Supplementary Information

Table S1. Microcystin (MC) congeners produced by reported cyanobacterial strains.
Table S2. Tandem mass spectrometry fragment assignments for the CAWBG11 -RR microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation.
Table S3. Tandem mass spectrometry fragment assignments for the CAWBG11 -XR microcystin (MC) congeners observed by matrix-assisted laser desorption/ionization post-source decay and electrospray ionization collision-induced dissociation.

Table S4. Tandem mass spectrometry fragment assignments for the CAWBG11 -RZ microcystin (MC) congeners observed by matrix-assisted laser desorption/ionization post-source decay and electrospray ionization collision-induced dissociation.

Table S5. Tandem mass spectrometry fragment assignments for the CAWBG11 -XAmicrocystin (MC) congeners observed by electrospray ionization collision-induced dissociation.**Table S6.** Tandem mass spectrometry fragment assignments for the CAWBG11 -XAbamicrocystin (MC) congeners observed by electrospray ionization collision-induced dissociation.

Table S7. Tandem mass spectrometry fragment assignments for the CAWBG11 -XL

microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation. **Table S8.** Electrospray high-resolution mass spectrometry data for microcystins (MC) present in sufficient quantities in *Microcystis* CAWBG11.

Figure S1. Advanced Marfey's amino acid analysis of MC-RA; extracted ion chromatograms of hydrolyzed MC-RA derivatized with L-FDLA.

Figure S2. Advanced Marfey's amino acid analysis of MC-RAba; extracted ion chromatograms of hydrolyzed MC-RAba derivatized with L-FDLA.

Figure S3. Box plots representing the spread in the number of microcystin congeners produced by reported cyanobacterial strains. Plots depict the number of microcystin congeners identified; 49 strains (a); the number of microcystin congeners observed; 49 strains (b) and the potential number of congeners which could be produced according to the reported data; 33 strains (c).

Figure S4. Microscopic images of *Microcystis* CAWBG11 acquired on an Olympus IX70 inverted microscope at $100 \times$ magnification (a) and at $1000 \times$ magnification (b).

Cyanobacterial Strain	Microcystins Identified	Number of MCs ^b	Position Two ^c	Position Four ^d	Other Modifications	Potential MCs ^e	Reference(s)
Anabaena 18B6	[Dha ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; Unidentified MCs ×2	4	Arg	Arg	Position 3×2 Position 7×1	-	[1]
Anabaena 60	MC-LR; [Asp ³] MC-LR; MC-RR; [Asp ³] MC-RR	4	Leu Arg	Arg	Position 3×2	4	[2]
Anabaena 66	[Dha ⁷] MC-HphR; [Dha ⁷] MC-HtyR; [Ser ⁷] MC-HtyR; [Asp ³ , Dha ⁷] MC-HtyR	4	Hph Hty	Arg	Position 3×2 Position 7×2	8	[2,3]
Anabaena 66A	[Dha ⁷] MC-LR; [Ser ⁷] MC-LR; [Asp ³ , Ser ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Dha ⁷] MC-FR; [Asp ³ , Dha ⁷] MC-FR; [Dha ⁷] MC-HphR; [Asp ³ , Dha ⁷] MC-HphR; MC-HtyR; [Dha ⁷] MC-HtyR; [Ser ⁷] MC-HtyR; [Asp ³ , Dha ⁷] MC-HtyR; [Asp ³ , Ser ⁷] MC-HtyR; Unidentified MCs × 20	33	Leu Phe Hph Hty	Arg	Position 3×2 Position 7×3	-	[1]
Anabaena 90	MC-LR; [Asp ³] MC-LR; [DMAdda ⁵] MC-LR; [Dha ⁷] MC-LR; [MeSer ⁷] MC-LR; [Asp ³ , MeSer ⁷] MC-LR; MC-HilR; [Asp ³] MC-HilR; MC-RR; [Asp ³] MC-RR; [Dha ⁷] MC-RR	11	Leu Hil Arg	Arg	Position 3×2 Position 5×2 Position 7×3	36	[1,2,4,5]
Anabaena 141	MC-LR; [Asp ³] MC-LR; MC-RR; [Asp ³] MC-RR	4	Leu Arg	Arg	Position 3×2	4	[2]
Anabaena 186	[Dha ⁷] MC-E(OMe)E(OMe); [Ser ⁷] MC-E(OMe)E(OMe); [Asp ³ , Dha ⁷] MC-E(Ome)E(OMe); [Asp ³ , Ser ⁷] MC-E(OMe)E(OMe); [Dha ⁷] MC-EE(OMe); [Ser ⁷] MC-EE(OMe); [Asp ³ , Dha ⁷] MC-EE(OMe)	7	Glu Glu(OMe)	Glu(OMe)	Position 3×2 Position 7×2	8	[6]
Anabaena 202 A1	[Dha ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Ser ⁷] MC-LR; [Asp ³ , Ser ⁷] MC-HilR; [Dha ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; [Ser ⁷] MC-RR	7	Leu Hil Arg	Arg	Position 3 \times 2 Position 7 \times 2	12	[2,7]

Table S1. Microcystin (MC) congeners produced by reported cyanobacterial strains ^{*a*}.

-

-

-

Anabaena 202 A2	[Dha ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Ser ⁷] MC-LR; [Dha ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; [Ser ⁷] MC-RR	6	Leu Arg	Arg	Position 3×2 Position 7×2	8	[2,5,7]
Anabaena flos-aquae CYA83/1	MC-LR; [Asp ³] MC-LR; MC-RR; [Asp ³] MC-RR; [Glu(OMe) ⁶] MC-LR; [Asp ³ , Glu(OMe) ⁶] MC-LR	6	Leu Arg	Arg	Position 3×2 Position 6×2	8	[8]
Anabaena flos-aquae NRC 525-17	MC-LR; [Asp ³] MC-LR; MC-HtyR; [Asp ³] MC-HtyR	4	Leu Hty	Arg	Position 3 ×2	4	[9]
Fischerella CENA161	MC-LR	1	Leu	Arg		1	[10]
Hapalosiphon	MC-VA; $[Asp^3]$ MC-VA; MC-LA; $[Asp^3]$ MC-LA; $[Dha^7]$ MC-LA: $[Asp^3]$ DMAdda ⁵] MC-LA: MC-LV;	10	Val	Ala Val	Position 3×2 Position 5×2	72	[1]
hibernicus BZ-3-1	MC-LL; MC-RA; [Asp ³] MC-RA	10	Arg	Leu	Position 7×2	12	[1]
<i>Microcystis</i> CAWBG11	MC-LA; [Asp ³] MC-LA; MC-FA; [Asp ³] MC-FA; MC-YA; MC-WA; [Asp ³] MC-WA; MC-RA; [Asp ³] MC-RA; MC-RAba; [Asp ³] MC-RAba; MC-RL; MC-LAba; MC-FAba; MC-WAba; MC-LL; MC-FL; MC-WL; MC-LR; [Asp ³] MC-LR; MC-FR; [Asp ³] MC-FR; MC-YR; MC-WR; [Asp ³] MC-WR; MC-RR; [Asp ³] MC-RR	27	Leu Phe Tyr Trp Arg	Ala Aba Leu Arg	Position 3×2	40	This Study
Microcystis HUB 5-2-4	MC-LR; dmMC-LR; MC-RR; dmMC-RR; MC-YR	5	Leu Tyr Arg	Arg	DM ×2	6	[11]
Microcystis MB-K	MC-LR; dmMC-LR; MC-YR; dmMC-YR	4	Leu Tyr	Arg	DM ×2	4	[12]
Microcystis MG-K	MC-RR; dmMC-RR; MC-WR	3	Arg Trp	Arg	DM ×2	4	[12]

Table S1. Cont.

 Table S1. Cont.

Microcystis PCC7806	MC-LR; [Asp ³] MC-LR; [Dha ⁷] MC-LR; [MeSer ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Asp ³ , MeSer ⁷] MC-LR; Unidentified MCs ×5	11	Leu	Arg	Position 3 \times 2 Position 7 \times 3	-	[1,13]
Microcystis PCC7813	MC-LR; [Asp ³] MC-LR	2	Leu	Arg	Position 3 ×2	2	[11]
Microcystis aeruginosa	MC-LR	1	Leu	Arg		1	[14]
Microcystis aeruginosa B2666	MC-LA; [Asp ³] MC-LA; MC-LAba; [Asp ³] MC-LAba; MC-LL; MC-LF; MC-LR; [MeSer ⁷] MC-LR	8	Leu	Ala Aba Leu Phe Arg	Position 3 \times 2 Position 7 \times 2	20	[15]
Microcystis aeruginosa CALU972	[Dha ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Dha ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; [Dha ⁷] MC-YR	5	Leu Tyr Arg	Arg	Position 3 \times 2 Position 7 \times 1	6	[16]
Microcystis aeruginosa K-139	[Dha ⁷] MC-LR; [Asp ³ , Dha ⁷] MC-LR	2	Leu	Arg	Position 3 \times 2 Position 7 \times 1	2	[5]
Microcystis aeruginosa MK10.10	MC-VR; MC-LR; MC-HilR	3	Val Leu Hil	Arg		3	[17]
Microcystis aeruginosa NIES90	MC-LR; MC-YR; MC-RR	3	Leu Tyr Arg	Arg		3	[18]

	Table S1. Cont.								
Microcystis aeruginosa PCC7820	MC-LR; dmMC-LR; [Glu(OMe) ⁶] MC-LR; MC-LF; dmMC-LF; MC-LW; dmMC-LW; MC-LL; MC-LM; MC-LY	10	Leu	Arg Phe Leu Met Trp Tyr	$DM \times 2$ Position 6 × 2	24	[19]		
Microcystis aeruginosa TN-2	MC-LR; MC-FR; [Asp ³] MC-FR; MC-WR; [Asp ³] MC-WR; MC-RR; MC-RA	7	Leu Phe Trp Arg	Arg Ala	Position 3×2	16	[20]		
Microcystis aeruginosa UAM1303	MC-LR; [Asp ³] MC-LR; [MeSer ⁷] MC-LR; MC-HilR; MC LY; MC-LF; MC-LW	7	Leu Hil	Arg Tyr Phe Trp	Position 3×2 Position 7×2	32	[21]		
Microcystis aeruginosa UTEX2666	MC-LA; [Asp ³] MC-LA; MC-LAba; [Asp ³ , Glu(OMe) ⁶] MC-LAba; MC-LR; [Asp ³] MC-LR; didmMC-LR	7	Leu	Ala Aba Arg	Position 3×2 Position 6×2	24	[21]		
Microcystis aeruginosa UTEX2670	MC-YA; MC-YL; MC-YM; MC-YM(O); Unidentified MC	5	Tyr	Ala Leu Met Met(O)		-	[21]		
Microcystis aeruginosa UV-006	MC-LA; MC-LAba; MC-LV; MC-LL; MC-LR; [Asp ³] MC-LR; Unidentified MCs ×2	8	Leu	Ala Aba Val Leu Arg	Position 3×2	≥10	[22]		
Microcystis novacekii UAM250	MC-LR; MC-YR; MC-RR	3	Leu Tyr Arg	Arg		3	[23]		

Table S1. Cont.										
<i>Microcystis viridis</i> NIES102	[Asp ³] MC-LR; [Dha ⁷] MC-LR; [Ser ¹ , Asp ³ , Dha ⁷] MC-LR; MC-HilR; MC-FR; MC-YR; [Asp ³] MC-YR; MC-HtyR; MC-WR; [Asp ³] MC WR; MC-RR; [Asp ³] MC-RR; Unidentified MCs × 35	47	Leu Hil Phe Tyr Hty Trp Arg	Arg	Position 1×2 Position 3×2 Position 7×2	-	[1]			
Nostoc 152	 [Asp³, ADMAdda⁵] MC-VR; [DMAdda⁵] MC-LR; [ADMAdda⁵] MC-LR; [Mdhb⁷] MC-LR; [Ser¹, ADMAdda⁵] MC-LR; [Ser¹, Asp³, ADMAdda⁵] MC LR; [Asp³, DMAdda⁵] MC-LR; [ADMAdda⁵, MeSer⁷] MC-LR; [ADMAdda⁵, Dha⁷] MC-LR; [ASp³, ADMAdda⁵, Dha⁷] MC-LR; [ADMAdda⁵] MC-LHar; [DMAdda⁵] MC-LHar; [Asp³, ADMAdda⁵] MC-LHar; [ADMAdda⁵] MC-HilR; [ADMAdda⁵] MC-HilHar; [ASp³, ADMAdda⁵] MC-HilR; Unidentified MCs × 9 	25	Val Leu Hil	Arg Har	Position 1×2 Position 3×2 Position 5×3 Position 7×3	≥216	[1,24–26]			
Nostoc IO-102-I	[ADMAdda ⁵] MC-LR; [DMAdda ⁵] MC-LR; [Asp ³ , ADMAdda ⁵] MC LR; [DMAdda ⁵] MC-HilR; [ADMAdda ⁵] MC-YR; Unidentified MCs ×15	20	Leu Hil Tyr	Arg	Position 3×2 Position 5×2	-	[1,27]			
Nostoc species	[Asp ³ , ADMAdda ⁵ , Dhb ⁷] MC-LR; [Asp ³ , ADMAdda ⁵ , Dhb ⁷] MC HtyR; [Asp ³ , ADMAdda ⁵ , Dhb ⁷] MC-RR	3	Leu Hty Arg	Arg	Position 3 \times 1 Position 5 \times 1 Position 7 \times 1	3	[28]			
Planktothrix Max06	[Asp ³ , DMAdda ⁵] MC-HtyR; [Asp ³] MC-YR; [Asp ³ , MeSer ⁷] MC-HtyR; [Asp ³ , MeSer ⁷] MC-LR; [Asp ³] MC-HtyR; [Asp ³] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Asp ³] MC-HilR; [Asp ³ , Glu(OMe) ⁶] MC-HtyR; [Asp ³] MC-HphR; [Asp ³ , Glu(OMe) ⁶] MC-LR	11	Leu Hil Tyr Hty Hph	Arg	Position 3×1 Position 5×2 Position 6×2 Position 7×3	60	[29]			

 Table S1. Cont.

Planktothrix agardhii	[Asp ³] MC-LR; [Asp ³] MC-RR	2	Leu Arg	Arg	Position 3×1	2	[30]
Planktothrix agardhii 213	[Asp ³] MC-LR; [Asp ³ , Dha ⁷] MC-LR; [Asp ³] MC-RR	3	Leu Arg	Arg	Position 3×1 Position 7×2	4	[1]
Planktothrix agardhii CYA 56/3	[Asp ³] MC-LY; [Asp ³] MC-LR; [Asp ³] MC-HtyR; [Asp ³] MC-RR; [Asp ³ , Dha ⁷] MC-RR; [Asp ³] MC-RY; [Asp ³ , Dha ⁷] MC-RY; [Asp ³ , DMAdda ⁵] MC-RY; Unidentified MC	9	Leu Hty Arg	Tyr Arg	Position 3×1 Position 5×2 Position 7×2	≥24	[31]
Planktothrix agardhii CYA 137	[Asp ³] MC-LY; [Asp ³] MC-LR; [Asp ³] MC-HtyR; [Asp ³] MC-RR; [Asp ³ , Dha ⁷] MC-RR; [Asp ³] MC-RY; [Asp ³ , Dha ⁷] MC-RY; [Asp ³ , DMAdda ⁵] MC-RY; Unidentified MC	9	Leu Hty Arg	Tyr Arg	Position 3×1 Position 5×2 Position 7×2	≥24	[31]
Planktothrix agardhii CYA 532	 [Asp³] MC-LY; [Asp³] MC-LR; [Asp³] MC-HtyR; [Asp³] MC-RR; [Asp³, Dha⁷] MC-RR; [Asp³] MC-RY; [Asp³, Dha⁷] MC-RY; [Asp³, DMAdda⁵] MC-RY; Unidentified MC 	9	Leu Hty Arg	Tyr Arg	Position 3×1 Position 5×2 Position 7×2	≥24	[31]
Planktothrix agardhii CYA 537	[Asp ³] MC-LR; [Asp ³] MC-RR; [Asp ³ , Dha ⁷] MC-RR; Unidentified MC	4	Leu Arg	Arg	Position 3×1 Position 7×2	≥4	[31]
Planktothrix agardhii CYA 544	[Asp ³] MC-LR; [Asp ³] MC-RR; [Asp ³ , Dha ⁷] MC-RR; Unidentified MC	4	Leu Arg	Arg	Position 3×1 Position 7×2	≥4	[31]
Planktothrix agardhii NIVA 126/8	[Asp ³] MC-LR; [Asp ³] MC-RR; Unidentified MC	3	Leu Arg	Arg	Position 3×1	-	[1]
Planktothrix agardhii PH-123	[Asp ³] MC-LR; [Asp ³ , ADMAdda ⁵] MC-LR; [Asp ³] MC-HtyR; [Asp ³ , ADMAdda ⁵] MC-HtyR	4	Leu Hty	Arg	Position 3×1 Position 5×2	4	[32]
Planktothrix rubescens CYA 406	[Asp ³ , Dhb ⁷] MC-LR; [Asp ³ , Dhb ⁷] MC-HtyR; [Asp ³ , Dhb ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; Unidentified MC	5	Leu Hty Arg	Arg	Position 3×1 Position 7×2	≥6	[31]

S8

Planktothrix rubescens CYA 408	[Asp ³ , Dhb ⁷] MC-LR; [Asp ³ , Dhb ⁷] MC-HtyR; [Asp ³ , Dhb ⁷] MC-RR; [Asp ³ , Dha ⁷] MC-RR; Unidentified MC	5	Leu Hty Arg	Arg	Position 3×1 Position 7×2	≥6	[31]
Planktothrix rubescens No80	[Asp ³ , Dhb ⁷] MC-LY; [Asp ³ , Dhb ⁷] MC-LW; [Asp ³ , Dhb ⁷] MC-HtyY; [Asp ³ , Dhb ⁷] MC-HtyHty; [Asp ³ , Dhb ⁷] MC-HtyW	5	Leu Hty	Tyr Hty Trp	Position 3×1 Position 7×1	6	[33,34]

^{*a*} An assessment of the microcystin diversity of 49 microcystin-producing strains reported in scientific journals; ^{*b*} Number of microcystins observed, including unidentified microcystins which the researchers noted during the studies; ^{*c*} Amino acids incorporated into position two of the microcystins reported to be produced by the cyanobacterial strain; ^{*d*} Amino acids incorporated into position four of the microcystins reported to be produced by the cyanobacterial strain; ^{*e*} Potential number of microcystins which could be produced by the cyanobacterial strain according to the information collected; In some cases this is omitted as the presence of unidentified microcystins makes this value difficult to estimate.

	MC	·RR	[Asp ³] N	AC-RR
Fragment Assignment	$[M + 2H]^{2+}$	$[M + H]^{+}$	$[M + 2H]^{2+}$	$[M + H]^+$
М	519.8	1038.6	512.8	1024.6
$M - H_2O$	510.7	1020.4^{b}	503.7	1006.4^{b}
$M - Mdha - H_2O$	469.2	937.4^{b}	462.2	923.4^{b}
M – Adda sidechain	452.8	904.4	445.7	890.3
M – Adda sidechain – H ₂ O	443.7	886.4	436.6	872.3
M – Adda	363.2	725.3	356.1	711.3
$M - Adda - H_2O$	354.2	707.3	347.1	693.3
Arg-Adda-Glu – NH ₃		582.2		582.2
$Arg-Adda - NH_3 + H$		453.2		453.2
Arg-Adda-Glu – CO		571.3		571.2
(Me)Asp-Arg-Adda-Glu		728.3		714.2
(Me)Asp-Arg-Adda		599.3		585.2
Arg-Adda-Glu		599.3		599.2
Mdha-Ala-Arg-(Me)Asp-Arg	298.2	596.3	291.2	582.2
Mdha-Ala-Arg-(Me)Asp		440.2		426.1
Mdha-Ala-Arg		311.2		311.1
Mdha-Ala		155.1		155.0
Adda'-Glu-Mdha		375.2		375.1
Adda'		163.1		163.0
(Me)Asp-Arg		286.2		272.1
Arg		157.1		157.1

Table S2. Tandem mass spectrometry fragment assignments for the CAWBG11 -RR microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation.

^{*a*} Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O); ^{*b*} [M + H]⁺ ion was deconvoluted from the [M + 2H]²⁺ ion.

Mar. Drugs 2014, 12

	MC-LR	[Asp ³] MC-LR	MC-FR	[Asp ³] MC-FR	MC-YR	MC-WR	[Asp ³] MC-WR
Fragment Assignment "	<i>X</i> = 113 Da	X = 113 Da	X = 147 Da	X = 147 Da	X = 163 Da	X = 186 Da	X = 186 Da
M + H	995	981	1029	1015	1045	1068	1054
M - Ala + H	924	910	958	944	974	997	
$M - CH_2NHCN_2H_3 + H$	923	909	957	943	973	996	
M - (Me)Asp + H	866	866	900	900	916	939	939
M - Glu + H	866	852	900	886	916	939	925
M – Adda sidechain + H	861	847	895	881	911	934	920
(Me)Asp-Arg-Adda-Glu + H	728	714	728	714	728	728	714
(Me)Asp-Arg-Adda + H	599	585	599	585	599	599	585
Arg-Adda-Glu + H	599	599	599	599	599	599	599
Arg-Adda + H	470	470	470	470	470	470	470
Mdha-Ala-X-(Me)Asp-Arg + NH ₄	570	556	604	590	620	643	629
Ala-X-(Me)Asp-Arg + NH ₄	487	473	521	507	537	560	546
Mdha-Ala-X-(Me)Asp-Arg + H	553	539	587	573	603	626	612
Ala-X-(Me)Asp-Arg + H	470	456	504	490	520	543	529
X-(Me)Asp-Arg + H	399		433	419	449		
Mdha-Ala-X-(Me)Asp + H	397	383	431		447	470	456
Mdha-Ala- $X + H$	268	268	302	302	318	341	341
Mdha-Ala + H	155	155	155	155	155	155	155
Adda'-Glu-Mdha-Ala + H	446	446	446	446	446	446	446
Adda'-Glu-Mdha + H	375	375	375	375	375	375	375
Adda' + H	163	163	163	163	163	163	163
Glu-Mdha + H	213	213	213	213	213	213	213
Adda sidechain	135	135	135	135	135	135	135
Arg related ions	70/84/112/174	70/84/112/174	70/84/112/174	70/84/112/174	70/84/112/174	70/84/112/174	70/84/112/174
X immonium	86	86	120	120	136	159	159

Table S3. Tandem mass spectrometry fragment assignments for the CAWBG11 -XR microcystin (MC) congeners observed by matrix-assisted laser desorption/ionization post-source decay and electrospray ionization collision-induced dissociation.

 $^{a}X =$ Position two amino acid; Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O); CH₂NHCN₂H₃ is a fragment of the arginine sidechain; Fragment ions containing NH₃ and CO losses have been omitted.

Mar. Drugs 2014, 12

Fragment Assignment ^a	MC-RA Z = 71 Da	[Asp³] MC-RA Z = 71 Da	MC-RAba Z = 85 Da	[Asp³] MC-RAba Z = 85 Da	MC-RL Z = 113 Da
M + H	953	939	967	953	995
$M - H_2O + H$	935	921	949	935	977
M - COOH + H	908	894	922	908	950
M - Z + H	882	868	882	868	882
$M - CH_2NHCN_2H_3 + H$	881	867	895	881	923
M - Glu + H	824	810	838	824	866
M = (Me)Asp + H	824	824	838	838	866
M – Adda sidechain + H	819	787	833	819	861
Mdha-Ala-Arg-(Me)Asp-Z + NH ₄	528	514	542	528	570
Mdha-Ala-Arg-(Me)Asp-Z – H ₂ O + NH ₄	510	496	524	510	552
Mdha-Ala-Arg-(Me)Asp-Z + H	511	497	525	511	553
Mdha-Ala-Arg-(Me)Asp – CH ₂ NHCN ₂ H ₃ + H	368	354	368	354	368
Mdha-Ala-Arg-(Me)Asp + H	440	426	440	426	440
Mdha-Ala-Arg + H	311	311	311	311	311
Mdha-Ala + H	155	155	155		
Arg-(Me)Asp-Z + H	357	343		357	
Glu-Mdha-Ala-Arg – COOH + H	395	395	395	395	395
Glu-Mdha-Ala-Arg – CH ₂ NHCN ₂ H ₃ + H	368	368	368	368	368
Glu-Mdha-Ala-Arg + H	440	440	440	440	440
Glu-Mdha + H	213		213		
Adda'-Glu-Mdha + H	375	375	375	375	375
Adda' + H	163	163	163		

Table S4. Tandem mass spectrometry fragment assignments for the CAWBG11 -RZ microcystin (MC) congeners observed by matrix-assisted laser desorption/ionization post-source decay and electrospray ionization collision-induced dissociation.

 a Z = Position four amino acid; Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O); CH₂NHCN₂H₃ is a fragment of the arginine sidechain.

-

-

Eurogenent Assignment a	MC-LA	[Asp ³] MC-LA	MC-FA	[Asp ³] MC-FA	MC-YA	MC-WA	[Asp ³] MC-WA
Fragment Assignment	X = 113 Da	<i>X</i> = 113 Da	X = 147 Da	<i>X</i> = 147 Da	<i>X</i> = 163 Da	<i>X</i> = 186 Da	<i>X</i> = 186 Da
M + H	910	896	944	930	960	983	969
$M - H_2O + H$	892	878	926	912	942	965	951
$M - Mdha - H_2O + H$	809	795	843	829		882	868
M – Adda sidechain + H	776	762	810	796	826	849	835
$M - Adda \ sidechain - H_2O + H$	758	744	792	778	808	831	817
M - Adda + H	597	583	631	617	647	670	656
$M - Adda - H_2O + H$	579	565	613	599	629	652	
Adda-Glu-Mdha-Ala-X-(Me)Asp – NH ₃ + H	822	808	856	842	872	895	881
Adda-Glu-Mdha-Ala- $X - NH_3 + H$	693	693	727	727	743	766	766
$Adda\text{-}Glu\text{-}Mdha\text{-}Ala - NH_3 + H$	580	580	580	580	580	580	580
$Adda$ - Glu - $Mdha$ – NH_3 + H	509	509	509	509	509	509	509
Adda'-Glu-Mdha-Ala-X + H	559	559	593	593	609	632	632
Adda'-Glu-Mdha-Ala + H	446	446	446	446	446	446	446
Adda'-Glu-Mdha + H	375	375	375	375	375	375	375
Mdha-Ala-X-(Me)Asp-Ala + NH ₄	485	471	519	505	535	558	
Ala-X-(Me)Asp-Ala + NH ₄	402	388	436	422	452	475	461
X-(Me)Asp-Ala + NH ₄	331	317	365	351	381	404	390
Mdha-Ala-X-(Me)Asp-Ala + H	468	454	502	334	518	541	527
Ala-X-(Me)Asp-Ala + H	385	371	419	405	435	458	444
X-(Me)Asp-Ala + H	314	300	348	488	364	387	373

Table S5. Tandem mass spectrometry fragment assignments for the CAWBG11 -XA microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation.

^{*a*} X = Position two amino acid; Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O).

	MC-LAba	MC-FAba	MC-WAba
Fragment Assignment	<i>X</i> = 113 Da	<i>X</i> = 147 Da	<i>X</i> = 186 Da
M + H	924	958	997
$M - H_2O + H$	906	940	979
$M - Mdha - H_2O + H$	823	857	896
M – Adda sidechain + H	790	824	863
$M - Adda \ sidechain - H_2O + H$	772	806	845
M - Adda + H	611	645	684
$M - Adda - H_2O + H$	593	627	666
$\label{eq:adda-Glu-Mdha-Ala-X-Masp} Adda-Glu-Mdha-Ala-X-Masp-NH_3+H$		856	895
Adda-Glu-Mdha-Ala- $X = NH_3 + H$	693	727	766
$Adda$ - Glu - $Mdha$ - Ala – NH_3 + H	580	580	580
$Adda$ - Glu - $Mdha$ – NH_3 + H	509	509	509
Adda'-Glu-Mdha-Ala- X + H	559	593	632
Adda'-Glu-Mdha-Ala + H	446	446	446
Adda'-Glu-Mdha + H	375	375	375
Mdha-Ala-X-Masp-Aba + NH ₄	499	533	572
Ala-X-Masp-Aba + NH ₄	416	450	489
X-Masp-Aba + NH ₄	345	379	418
Mdha-Ala-X-Masp-Aba + H	482	516	555
Ala-X-Masp-Aba + H	399	433	472
X-Masp-Aba + H	328	362	401

Table S6. Tandem mass spectrometry fragment assignments for the CAWBG11 -XAba microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation.

^{*a*} X = Position two amino acid; Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O).

	MC-LL	MC-FL	MC-WL
Fragment Assignment "	<i>X</i> = 113 Da	X = 147 Da	X = 186 Da
M + H	952	986	1025
$M - NH_3 + H$	935	969	1008
$M - H_2O + H$	934	968	1007
$M - Mdha - H_2O + H$	851	885	924
M – Adda sidechain + H	818	852	891
$M - Adda sidechain - H_2O + H$	800	834	873
M - Adda + H	639	673	712
$M - Adda - H_2O + H$	621	655	694
Adda-Glu-Mdha-Ala-X-Masp – NH ₃ + H		856	895
Adda-Glu-Mdha-Ala- $X = NH_3 + H$	693	727	766
Adda-Glu-Mdha-Ala – NH ₃ + H	580	580	580
Adda-Glu-Mdha – NH ₃ + H	509	509	509
Glu-Mdha-Ala-X + H	397	431	470
Adda'-Glu-Mdha-Ala-X + H	559	593	632
Adda'-Glu-Mdha-Ala + H	446	446	446
Adda'-Glu-Mdha + H	375	375	375
Mdha-Ala-X-Masp-Leu + NH ₄		561	600
Ala-X-Masp-Leu + NH ₄		478	517
X-Masp-Leu + NH ₄		407	446
Unidentified fragment ion	440	474	513
Unidentified fragment ion	535	535	535
Mdha-Ala-X-Masp-Leu + H	509	544	583
Ala-X-Masp-Leu + H	426	461	500
<i>X</i> -Masp-Leu + H	355	390	429

Table S7. Tandem mass spectrometry fragment assignments for the CAWBG11 -XL microcystin (MC) congeners observed by electrospray ionization collision-induced dissociation.

^{*a*} X = Position two amino acid; Adda' = Adda minus NH₂ and the sidechain (C₉H₁₁O).

Table S8. Electrospray high-resolution mass spectrometry data for microcystins (MC)present in sufficient quantities in *Microcystis* CAWBG11.

Microcystin	Measured <i>m/z</i>		Proposed Formula	Expected <i>m/z</i>	Deviation
MC-LR (1)	995.5560	$[M + H]^+$	$C_{49}H_{75}N_{10}O_{12}$	995.5560	+0.1 ppm
MC-RR (3)	519.7884	$[M + 2H]^{2+}$	$C_{49}H_{77}N_{13}O_{12}$	519.7902	-3.4 ppm
MC-YR (4)	1045.5364	$[M + H]^+$	$C_{52}H_{73}N_{10}O_{13}$	1045.5353	+1.1 ppm
[Asp ³] MC-LR (5)	981.5369	$[M + H]^+$	$C_{48}H_{73}N_{10}O_{12}$	981.5404	-3.6 ppm
[Asp ³] MC-FR (6)	1015.5207	$[M + H]^+$	$C_{51}H_{71}N_{10}O_{12}$	1015.5247	-4.0 ppm
MC-FR (7)	1029.5411	$[M + H]^+$	$C_{52}H_{72}N_{10}O_{12}$	1029.5404	+0.6 ppm
[Asp ³] MC-WR (8)	1054.5398	$[M + H]^+$	$C_{53}H_{72}N_{11}O_{12}$	1054.5356	+3.9 ppm
MC-WR (9)	1068.5465	$[M + H]^+$	$C_{54}H_{74}N_{11}O_{12}$	1068.5513	–4.5 ppm
MC-RA (11)	953.5122	$[M + H]^+$	$C_{46}H_{69}N_{10}O_{12}$	953.5091	+3.3 ppm
MC-RAba (13)	967.5259	$[M + H]^+$	$C_{47}H_{71}N_{10}O_{12}$	967.5247	+1.1 ppm
[Asp ³] MC-LA (16)	918.4592	$[M + Na]^{+}$	C45H67N7O12Na	918.4583	+1.0 ppm
MC-LA (17)	910.4936	$[M + H]^+$	$C_{46}H_{68}N_7O_{12}$	910.4920	+1.7 ppm
MC-FA (19)	966.4550	$[M + Na]^{+}$	C49H65N7O12Na	966.4583	-3.3 ppm
MC-WA (21)	1005.4650	$[M + Na]^{+}$	$C_{51}H_{66}N_8O_{12}Na$	1005.4692	-4.3 ppm
MC-LAba (22)	946.4912	$[M + Na]^{+}$	C47H69N7O12Na	946.4896	+1.7 ppm
MC-FAba (23)	980.4744	$[M + Na]^{+}$	C50H67N7O12Na	980.4740	+0.4 ppm
MC-WAba (24)	1019.4836	$[M + Na]^{+}$	$C_{52}H_{68}N_8O_{12}Na$	1019.4849	-1.3 ppm

Figure S1. Advanced Marfey's amino acid analysis of MC-RA; extracted ion chromatograms of hydrolyzed MC-RA derivatized with L-FDLA.

Figure S2. Advanced Marfey's amino acid analysis of MC-RAba; extracted ion chromatograms of hydrolyzed MC-RAba derivatized with L-FDLA.

Figure S3. Box plots representing the spread in the number of microcystin congeners produced by reported cyanobacterial strains. Plots depict the number of microcystin congeners identified; 49 strains (**a**); the number of microcystin congeners observed; 49 strains (**b**) and the potential number of congeners which could be produced according to the reported data; 33 strains (**c**).

Figure S4. Microscopic images of *Microcystis* CAWBG11 acquired on an Olympus IX70 inverted microscope at $100 \times$ magnification (**a**) and at $1000 \times$ magnification (**b**).

Figure S4. Cont.

References

- Fewer, D.; Rouhiainen, L.; Jokela, J.; Wahlsten, M.; Laakso, K.; Wang, H.; Sivonen, K. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. *BMC Evol. Biol.* 2007, 7, 1–11.
- Sivonen, K.; Namikoshi, M.; Evans, W.R.; Carmichael, W.W.; Sun, F.; Rouhiainen, L.; Luukkainen, R.; Rinehart, K.L. Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. *Appl. Environ. Microbiol.* 1992, 58, 2495–2500.
- Namikoshi, M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Rouhiainen, L.; Luukkainen, R.; Rinehart, K.L. Structures of three new homotyrosine-containing microcystins and a new homophenylalanine variant from *Anabaena* sp. strain 66. *Chem. Res. Toxicol.* 1992, 5, 661–666.
- 4. Rapala, J.; Sivonen, K. Assessment of environmental conditions that favor hepatotoxic and neurotoxic *Anabaena* spp. strains cultured under light limitation at different temperatures. *Microb. Ecol.* **1998**, *36*, 181–192.
- 5. Fujii, K.; Sivonen, K.; Nakano, T.; Harada, K.-I. Structural elucidation of cyanobacterial peptides encoded by peptide synthetase gene in Anabaena species. *Tetrahedron* **2002**, *58*, 6863–6871.
- Namikoshi, M.; Yuan, M.; Sivonen, K.; Carmichael, W.W.; Rinehart, K.L.; Rouhiainen, L.; Sun, F.; Brittain, S.; Otsuki, A. Seven new microcystins possessing two L-glutamic acid units, isolated from *Anabaena* sp. strain 186. *Chem. Res. Toxicol.* 1998, 11, 143–149.
- Namikoshi, M.; Sivonen, K.; Evans, W.R.; Carmichael, W.W.; Sun, F.; Rouhiainen, L.; Luukkainen, R.; Rinehart, K.L. Two new L-serine variants of microcystins-LR and -RR from *Anabaena* sp. strains 202 A1 and 202 A2. *Toxicon* 1992, *30*, 1457–1464.
- Sivonen, K.; Skulberg, O.M.; Namikoshi, M.; Evans, W.R.; Carmichael, W.W.; Rinehart, K.L. Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated from *Anabaena flos-aquae* strain CYA 83/1. *Toxicon* 1992, *30*, 1465–1471.

- Harada, K.-I.; Ogawa, K.; Kimura, Y.; Murata, H.; Suzuki, M.; Thorn, P.M.; Evans, W.R.; Carmichael, W.W. Microcystins from *Anabaena flos-aquae* NRC 525–17. *Chem. Res. Toxicol.* 1991, 4, 535–540.
- Fiore, M.F.; Genu ário, D.B.; da Silva, C.S.P.; Shishido, T.K.; Moraes, L.A.B.; Neto, R.C.; Silva-Stenico, M.E. Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. *Toxicon* 2009, *53*, 754–761.
- 11. Fastner, J.; Erhard, M.; von Döhren, H. Determination of oligopeptide diversity within a natural population of *Microcystis* spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. *Appl. Environ. Microbiol.* **2001**, *67*, 5069–5076.
- Beresovsky, D.; Hadas, O.; Livne, A.; Sukenik, A.; Kaplan, A.; Carmeli, S. Toxins and biologically active secondary metabolites of *Microcystis* sp. isolated from Lake Kinneret. *Isr. J. Chem.* 2006, 46, 79–87.
- Tonk, L.; Welker, M.; Huisman, J.; Visser, P.M. Production of cyanopeptolins, anabaenopeptins, and microcystins by the harmful cyanobacteria *Anabaena* 90 and *Microcystis* PCC 7806. *Harmful Algae* 2009, 8, 219–224.
- Dai, R.; Liu, H.; Qu, J.; Zhao, X.; Hou, Y. Effects of amino acids on microcystin production of the Microcystis aeruginosa. J. Hazard. Mater. 2009, 161, 730–736.
- 15. Diehnelt, C.W.; Dugan, N.R.; Peterman, S.M.; Budde, W.L. Identification of microcystin toxins from a strain of *Microcystis aeruginosa* by liquid chromatography introduction into a hybrid linear ion trap-fourier transform ion cyclotron resonance mass spectrometer. *Anal. Chem.* **2006**, *78*, 501–512.
- Sivonen, K.; Namikoshi, M.; Evans, W.R.; Gromov, B.V.; Carmichael, W.W.; Rinehart, K.L. Isolation and structures of five microcystins from a Russian *Microcystis aeruginosa* strain CALU 972. *Toxicon* 1992, *30*, 1481–1485.
- Mazur-Marzec, H.; Browarczyk-Matusiak, G.; Forycka, K.; Kobos, J.; Plinski, M. Morphological, genetic, chemical and ecophysiological characterisation of two *Microcystis aeruginosa* isolates from the Vistula Lagoon, southern Baltic. *Oceanologia* 2010, 52, 127–146.
- Erhard, M.; von Döhren, H.; Jungblut, P.R. Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. *Nat. Biotechnol.* 1997, 15, 906–909.
- 19. Robillot, C.; Vinh, J.; Puiseux-Dao, S.; Hennion, M.-C. Hepatotoxin production kinetics of the cyanobacterium *Microcystis aeruginosa* PCC 7820, as determined by HPLC-mass spectrometry and protein phosphatase bioassay. *Environ. Sci. Technol.* **2000**, *34*, 3372–3378.
- 20. Lee, T.-H.; Chou, H.-N. Isolation and identification of seven microcystins from a cultured M.TN-2 strain of *Microcystis aeruginosa*. *Bot. Bull. Academ. Sin.* **2000**, *41*, 197–202.
- Del Campo, F.F.; Ouahid, Y. Identification of microcystins from three collection strains of Microcystis aeruginosa. *Environ. Pollut.* 2010, 158, 2906–2914.
- Gademann, K.; Portmann, C.; Blom, J.F.; Zeder, M.; Jüttner, F. Multiple toxin production in the cyanobacterium *Microcystis*: Isolation of the toxic protease inhibitor cyanopeptolin 1020. *J. Nat. Prod.* 2010, *73*, 980–984.

- 23. Li, H.; Murphy, T.; Guo, J.; Parr, T.; Nalewajko, C. Iron-stimulated growth and microcystin production of *Microcystis novacekii* UAM 250. *Limnol.-Ecol. Manag. Inland Waters* **2009**, *39*, 255–259.
- 24. Namikoshi, M.; Rinehart, K.L.; Sakai, R.; Sivonen, K.; Carmichael, W.W. Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) *Nostoc* sp. strain 152. *J. Org. Chem.* **1990**, *55*, 6135–6139.
- Sivonen, K.; Carmichael, W.W.; Namikoshi, M.; Rinehart, K.L.; Dahlem, A.M.; Niemela, S.I. Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium *Nostoc* sp. strain 152. *Appl. Environ. Microbiol.* **1990**, *56*, 2650–2657.
- Sivonen, K.; Namikoshi, M.; Evans, W.R.; Fardig, M.; Carmichael, W.W.; Rinehart, K.L. Three new microcystins, cyclic heptapeptide hepatotoxins, from *Nostoc* sp. strain 152. *Chem. Res. Toxicol.* 1992, 5, 464–469.
- Oksanen, I.; Jokela, J.; Fewer, D.P.; Wahlsten, M.; Rikkinen, J.; Sivonen, K. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium *Nostoc* sp. strain IO-102-I. *Appl. Environ. Microbiol.* 2004, 70, 5756–5763.
- 28. Beattie, K.A.; Kaya, K.; Sano, T.; Codd, G.A. Three dehydrobutyrine-containing microcystins from Nostoc. *Phytochemistry* **1998**, *47*, 1289–1292.
- 29. Welker, M.; Christiansen, G.; von Döhren, H. Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microystins and other oligopeptides. *Arch. Microbiol.* **2004**, *182*, 288–298.
- Tonk, L.; Visser, P.M.; Christiansen, G.; Dittmann, E.; Snelder, E.O.F.M.; Wiedner, C.; Mur, L.R.; Huisman, J. The microcystin composition of the cyanobacterium *Planktothrix agardhii* changes toward a more toxic variant with increasing light intensity. *Appl. Environ. Microbiol.* 2005, *71*, 5177–5181.
- Miles, C.O.; Sandvik, M.; Haande, S.; Nonga, H.; Ballot, A. First use of LC-MS analysis with thiol derivatization to differentiate [Dhb⁷]- from [Mdha⁷]-microcystins: Analysis of cyanobacterial blooms, *Planktothrix* cultures and European crayfish from Lake Steinsfjorden, Norway. *Environ. Sci. Technol.* 2013, 47, 4080–4087.
- Laub, J.; Henriksen, P.; Brittain, S.M.; Wang, J.; Carmichael, W.W.; Rinehart, K.L.; Moestrup, Ø. [ADMAdda⁵]-microcystins in *Planktothrix agardhii* strain PH-123 (cyanobacteria)-importance for monitoring of microcystins in the environment. *Environ. Toxicol.* 2002, *17*, 351–357.
- Christiansen, G.; Yoshida, W.Y.; Blom, J.F.; Portmann, C.; Gademann, K.; Hemscheidt, T.; Kurmayer, R. Isolation and structure determination of two microcystins and sequence comparison of the McyABC adenylation domains in *Planktothrix* species. J. Nat. Prod. 2008, 71, 1881–1886.
- 34. Niedermeyer, T.H.J.; Schmieder, P.; Kurmayer, R. Isolation of microcystins from the cyanobacterium *Planktothrix rubescens* strain No80. *Nat. Prod. Bioprospect.* **2014**, *4*, 37–45.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).