 22 H 23 O 6 2 C 19 H 15 N 10 3 C 23 H 19 N 4 O 2	Score 100.00 48.90 35.06	383.1489 383.1476 383.1503	err [mDa] -0.0 -1.3 1.3	600 err [ppm] -0.0 -3.5 3.5	29.0 29.9 42.9	rdb 11.5 17.5 16.5	even even even	N-Rule ok ok	((765.2901	ļ.,	00 m
Meas. m/z 383.1489	# Formula 1 C 22 H 23 O 6 2 C 19 H 15 N 10 3 C 23 H 19 N 4 O 2 1 C 22 H 21 N 2 Na 4	Score 100.00 48.90 35.06 38.44	383.1489 383.1476 383.1503 405.1290	err [mDa] -0.0 -1.3 1.3 -1.9	600 err [ppm] -0.0 -3.5 3.5 -4.8	29.0 29.9 42.9 1.2	rdb 11.5 17.5 16.5 11.5	even even even	N-Rule ok ok ok	(((765.2901	ļ.,	00 m
Meas. m/z 383.1489	# Formula 1 C 22 H 23 O 6 2 C 19 H 15 N 10 3 C 23 H 19 N 4 O 2 1 C 22 H 21 N 2 Na 4 2 C 19 H 14 N 10 Na	Score 100.00 48.90 35.06 38.44 53.29	383.1489 383.1476 383.1503 405.1290 405.1295	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4	600 err [ppm] -0.0 -3.5 3.5 -4.8 -3.6	29.0 29.9 42.9 1.2 3.0	rdb 11.5 17.5 16.5 11.5 17.5	even even even even	N-Rule ok ok ok ok	(((765.2901	ļ.,	00 m
Meas. m/z 383.1489	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4	600 err [ppm] -0.0- -3.5 3.5 -4.8 -3.6 -2.9	29.0 29.9 42.9 1.2 3.0 3.5	rdb 11.5 17.5 16.5 11.5 17.5 13.5	even even even even even	N-Rule ok ok ok ok	(((((765.2901	ļ.,	00 n
Meas. m/z 383.1489	# Formula 1 C22 H 23 O 6 2 C 19 H 15 N 10 3 C 23 H 19 N 4 O 2 1 C 22 H 21 N 2 Na 4 2 C 19 H 14 N 10 Na 3 C 21 H 19 N 4 Na 2 O 2 4 C 22 H 22 Na O 6	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298 405.1309	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1	600 err [ppm] -0.0 -3.5 3.5 3.5 -4.8 -3.6 -2.9 -0.2	29.0 29.9 42.9 1.2 3.0 3.5 7.9	rdb 11.5 17.5 16.5 11.5 17.5 13.5 11.5	even even even even even even	N-Rule ok ok ok ok ok		765.2901	ļ.,	00 n
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298 405.1309 405.1322	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2	err [ppm] -0.0 -3.5 3.5 -4.8 -3.6 -2.9 -0.2 3.1	29.0 29.9 42.9 1.2 3.0 3.5 7.9	rdb 11.5 17.5 16.5 11.5 17.5 13.5 11.5	even even even even even even even	N-Rule ok ok ok ok ok ok		765.2901	ļ.,	00 n
Meas. m/z 383.1489	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298 405.1309 405.1322 405.1314	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5	err [ppm] -0.0 -3.5 3.5 -4.8 -3.6 -2.9 -0.2 3.1	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7	rdb 11.5 17.5 16.5 11.5 13.5 11.5 16.5 14.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298 405.1309 405.1322 405.1314 765.2865	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5 -3.6	600 err [ppm] -0.0- -3.5 3.5 -4.8 -3.6 -2.9 -0.2 3.1 1.1 -4.7	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4	rdb 11.5 17.5 16.5 11.5 13.5 11.5 16.5 14.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57	383.1489 383.1476 383.1503 405.1290 405.1295 405.1298 405.1309 405.1309 405.1314 765.2865 765.2879	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5 -3.6 -2.3	err [ppm] -0.0 -3.5 -3.5 -4.8 -3.6 -2.9 -0.2 -3.1 1.1 -4.7 -2.9	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5	rdb 11.5 17.5 16.5 11.5 13.5 11.5 16.5 14.5 18.5 23.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57 37.74	383.1489 383.1476 383.1503 405.1290 405.1295 405.1309 405.1309 405.1314 765.2865 765.2879 765.2879	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5 -3.6 -2.3 -2.3	600 err [ppm] -0.0- -3.5 -3.5 -4.8 -3.6 -2.9 -0.2 3.1 1.1 -4.7 -2.9 -3.0	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5 45.7	rdb 11.5 17.5 16.5 11.5 13.5 11.5 16.5 14.5 18.5 23.5 34.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57 37.74 87.98	383.1489 383.1476 383.1503 405.1290 405.1295 405.1309 405.1309 405.1314 765.2865 765.2879 765.2879 765.2892	err [mDa] -0.0 -1.3 -1.9 -1.4 -1.2 -0.1 1.2 -0.5 -3.6 -2.3 -0.9	err [ppm] -0.0 -3.5 -3.5 -4.8 -3.6 -2.9 -0.2 -3.1 1.1 -4.7 -2.9 -3.0 -1.2	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5 45.7 48.2	rdb 11.5 17.5 16.5 11.5 13.5 11.5 14.5 14.5 18.5 23.5 34.5 28.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57 37.74 87.98	383.1489 383.1476 383.1503 405.1295 405.1298 405.1309 405.1309 405.1314 765.2865 765.2879 765.2892 765.2906	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5 -3.6 -2.3 -0.9 0.4	600 err [ppm] -0.0- -3.5 3.5 4.8 -3.6 -2.9 -0.2 3.1 1.1 -4.7 -2.9 -3.0 -1.2 0.6	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5 45.7 48.2 52.1	rdb 11.5 17.5 16.5 11.5 17.5 13.5 11.5 16.5 14.5 18.5 23.5 34.5 28.5 22.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57 37.74 87.98 100.00 76.56	383.1489 383.1476 383.1503 405.1290 405.1295 405.1398 405.1309 405.1314 765.2865 765.2879 765.2892 765.2906 765.2905	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 -0.5 -3.6 -2.3 -0.9 0.4	600 err [ppm] -0.0 -3.5 -3.5 -3.6 -2.9 -0.2 -3.1 -1.1 -4.7 -2.9 -3.0 -1.2 -0.6 -0.6	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5 45.7 48.2 52.1 60.4	rdb 11.5 17.5 16.5 11.5 13.5 11.5 14.5 23.5 34.5 28.5 22.5 33.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok ok ok		765.2901	ļ.,	00 r
Meas. m/z 383.1489 405.1310	# Formula 1	Score 100.00 48.90 35.06 38.44 53.29 63.01 100.00 52.81 79.21 16.83 46.57 37.74 87.98	383.1489 383.1476 383.1503 405.1295 405.1298 405.1309 405.1309 405.1314 765.2865 765.2879 765.2892 765.2906	err [mDa] -0.0 -1.3 1.3 -1.9 -1.4 -1.2 -0.1 1.2 0.5 -3.6 -2.3 -0.9 0.4	600 err [ppm] -0.0- -3.5 3.5 4.8 -3.6 -2.9 -0.2 3.1 1.1 -4.7 -2.9 -3.0 -1.2 0.6	29.0 29.9 42.9 1.2 3.0 3.5 7.9 10.4 11.7 28.4 38.5 45.7 48.2 52.1	rdb 11.5 17.5 16.5 11.5 17.5 13.5 11.5 16.5 14.5 18.5 23.5 34.5 28.5 22.5	even even even even even even even even	N-Rule ok ok ok ok ok ok ok ok		765.2901	ļ.,	1 00

Figure S31. IR spectrum of 9.

Figure S32. ¹H-NMR spectrum of 10.

FTIR Measurement

NQ-2

SCSIO

1400

2013-12-13

1000 800

10:26:00

1/cm

Figure S33. 13 C NMR and DEPT135 spectra of 10.

Figure S34. HSQC spectrum of 10.

Figure S35. HMBC spectrum of 10.

Figure S36. ¹H-¹H COSY spectrum of 10.

Figure S37. HR-ESIMS spectrum of 10.

Figure S38. IR spectrum of 10.

Figure S39. Comparison of the experimental CD spectra of 9, 11, 12 and 4-(4-hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one (18).

S1. Isolation and Purification of Compounds 1–17

The extract was subjected to silica gel CC using gradient elution with a CHCl₃/CH₃OH solvent system at the ratios of 100:0, 98:2, 95:5, 90:10, 80:20, 50:50, and 0:100 (v/v) to give eight fractions (Fr.1–Fr.8). Fr.1 (3.9 g) was subjected to a silica gel CC eluting with CHCl₃/CH₃CO CH₃ at the ratios of 90:10, 80:20, 70:30, 50:50, 100:0 (v:v), to offer Fr.1-1~8. Subfraction Fr.1-2 was isolated by MPLC with an ODS column, eluting with CH₃CN-H₂O (from 10:90 to 100:0, 90 min, 20 mL/min) to give Fr.1-2-1~6. Subfraction Fr.1-2-5 was purified by SP-RP HPLC, eluting with CH₃CN/H₂O (37:53), to obtain 13 ($t_R = 55$ min, 15 mg). Subfraction Fr.1-2-6 was purified by SP-RP HPLC, eluting with CH₃CN/H₂O (65:35), to obtain $\mathbf{6}$ ($t_R = 77 \text{ min}, 2 \text{ mg}$). Subfraction Fr.1-3 was purified by SP-RP HPLC, eluting with CH₃OH/H₂O (60:40), to obtain 12 ($t_R = 70 \text{ min}$, 15 mg), 4 ($t_R = 53 \text{ min}$, 15 mg). Subfraction Fr.1-5 was purified by SP-RP HPLC, eluting with CH₃OH/H₂O (55:45), to obtain 17 ($t_R = 30 \text{ min}, 3 \text{ mg}$), 7 ($t_R = 60 \text{ min}$, 4 mg). Subfraction Fr.1-6 was isolated by MPLC with an ODS column, eluting with CH₃CN-H₂O (from 10:90 to 100: 0, 60 min, 20 mL/min) to give Fr.1-6-1~4. Fr.1-6-3 was purified by SP-RP HPLC, eluting with CH₃OH/H₂O (70:30), to obtain 8 ($t_R = 33 \text{ min}, 2 \text{ mg}$), 3 ($t_R = 41 \text{ min}, 4 \text{ mg}$). Subfraction Fr.1-7 was isolated by MPLC with an ODS column, eluting with CH₃CN-H₂O (from 10:90 to 100:0, 60 min, 20 mL/min) to give Fr.1-7-1~4. And subfraction Fr.1-7-2 was purified by SP-RP HPLC, eluting with CH₃CN/H₂O (45:55), to obtain 1 ($t_R = 36 \text{ min}$, 3 mg), 5 ($t_R = 45 \text{ min}$, 6 mg), 2 ($t_R = 47 \text{ min}, 4 \text{ mg}$). Fr.2 (11 g) was subjected to a silicagel CC eluting with CHCl₃/CH₃COCH₃ at the ratios of 90:10, 80:20, 70:30, 50:50, 100:0 (v:v), to offer Fr.2-1~6. Subfraction Fr.2-2 was seperated by MPLC with an ODS column, eluting with CH₃OH-H₂O (from 10:90 to 100:0, 60 min, 20 mL/min) to give Fr.2-2-1~3. And subfraction Fr.2-2-1 was purified by SP-RP HPLC, eluting with CH₃CN/H₂O (57:43), to obtain 14 ($t_R = 30 \text{ min}$, 10 mg). Fr.4 (1.45 g) was isolated by MPLC with an ODS column, eluting with CH₃OH-H₂O (from 15:85 to 100:0, 90 min, 20 mL/min) to give Fr.4-1~5. Fr.4-5 was

purified by SP-RP HPLC, eluting with CH₃CN/H₂O (46:54), to afford **11** (t_R = 23 min, 30 mg) and **9** (t_R = 19.0 min, 4 mg). Fr.5 (1.2 g) was isolated by MPLC with an ODS column, eluting with CH₃OH-H₂O (from 15:85 to 100:0, 90min, 20 mL/min) to give Fr.5-1~5. Subfraction Fr.5-3 was purified by SP-RP HPLC, eluting with CH₃OH/H₂O (55:45), to obtain **10** (t_R = 39 min, 8 mg). Fr.7 (3 g) was subjected to Sephadex LH-20 CC eluting with CH₃OH to collect Fr.7-1~4. Further subfraction Fr.7-4 (1.8 g) was isolated by MPLC with an ODS column, eluting with CH₃OH-H₂O (from 15:85 to 100:0, 90 min, 20 mL/min) to give Fr.7-4-1~4. And then subfraction Fr.7-4-4 was purified by SP-RP HPLC, eluting with CH₃OH/H₂O (63:37), to obtain **15** (t_R = 37 min, 8 mg), **16** (t_R = 14 min, 6 mg).

S2. Structures of Compounds 1–17

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).