Supplementary Information

Table of Contents

The 16S rRNA gene sequences data of Streptomyces sp. FXJ7.328	3
The physicochemical data of the known compounds 7–10	3
Figure S1. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2	5
Figure S2. The ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of compounds 1 and 2	6
Figure S3. The DEPT (150 MHz, DMSO- d_6) spectrum of compounds 1 and 2	7
Figure S4. The ¹ H- ¹ H COSY (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2	8
Figure S5. The HMQC (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2	9
Figure S6. The HMBC (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2	10
Figure S7. The NOESY (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2	11
Figure S8. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 3	12
Figure S9. The ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of compound 3	13
Figure S10. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 3	14
Figure S11. The HMQC (600 MHz, DMSO- d_6) spectrum of compound 3	15
Figure S12. The ¹ H- ¹ H COSY (600 MHz, DMSO- d_6) spectrum of compound 3	16
Figure S13. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 3	17
Figure S14. The NOESY (600 MHz, DMSO- d_6) spectrum of compound 3	18
Figure S15. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 4	19
Figure S16. The 13 C NMR (150 MHz, DMSO- d_6) spectrum of compound 4	20
Figure S17. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 4	21
Figure S18. The ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (600 MHz, DMSO- d_{6}) spectrum of compound 4	22
Figure S19. The HMQC (600 MHz, DMSO- d_6) spectrum of compound 4	23
Figure S20. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 4	24
Figure S21. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 5	25
Figure S22. The 13 C NMR (150 MHz, DMSO- d_6) spectrum of compound 5	26
Figure S23. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 5	27
Figure S24. The 1 H- 1 H COSY (600 MHz, DMSO- d_{6}) spectrum of compound 5	28
Figure S25. The HMQC (600 MHz, DMSO- d_6) spectrum of compound 5	29
Figure S26. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 5	30
Figure S27. The NOESY (600 MHz, DMSO- d_6) spectrum of compound 5	31
Figure S28. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6	32
Figure S29. The ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of compound 6	33
Figure S30. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 6	34
Figure S31. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of (S)-1 MTPA ester (1a)	35
Figure S32. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of (<i>R</i>)-1 MTPA ester (1b)	36
Figure S33. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of (S)-2 MTPA ester (2a)	37
Figure S34. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of (<i>R</i>)-2 MTPA ester (2b)	38
Figure S35. The ¹ H NMR (600 MHz, DMSO- d_6) spectrum of <i>p</i> -bromobenzoate (1c)	39

Figure S36. The DEPTQ (150 MHz, DMSO- d_6) spectrum of <i>p</i> -bromobenzoate (1c)	40
Figure S37. The resolution of mixture of 1 and 2 by chiral column	41
Figure S38. Marfey's method applying for compound 5	42
Figure S39. C ₃ Marfey's method applying for compound 5	43
Figure S40. Dose-response histograms of antivirus activity for compound 3 and Ribavirin	44
Table S1. Cytotoxic, anti-virus, anti-microbial and anti-inflammatory activities of 1–10	44
Table S2. The HMBC correlations $(H \rightarrow C)$ for compounds 1–5	45

The 16S rRNA Gene Sequences Data of Streptomyces sp. FXJ7.328

TCGAAGAAGAAGCCGCTTCGGTGGTGGATTAGTGGCGAACGGGTGAGTAACACGTGGG CAATCTGCCCTGCACTCTGGGACAAGCCCTGGAAACGGGTCTAATACCGGATATGACACG GGATCGCATGGTCCGTGTCTGGAAAGCTCCGGCGGTGCAGGATGAGCCCGGGCCTATCAC CTTGTTGGTGGGGTGATGGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGCG ACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAA TATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCG GGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGCGAGTGACGGTACCTGCAGAAGAAGCA CCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTCCGGAATT ATTGGGCGTAAAGAGCTCGTAGGCGGCTTGTCGCGTCGGATGTGAAAGCCCGGGGCTTAA CCCCGGGTCTGCATTCGATACGGGCAGGCTAGAGTTCGGCAGGGGAGATTGGAATTCCTG GTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTG GGCCGATACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGG TAGTCCACGCCGTAAACGTTGGGCACTAGGTGTGGGCGGCATTCCACGTCGTCCGTGCCG CAGCTACGCATTAAGATGCCCCGCCTGGGGGGGGGGGGCCGCAAGGCTAAAACTCAAAGG AATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAG AACCTTACCAAGGCTTGACATACACCGGAAAGCCGTAGAGATACGGCCCCCCTTGTGGTC GGTGTACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTGGGTGAGATGTTGGGTTAAGTCCC GCAACGAGCGCAACCCTT GTCCTGTGTTGCCAGCAACTCCTTTC

The Physicochemical Data of the Known Compounds 7–10

Compound 7: White solid; ¹H NMR (600 MHz, C₅H₅N-*d*₅): δ 11.33 (1H, s, H-1), 10.97 (1H, s, H-4), 6.32 (1H, d, J = 10.4 Hz, H-7), 3.21 (1H, m, H-8), 1.09 (6H, d, J = 6.6 Hz, CH₃-9/10), 7.32 (1H, s, H-11), 7.65 (2H, d, J = 7.6 Hz, H-13/17), 7.33 (2H, t, J = 7.6 Hz, H-14/16), 7.24 (1H, t, J = 7.3 Hz, H-15). ¹³C NMR (150 MHz, C₅H₅N-*d*₅): δ 156.9 (C_q, C-2), 126.5 (C_q, C-3), 157.1 (C_q, C-5), 125.1 (C_q, C-6), 124.0 (C_q, C-7), 23.8 (CH, C-8), 20.7 × 2 (CH₃, C-9/10), 113.1 (CH, C-11), 133.0 (C_q, C-12), 127.6 × 2 (CH, C-13/17), 127.9 × 2 (CH, C-14/16), 126.6 (CH, C-15). ESIMS *m*/*z* 257 [M + H]⁺.

Compound 8: Yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 3.29 (3H, s, NCH₃-1), 8.02 (1H, s, H-4), 5.49 (1H, d, J = 9.66 Hz, H-7), 3.76 (1H, m, H-8), 1.08 (6H, d, J = 6.6 Hz, CH₃-9/10), 6.98 (1H, s, H-11), 7.38 (2H, d, J = 7.5 Hz, H-13/17), 7.41 (2H, t, J = 7.4 Hz, H-14/16), 7.32 (1H, t, J = 7.4 Hz, H-15). ¹³C NMR (150 MHz, CDCl₃): δ 31.1 (CH₃, NCH₃-1), 157.8 (C_q, C-2), 125.8 (C_q, C-3), 157.6 (C_q, C-5), 128.1 (C_q, C-6), 134.8(C_q, C-7), 26.8 (CH, C-8), 24.4 × 2 (CH₃, C-9/10), 115.8(CH, C-11), 133.4 (C_q, C-12), 128.5 × 2 (CH, C-13/17), 129.5 × 2 (CH, C-14/16), 128.6 (CH, C-15). ESIMS *m*/*z* 271 [M + H]⁺.

Compound 9: White solid; $[\alpha]^{25}_{D}$ –88 (*c* 0.03, DMSO-*d*₆), ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.50 (1H, s, NH-1), 9.96 (1H, s, NH-4), 3.78 (1H, t, *J* = 3.8 Hz, H-6), 2.07 (1H, m, H-7), 0.93 (3H, d, *J* = 6.8 Hz, CH₃-8), 0.87 (3H, d, *J* = 6.6 Hz, CH₃-9), 6.66 (1H, s, H-10), 7.45 (2H, d, *J* = 7.6 Hz, H-12/16), 7.39 (2H, t, *J* = 7.6 Hz, H-13/15), 7.29 (1H, t, *J* = 7.4 Hz, H-14). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 161.2 (C_q, C-2), 127.1 (C_q, C-3), 167.2 (C_q, C-5), 61.1 (CH, C-6), 34.1 (CH, C-7), 18.7 (CH₃, C-8), 17.5 (CH₃, C-9), 114.9 (CH, C-10), 133.8 (C_q, C-11), 129.6 ×2 (CH, C-12/16), 129.3 ×2 (CH, C-13/15), 128.6 (CH, C-14). ESIMS *m/z* 245 [M + H]⁺.

Compound 10: Yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 3.21 (3H, s, NCH₃-1), 9.67 (1H, s, H-4), 5.47 (1H, d, J = 10.4 Hz, H-7), 3.81 (1H, m, H-8), 1.10 (6H, d, J = 6.7 Hz, CH₃-9/10), 6.46 (1H, s, H-11), 7.52 (2H, d, J = 7.6 Hz, H-13/17), 7.33 (2H, t, J = 7.6 Hz, H-14/16), 7.27 (1H, t, J = 7.4 Hz, H-15). ¹³C NMR (150 MHz, CDCl₃): δ 31.1 (CH₃, NCH₃-1), 156.9 (C_q, C-2), 125.4 (C_q, C-3), 159.9 (C_q, C-5), 128.1 (C_q, C-6), 134.5 (CH, C-7), 26.8 (CH, C-8), 23.4 ×2 (CH₃, C-9/10), 122.4 (CH, C-11), 134.1 (C_q, C-12), 127.9 ×2 (CH, C-13/17), 130.1 ×2 (CH, C-14/16), 128.4 (CH, C-15). ESIMS *m*/*z* 271 [M + H]⁺.

Figure S1. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of compounds 1 and 2.

Figure S2. The 13 C NMR (150 MHz, DMSO- d_6) spectrum of compounds 1 and 2.

Figure S3. The DEPT (150 MHz, DMSO-*d*₆) spectrum of compounds 1 and 2.

Figure S4. The ¹H-¹H COSY (600 MHz, DMSO- d_6) spectrum of compounds **1** and **2**.

Figure S5. The HMQC (600 MHz, DMSO-*d*₆) spectrum of compounds 1 and 2.

Figure S6. The HMBC (600 MHz, DMSO-*d*₆) spectrum of compounds 1 and 2.

Figure S7. The NOESY (600 MHz, DMSO-*d*₆) spectrum of compounds **1** and **2**.

f1 (ppm)

Figure S8. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of compound **3**.

Figure S9. The ¹³C NMR (150 MHz, DMSO- d_6) spectrum of compound **3**.

Figure S10. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 3.

Figure S12. The ¹H-¹H COSY (600 MHz, DMSO- d_6) spectrum of compound **3**.

f1 (ppm)

Figure S13. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 3.

Figure S14. The NOESY (600 MHz, DMSO- d_6) spectrum of compound 3.

fl (ppm)

Figure S15. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of compound **4**.

Figure S16. The 13 C NMR (150 MHz, DMSO- d_6) spectrum of compound **4**.

Figure S17. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 4.

Figure S19. The HMQC (600 MHz, DMSO- d_6) spectrum of compound 4.

Figure S20. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 4.

Figure S21. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of compound **5**.

Figure S22. The 13 C NMR (150 MHz, DMSO- d_6) spectrum of compound 5.

Figure S23. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 5.

Figure S24. The ¹H-¹H COSY (600 MHz, DMSO- d_6) spectrum of compound **5**.

Figure S25. The HMQC (600 MHz, DMSO- d_6) spectrum of compound 5.

Figure S26. The HMBC (600 MHz, DMSO- d_6) spectrum of compound 5.

Figure S27. The NOESY (600 MHz, DMSO- d_6) spectrum of compound 5.

f1 (ppm)

Figure S28. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of compound **6**.

Figure S30. The DEPT (150 MHz, DMSO- d_6) spectrum of compound 6.

Figure S31. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of (S)-1 MTPA ester (1a).

Figure S32. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of (*R*)-1 MTPA ester (1b) in DMSO- d_6 .

Figure S33. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of (S)-2 MTPA ester (2a).

Figure S34. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of (*R*)-2 MTPA ester (2b) in DMSO- d_6 .

Figure S35. The ¹H NMR (600 MHz, DMSO- d_6) spectrum of *p*-bromobenzoate (1c).

Figure S36. The DEPTQ (150 MHz, DMSO- d_6) spectrum of *p*-bromobenzoate (1c).

Figure S38. Marfey's method applying for compound **5** (ODS column; Solvents: (A) water + 0.2% TFA, (B) MeCN; linear gradient: 0 min, 75% A + 25% B; 40 min, 40% A + 60% B; 45 min, 100% B; temperature, 30 °C; flow rate, 1 mL/min; UV detection at λ_{max} 340 nm; FDAA, 16.0 min).

Co-injection of FDAA derivatives of standard L-Ile with standard L-allo-Ile by ODS column

FDAA derivatives of the acid hydrolysate of 5 by ODS column

Co-injection of FDAA derivatives of the acid hydrolysates of 5 with standard L-Ile and L-allo-Ile by ODS column

Figure S39. C₃ Marfey's method applying for compound **5** (C₃ column; The column was developed with a linear gradient of 15%–60% MeOH/water (+isocratic 5% of a 1% formic acid solutionin MeCN, over 55 min; temperature, 50 °C; flow rate, 1 mL/min; UV detection at λ_{max} 340 nm; FDAA, 17.95 min).

Co-injection of FDAA derivatives of standard L-Ile with standard L-allo-Ile by C3 column

FDAA derivatives of standard L-allo-Ile by C3 column

FDAA derivatives of standard L-Ile by C3 column

FDAA derivatives of the acid hydrolysate of $\mathbf{5}$ by C₃ column

Co-injection of FDAA derivatives of the acid hydrolysates of $\mathbf{5}$ with standard L-Ile by C₃ column

Figure S40. Dose-response histograms of antivirus activity for compound **3** and ribavirin (p > 0.05).

Table S1. Cytotoxic, anti-virus, anti-microbial and anti-inflammatory activities of 1–10.

0	MIC (µg/mL)							$IC_{50}\left(\mu M\right)$		$IC_{50}\left(\mu M\right)$	$IC_{50}\left(\mu M\right)$
Compounds	E. coli	E. aerogenes	P. aeruginosa	B. subtilis	S. aureus	C. albicans	HL-60	K562	A549	H1N1	RAW 264.7
1	>100	>100	>100	>100	>100	>100	>100	>100	>100	75.5 ± 2.2	>10
2	>100	>100	>100	>100	>100	>100	>100	>100	>100	>50	>10
3	>100	>100	>100	>100	>100	>100	>100	>100	>100	$41.1~{\pm}4.5$	>10
4	>100	>100	>100	>100	>100	>100	>100	>100	>100	$62.6\pm\!3.9$	>10
5	>100	>100	>100	>100	>100	>100	>100	>100	>100	$106.5~\pm4.2$	>10
6	>100	>100	>100	>100	>100	>100	ND ^a	ND ^a	ND ^a	$28.9\ \pm 2.2$	ND ^a
7	>100	>100	>100	>100	>100	>100	ND ^a	ND ^a	ND ^a	$6.8\ \pm 1.5$	ND ^a
8	>100	>100	>100	>100	>100	>100	ND ^a	ND ^a	ND ^a	$94.5~{\pm}3.0$	ND ^a
9	>100	>100	>100	>100	>100	>100	ND ^a	ND ^a	ND ^a	$113.8~{\pm}4.9$	ND ^a
10	>100	>100	>100	>100	>100	>100	ND ^a	ND ^a	ND ^a	156.6 ± 4.0	ND ^a
Ciprofloxacin	0.05	0.19	0.1	0.39	3.12	ND ^a	ND ^a	ND ^a	ND ^a	ND ^a	ND ^a
Ketoconazole	ND ^a	0.024	ND ^a	ND ^a	ND ^a	ND ^a	ND ^a				
PDTC	ND ^a	ND ^a	ND ^a	< 0.1							
Adriamycin	ND ^a	0.652	0.645	0.080	ND ^a	ND ^a					
Ribavirin	ND ^a	ND ^a	$38.8~{\pm}1.5$	ND ^a							

^a Not detected.

	Carbon (position)								
Proton (position)	1 and 2	3	4	5					
1	2, 6	3, 5		5					
2									
3									
4		2, 6							
5									
6									
7	5, 6, 9, 10	5, 6, 9, 10	5, 8						
8	7, 9, 10								
9	7, 10	7, 8	7, 8	7, 8					
10	7, 8, 9	7, 8	7, 8	6, 7, 8					
11	2, 13	2, 13/17	2, 12, 13	2, 13					
12									
13/17	11, 15	11, 15	12, 15	11, 15					
14/16	12, 15	12, 15		12, 15					
15	13/17		12, 13	13					

Table S2. The HMBC correlations (H \rightarrow C) for compounds 1–5.