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Abstract: Certain photosynthetic marine organisms have evolved mechanisms to counteract 
UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino 
acids (MAAs). In this study, MAAs were separated from the extracts of marine green  
alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, 
and mycosporine-glycine (mycosporine-Gly), based on their retention times and  
maximum absorption wavelengths. Furthermore, their structures were confirmed by triple 
quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the 
human fibroblast cell line HaCaT by analyzing the expression levels of genes associated  
with antioxidant activity, inflammation, and skin aging in response to UV irradiation.  
The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 
2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly 
resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in 
response to inflammation in the skin, in a concentration-dependent manner. Additionally, 
in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer 
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(PCOLCE) and elastin, which are related to skin aging, had increased expression  
levels equal to those in UV-mock treated cells. Interestingly, the increased expression  
of involucrin after UV exposure was suppressed by treatment with the MAAs 
mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating 
the biological activities of microalgae-derived MAAs in human cells. 

Keywords: mycosporine-like amino acids (MAAs); HPLC; mycosporine-glycine; 
shinorine; porphyra-334 

 

1. Introduction 

The increased solar ultraviolet radiation (UV, 280–400 nm) reaching the Earth’s surface due to  
the depletion of the stratospheric ozone has significant effects on the cellular metabolism of living  
organisms [1–3]. For example, harmful doses of UV radiation can penetrate deep into a water column, 
influencing photosynthetic marine organisms, such as cyanobacteria, phytoplankton, and microalgae, 
directly causing cell damage by affecting the stability of DNA and indirectly by producing reactive 
oxygen species [4,5]. It may have detrimental effects on major physiological and biochemical 
processes, including survival, cell growth, pigmentation, and photosynthetic oxygen production [6–8]. 
Chronic exposure to ultraviolet (UV) radiation, which is typically divided into wavelength ranges as 
UVA (315–400 nm), UVB (280–315 nm), and UVC (100–280 nm), induces changes in skin structures 
in humans, referred to as photoaging, which covers epidermal atrophy, an increase in melanocyte 
numbers, heavy deposition of dystrophic and truncated elastic fibers in the dermis, a decrease in the 
number of collagen fibers, and the presence of dermal inflammatory infiltrates, leading to significant 
changes in the expression levels of photoaging-associated genes. For example, UV exposure profoundly 
influences skin aging through the destruction of collagen, a major contributor to the loss of skin 
suppleness, and reduction of elastin content in the extracellular matrix, which is a collagen-binding 
molecule [9]. It was recently reported that a component of green algae has potential protective effects 
by preventing UVB-suppressed elastin and pro-collagen gene expression, and may protect against 
UVB irradiation-induced skin damage [10]. Procollagen C proteinase enhancer (PCOLCE) is an 
important determinate of procollagen processing in the regulation of collagen deposition in the skin [11]. 
In addition, a keratinocyte molecule, involucrin, acts as a marker of keratinocyte differentiation and  
its expression is increased by UV exposure [12,13]. It has been reported that microalgae extracts  
might protect skin through the inhibition of UV radiation-induced upregulation of genes, including 
involucrin [14]. In UV-induced inflammation, the pro-inflammatory gene, COX-2, is highly induced. 
Interestingly, many seaweed extracts exhibit significant biological activities, including anti-inflammatory 
activities, by the suppression of COX-2 in response to UV radiation [15]. 

Many photosynthetic marine organisms, which are exposed to UV radiation, have evolved tolerance 
mechanisms to minimize its negative effects, including DNA repair systems, radical quenchers, and 
antioxidants [16–18]. One of the most important of these mechanisms is the synthesis of UV-absorbing 
compounds, mycosporine-like amino acids (MAAs), which are characterized by a cyclohexenone or 
cyclohexenimine chromophore conjugated to the nitrogen substituent of an amino acid, with absorption 
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maxima ranging from 310 to 360 nm [19,20]. The MAA family currently consists of ~20 members, 
including mycosporine-glycine, palythine, palythinol, asterina-330, porphyra-334, and shinorine. 
Porphyra-334 and shinorine were first found in the marine red algae Porphyra tenera and Chondrus 
yendoi, respectively, and later in many marine red algal species [21,22]. Shinorine is the most 
frequently occurring and abundant MAA in many microalgae species [23]. Mycosporine-glycine was 
first isolated from the zoanthidian Palythoa tuberculosa [24], and is not only one of the most abundant 
MAAs, identified in a broad array of marine species, but also shows reasonably strong antioxidant 
activity [25]. The ability of MAAs to absorb UV radiation and dissipate its energy without the 
formation of reactive oxygen species protects microalgae from UV damage [26]. In fact, it has been 
reported that a sun screen containing MAAs from red algae can protect the skin from the harmful 
effects of UVA [27]. Although the primary synthesis of MAAs is in response to UV, MAAs function 
in several roles in addition to UV protection. For example, the oxo-carbonyl mycosporines and 
porphyra-334 have antioxidant activity and prevent cellular damage resulting from UV-induced 
production of reactive oxygen species, leading to MAA synthesis in response to high levels of 
photosynthetically active radiation [28]. Several standard in vitro assays, including the scavenging 
potential for hydrosoluble radicals, antioxidant activity in a lipid medium, and the scavenging capacity 
for superoxide radicals, have been performed to determine the potential antioxidant capabilities of 
purified aqueous extracts of mycosporine-like amino acids [29,30]. 

Recently, the biochemical and phylogenetic relationship between the gene counterparts involved in 
MAA biosynthesis via either the shikimate or pentose-phosphate pathway was revealed using 
molecular approaches, such as a transcriptome mining analysis [31]. However, despite the numerous 
ecological and physiological studies on MAAs and their protection against UV damage in marine 
organisms, including microalgae, our understanding of the role of MAAs at the molecular level is still 
poor. In this study, we investigated the physiological and molecular characteristics of various MAAs 
derived from the green alga Chlamydomonas hedleyi in terms of the intrinsic function of MAAs in 
response to UV radiation. 

2. Results and Discussion 

2.1. Identification of MAAs from Chlamydomonas hedleyi by HPLC Assay 

The MAAs, porphyra-334, shinorine, and mycosporine-Gly, extracted from the microalga 
Chlamydomonas hedleyi, were identified by comparing their retention times (RT) during HPLC 
separation as well as their characteristic UV absorption spectra via diode array detection (DAD) 
(Figure 1). Due to the lack of fine spectral absorption, the only spectral characteristic available for 
MAA identification is the position of the absorption maximum (λmax). In the UV-Vis spectra, there is a 
pronounced increase in the absorption in the near UV region, at ~334 nm (Figure 1). Furthermore, the 
molar absorption coefficients of each UV-absorption peak of 2.82 × 104, 4.46 × 104, and  
4.21 × 104 M−1·cm−1 corresponded to mycosporine-Gly, shinorine, and porphyra-334, respectively. 
These differences in spectral characteristics and the value of their extinction coefficient (ε) spectra are 
due mainly to variation in the attached side groups and nitrogen substitutes of the amino 
cyclohexenimine ring. The HPLC spectrum had three prominent peaks with retention times of 4.060, 
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4.299, and 6.335 min for mycosporine-Gly, shinorine, and porphyra-334, respectively (Figure 1), 
indicating that these compounds were in the mixture of purified MAAs. Mass spectrometry detection 
(HPLC/MS), using pure reference compounds, is invaluable in the identification of MAAs because of 
its high sensitivity and tandem mass spectrometric technology. The positive ESI mass spectral 
fragmentation patterns of each MAA, as obtained by triple quadrupole MS/MS (Figure 2), exhibited 
many distinctive features. The fragmentation patterns are as expected for mycosporine-Gly, shinorine, 
and porphyra-334. Additionally, the concentrations of porphyra-334, shinorine, and mycosporine-Gly 
were 0.12, 0.17, and 0.32 μmol·g−1, respectively. 

Figure 1. (A) HPLC chromatogram and absorption spectra of purified mycosporine-Gly (A); 
porphyra-334 (B); and shinorine (C) from Chlamydomonas hedleyi. 

 

Figure 2. MS/MS analysis of mycosporine-Gly, shinorine, and porphyra-334 from 
Chlamydomonas hedleyi. 
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2.2. Antioxidant Activity of MAAs with Free Radical-Trapping Abilities 

To investigate the efficacy of MAAs as a potential sunscreen, their radical-scavenging capacities 
were measured. Decolorization of DPPH was monitored both visually and using a spectrophotometer. 
Figure 3 shows the percentage antioxidant activity detected using various concentrations of purified 
MAAs. Among the three MAAs, the radical-scavenging activity of mycosporine-Gly increased with 
increasing concentration up to 1.5 mM (Figure 3A). The results indicate that mycosporine-Gly may act 
as a strong antioxidant and so prevent cellular damage as a result of the UV-induced production of free 
radicals. The antioxidant activity of mycosporine-Gly is considerably lower than that of ascorbic acid, 
which was used as the positive control. Consistent with a previous report [25], we found that 
mycosporine-Gly had antioxidant activity, but the other MAAs did not. This may be due to the fact 
that oxo-carbonyl MAAs, including mycosporine-Gly, have moderate antioxidant activity, whereas the 
imino-MAAs, which have a cyclohexenimine core (porphyra-334 and shinorine), do not have greater 
antioxidant activity than the negative control group. This indicates that mycosporine-Gly was 
decomposed, whereas porphyra-334 and shinorine were stable. A possible reason for the increased 
oxidation of imino-MAAs may be the heat needed to dissipate the absorbed energy [32,33]. In fact, 
heat often accelerates the oxidation process, because temperature can function as a type of activation 
energy. If the reaction systems associated with the oxidative process inside the organism do not 
contain enough energy to overcome the threshold, no oxidative reaction will occur. In addition, the 
coral Sylophora pistillata, which contains only small amounts of mycosporine-Gly, is significantly 
more sensitive to heat-induced oxidative stress than Platygyta ryukyuensis, which has a 20-fold higher 
concentration of mycosporine-Gly [34]. Thus, the heat energy derived from UV absorption by MAAs 
in Chlamydomonas hedleyi may be sufficient to induce and accelerate the oxidative process, leading to 
increased oxidative activities in a shinorine-concentration-dependent manner. In addition, consistent 
with previous study [35], mycosporine-Gly showed a high IC50 value (IC50 = 4.23 ± 0.21) that was 
comparable to that of ascorbic acid (IC50 = 3.12 ± 0.18) (Figure 3B). In particular, mycosporine-Gly 
contributed approximately 15% of the total water-soluble scavenging activity in the water extract 
(Figure 3C). 

Our data disagree with a previous report that porphyra-334 and shinorine had antioxidant  
activities [32,35,36]. This may be due to the use of different substrates or experimental conditions  
in the measurement of antioxidant activity. For example, porpyra-334 and shinorine exhibited  
antioxidant activity against oxidation induced by lipid peroxidation, but had only low hydrosoluble 
free-radical-scavenging activity [35,36]. Furthermore, with regard to the DPPH-radical-scavenging 
activities of porphyra-334, heat treatment may be necessary to achieve antioxidant activity, which 
otherwise is very low [32]. 
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Figure 3. Antioxidant capacities of mycosporine-Gly (M-Gly), were determined using the 
Trolox equivalent antioxidant capacity (TEAC). (A,B) Antioxidant activities at the different 
concentrations of M-Gly and measurement of IC50, respectively; (C) Antioxidant capacities 
of total water-soluble antioxidants and M-Gly. IC50 values calculated denote the 
concentration of the sample required to decrease the absorbance by 50%. Trolox was used as 
a positive control. 

 

2.3. Role of MAAs in Skin Inflammation and Aging 

We examined whether microalgae-derived MAAs had anti-inflammatory activity against UV 
irradiation. HaCaT cells, immortalized human keratinocytes, were treated with 0.03, 0.15, or 0.3 mM 
MAAs plus UV irradiation. qRT-PCR was used to determine the mRNA levels of the COX2 gene, 
which plays a key role in the generation of inflammatory responses and the expression of which is 
increased in inflamed tissue. UV-induced COX-2 expression decreased to that of the control UV-mock 
treated cells in the presence of a high concentration of mycosporine-Gly (0.3 mM), but not lower 
concentrations (0.03 and 0.15 mM), while expression was decreased by only the lowest concentrations 
of shinorine (0.03 mM) (Figure 4). However, porphyra-334 had no effect on COX2 expression at any 
concentration tested. Together, these data suggest that mycosporine-Gly and shinorine inhibited 
inflammation caused by UV radiation through modulation of COX-2 expression. Next, to evaluate the 
effects of MAAs on skin aging influenced by UV, we investigated the expression pattern of related genes 
in samples treated with both UV and MAAs. The expression levels of procollagen c-endopeptidase 
enhancer (PCOLCE), which binds to procollagen and enhances procollagen c-proteinase activity, and 
elastin mRNAs were strongly suppressed after UV irradiation (Figure 5A,B), whereas that of involucrin 
was elevated (Figure 5C). In the presence of MAAs, UV-suppressed levels of PCOLCE and elastin 
rebounded to those in UV-mock treated cells (i.e., were more highly expressed; Figure 5A,B). In contrast, 
the involucrin mRNA level was downregulated, except when porphyra-334 was applied (Figure 5C). 
When treated with both porphyra-334 and shinorine, PCOLCE expression was increased in a 
concentration-dependent manner (Figure 5A). Similar expression patterns were observed for elastin 
after treatment with mycosporine-Gly, porphyra-334, and shinorine (Figure 5B). Interestingly, elastin 
was more highly expressed in cells treated with MAAs and UV irradiation than in UV-mock treated 
cells, suggesting that MAAs modulate elastin expression via as-yet unknown regulatory mechanism(s). 
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Figure 4. Expression levels of COX2 mRNAs in response to different concentrations of 
mycosporine-like amino acids (mycosporine-glycine, porphyra 334, and shinorine) under 
UV radiation. The error bars indicate standard deviations (means ± SD, n = 6). One-way 
ANOVA, p < 0.001, F (4, 25) = 19.63 in mycosporine-glycine, p < 0.01, F (4, 25) = 31.91 
in porphyra 334, and p < 0.01, F (4, 25) = 21.03 in shinorine; Post hoc Tukey test:  
* p < 0.05 and ** p < 0.001. 

 

Figure 5. Expression levels of procollagen C proteinase enhancer (PCOLCE) (A);  
elastin (B); and involucrin (C) mRNAs in response to different concentrations of MAAs 
under UV radiation. The error bars indicate standard deviations (means ± SD, n = 6).  
One-way ANOVA (p < 0.05); Post hoc Tukey test: * p < 0.01 and ** p < 0.001. 

 

In addition to the antioxidant activity of mycosporine-Gly, it may also protect against the skin 
inflammation caused by UV through the modulation of inflammation-related genes, including COX-2. 
The level of COX-2 mRNAs decreased in response to mycosporine-Gly, but not the other MAAs. 
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Interestingly, at the same concentration of mycosporine-Gly (0.3 mM), antioxidant activity was high 
and UV-elevated COX-2 expression was simultaneously suppressed, suggesting that the regulation of 
COX-2 may be related to the oxidative process in which mycosporine-Gly is involved. We also found 
that the three MAAs from Chlamydomonas hedleyi act as anti-aging factors by modulating the 
expression of genes associated with aging in the skin, such as PCOLCE, elastin, and involucrin.  
It has also been found that they had a promoting effect on the proliferation of human cells [37]. UV 
radiation influences skin aging through the production of reactive oxygen species, leading to oxidative 
alteration of cell constituents and DNA mutation [4,5]. In this study, although only mycosporine-Gly 
exhibited antioxidant activity, UV-modulated expression of aging-associated genes was affected by 
mycosporine-Gly, porphyra-334, and shinorine. This indicates that in addition to oxidant stress, other 
mechanisms modulate the expression of aging-associated genes. 

3. Experimental Section 

3.1. Growth of Chlamydomonas hedleyi 

Chlamydomonas hedleyi strain KMMCC 118 was obtained from the Korean Marine Microalgae 
Culture Center (Busan, Korea). This strain was sampled from the South Sea (34°45′ N, 128°40′18ʺ E) 
and deposited in the Korean Marine Microalgae Culture Center. It was identified using the 18S rRNA 
gene and its GenBank accession number is JQ315503. Chlamydomonas hedleyi was grown in a 500-mL 
Erlenmeyer flask containing 250 mL of f/2 medium to an initial cell density of 5 × 104 cells·mL−1 and 
suspended in a thermoregulated aquarium at a temperature and light regime of 22 ± 1 °C/80 μmol 
photon·m−2·s−1 under a 16:8 h light:dark cycle on a rotary shaker (180 rev·min-1). The pH of the 
medium ranged from 8 to 9, maintained by sparging CO2 (l%)-enriched air through the culture. After 
cells were grown for 7 days, 0.25 L of culture medium was harvested for dry weight biomass. In the 
culture system, dry weight (DW) and crude MAAs accounted for ~3.72 g/L and ~0.01 mg/g DW, 
respectively, as described previously [38]. 

3.2. Identification and Characterization of MAAs 

MAAs were assayed as described previously [39]. Briefly, triplicate samples of dried alga (20 mg 
DW) were extracted for 2 h in screw-capped centrifuge vials filled with 1-mL 20% aqueous methanol 
(v/v) at 45 °C. After centrifugation (5000 g, 10 min, room temperature), 700 μL of the supernatant 
were evaporated to dryness under vacuum at 45 °C (Jouan evaporator centrifuge RC 10.09, Cedex, 
France) and the residue was redissolved in 500 μL of sterile distilled water followed by the addition of 
100 μL chloroform with gentle vortexing. After centrifugation (10,000 g, 5 min), the uppermost water 
phase was transferred carefully into new microcentrifuge tubes to remove contaminating lipophilic 
photosynthetic pigments from water-soluble MAAs. Finally, the solvent was evaporated and the 
sample was taken up in 50% methanol for further analysis. 

All samples were analyzed quantitatively by HPLC (Shimadzu-LC20A, Seattle, WA, USA) with a 
DAD-SPD M20A detector (Quantum Northwest, Seattle, WA, USA), according to a previous  
report [40], with a slight modification in the pH of the mobile phase. Thus, aliquots (30–60 μL) of the 
extract were diluted in 100% HPLC-grade methanol to a final volume of 0.5 mL and dried in a rotary 
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evaporator. The residues were re-dissolved in 600 μL of water and then diluted (1:10) with a pH 3.00 
solution of aqueous trifluoroacetic acid 0.2% and ammonium hydroxide. The final solution was  
ultra-filtered with a Whatman 100 kDa filter (12,000 g, 20 min) to remove water-insoluble materials 
and large molecules. Then, 10 μL samples of the resulting solution were injected into the HPLC system 
at a 1 mL·min−1 flow rate. The signals were processed with the Class-VP software (Quantum Northwest, 
Seattle, WA, USA). Identification of MAAs was accomplished by their absorption maxima and retention 
times, calibrated with authenticated standards of: shinorine, mycosporine-2-glycine, palythine-serine, 
palythine, prophyra-334, mycosporine-methylamine-serine, mycosporine-glycine, palythinol and 
mycosporine-methylamine-threonine [41], which were provided by F. Figueroa, University of Malaga 
(Malaga, Spain). We ran the HPLC/MS of each MAA separately. 

3.3. MS/MS Analysis 

Dried MAAs extracts were dissolved in deionized water (1 mg/mL); a final concentration of  
100 ppm was achieved using 50% methanol with 0.1% formic acid and passing it through a 0.45-μm 
membrane filter. Analyses of MAAs were performed on an ESI-MS/MS system (Thermo Fisher 
Scientific, San Jose, CA, USA) consisting of an AB SCIEX 3200 QTRAP MS/MS (Applied Biosystems, 
Foster City, CA, USA) with an ESI source (TurbolonSpray, Applied Biosystem/MDS SCIEX, Concord, 
Canada). Data acquisition and processing were performed with the AB SCIEX Analyst 1.5 software  
(AB SCIEX Korea Limited Company, Seoul, Korea). All MAAs were quantified in Product Ion (MS2) 
mode in positive mode. The syringe pump method properties (Tune Control) were as follows: syringe 
diameter 4.6 mm and flow rate 10.00 μL/min. The optimal ESI source conditions were as follows: turbo 
heater temperature (TEM) 300 °C, ion spray voltage 5500 V, curtain gas 10 psi, nebulizing gas (gas 1) 
15 psi and heated gas (gas 2) 40 psi. The collision energy (CE) and entrance potential (EP) were set 
separately at 35 V and 4.50 V; the mass transition of MAAs, optimal declustering potential (DP) 51 V 
and collision cell exit potential (CXP) 4 V. 

3.4. Assay for Antioxidant Activity 

The DPPH-free radical scavenging capacity of purified MAAs was evaluated as described 
previously [42]. Briefly, a 0.2-mL dose of the tested seed extracts, including different concentrations 
(0.03, 0.15, 0.3, 1.5, 3.0 mM; in methanol) of MAAs, was added to a 3.8-mL ethanol solution of the 
DPPH radical (final concentration, 0.1 mM). The mixture was shaken vigorously for 1 min by 
vortexing and left to stand at room temperature in the dark for 30 min. The absorbance of the sample 
(Asample) was measured using a UV 160 spectrophotometer at 517 nm against an ethanol blank. A 
negative control (Acontrol) was taken after adding DPPH solution to 0.2 mL of the respective extraction 
solvent. The percent of DPPH discoloration in the sample was calculated according to the equation:  
% discoloration = [1 − (Asample/Acontrol)] × 100. Additionally, ascorbic acid was used as a positive 
control because it functions as an effective antioxidant in reactions with aqueous peroxyl radicals. 
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3.5. Cell Culture 

Keratinocytes account for 90% of all skin epidermal cells, the stratified squamous epithelium 
forming the outer layer of the skin, where many skin diseases originate. The human keratinocyte cell 
line, HaCaT, was purchased from the American Type Culture Collection (ATCC, Manassas, VA, 
USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10%  
heat-inactivated FBS and 2 mM L-glutamine and 100 U·mL−1 penicillin-streptomycin in a humidified 
atmosphere. For cell culture maintenance, the medium was changed every 2–3 days and cells were 
split at 80% confluence with trypsinization. For the experiment, cells were seeded at an optimal 
density of 14 × 103/cm2. For exposure to UV, cells were seeded in a 24-well plate at 0.1 × 106/well and 
grown overnight before UV treatment. 

3.6. UV Exposure Procedures 

UV exposure was performed as described previously [42]. A Philips Original Home Solarium sun 
lamp (model HB 406/A; Philips, Grogningen, Holland) equipped with a UV lamp delivering a flux of 
23 mW/cm2 between 300 and 400 nm was used as a UV radiation source at a distance of 20 cm from 
the samples. The dose of UV received from above by the samples was measured using a UV Power 
Pack Radiometer (EIT Inc., Sterling, VA, USA), while the emission spectrum was assessed using a 
StellarNet portable spectroradiometer (Tampa, FL, USA). Cells grown on a 24-well culture plate for 
UV irradiation were first washed with phosphate-buffered saline (PBS) and covered with a thin layer 
of PBS. Various concentrations (0, 0.03, 0.15, and 0.3 mM) of each MAA were added on top of the 
wells prior to irradiation. Cells were irradiated for 15 min (275 kJ/m2). This UV dose is equivalent to 
~90 min of sunshine on the French Riviera (Nice, French) in the summer at noon [43]. 

3.7. RNA Extraction and qRT-PCR 

Total RNA was extracted using the TRIzol reagent (Invitrogen, cat. # 15596-018, Carlsbad, CA, 
USA) following the manufacturer’s protocol. At the end of the extraction, the isolated RNA was 
dissolved in 35 μL of RNase-free water and incubated for 10 min at 55 °C. An aliquot of RNA (5 μg) 
was then used for cDNA synthesis using the SuperScript first-strand cDNA synthesis kit (Invitrogen, 
Carlsbad, CA, USA). RT-PCR was performed using the Rotor Gene Q Real-time PCR Machine 
(Qiagen, Valencia, CA, USA) with QuantiTect primer assays (COX-2: QT00040586, PCOLCE: 
QT01005725, elastin: QT00034594, involucrin: QT00082586). The housekeeping gene, 18S rRNA 
(QT00199367), was used for normalization. qRT-PCR was performed for 35 cycles under the following 
conditions: denaturation (15 s, 94 °C), annealing (30 s, 55 °C), and extension (30 s, 72 °C). 

3.8. Statistical Analysis 

Mean values and their standard deviations were calculated from six biological replicates. The 
statistical significance of the difference between means was tested using one-way ANOVA followed 
by a Tukey B multi-range test; p values <0.05 were considered to indicate statistical significance. 
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4. Conclusions 

In conclusion, the microalga Chlamydomonas hedleyi contains UV-absorbing MAAs, which may 
provide protection to the skin against the impact of UV radiation. In particular, MAAs act as  
UV-absorbing compounds, modulating the expression of genes associated with oxidative stress, 
inflammation, and skin aging caused by UV. Our data provide new insight into the use of MAAs in the 
industrial and pharmacological development of biological sunscreens and antioxidants. 
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