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Abstract: Despite recent improvement in therapy, acute myeloid leukemia (AML) is still 

associated with high lethality. In the presented study, we analyzed the bioactive compound 

iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from a marine actinomycetes bacterium for 

the ability to induce cell death in a range of cell types. Iodinin showed selective toxicity to 

AML and acute promyelocytic (APL) leukemia cells, with EC50 values for cell death up to  

40 times lower for leukemia cells when compared with normal cells. Iodinin also 

successfully induced cell death in patient-derived leukemia cells or cell lines with  

features associated with poor prognostic such as FLT3 internal tandem duplications or 

mutated/deficient p53. The cell death had typical apoptotic morphology, and activation of 

apoptotic signaling proteins like caspase-3. Molecular modeling suggested that iodinin could 
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intercalate between bases in the DNA in a way similar to the anti-cancer drug daunorubicin 

(DNR), causing DNA-strand breaks. Iodinin induced apoptosis in several therapy-resistant 

AML-patient blasts, but to a low degree in peripheral blood leukocytes, and in contrast to 

DNR, not in rat cardiomyoblasts. The low activity towards normal cell types that are usually 

affected by anti-leukemia therapy suggests that iodinin and related compounds represent 

promising structures in the development of anti-cancer therapy. 

Keywords: acute myeloid leukemia; natural products; daunorubicin; patient samples  

 

1. Introduction 

Acute myeloid leukemia (AML) is a hematopoietic stem cell disorder where the myeloid precursor 

cells have acquired mutations that impair apoptosis and differentiation and that confer proliferative 

and/or survival advantages. This causes excessive proliferation and rapid accumulation of myeloid 

precursor cells in the bone marrow. If left untreated, death occur within weeks or months after diagnosis. 

AML is a heterogeneous disease, with large variations in disease progression and therapy response. Two 

of the most common sub-types (WHO classification, 2008) are AML with recurrent cytogenetic 

abnormalities, and acute promyelocytic leukemia (APL), which have different treatment regimes. 

Whereas differentiation therapy, often in combination with cytostatics like arsenic trioxide, has proven 

successful for many APL cases [1], the treatment regime for AML often involves high doses of the cell 

cycle specific inhibitor cytarabine (Ara-C) in combination with the cell cycle unspecific inhibitor 

anthracycline daunorubicin (DNR) [2]. Complete remission is reached in 30%–40% of AML patients 

less than 60 years old, and less than 10% in patients older than 70 years [3]. However, relapse risk is in 

the range of 45%–50% in older patients, making AML the leading cause of death due to leukemia with a 

five-year relative survival below 20% [4,5]. Intensive chemotherapy is often severe and sometimes has 

lethal side-effects, such as lesions in hematopoietic tissue, particularly the bone marrow, as well as the 

intestine and the heart [6–8]. There is thus a need for novel compounds that selectively target leukemia 

blasts, and leave normal tissues and cells largely unaffected.  

Phenazines are nitrogen-containing heterocyclic compounds produced by a variety of bacteria. They 

represent a group of metabolites with potential for the discovery of new anti-infective agents, and so far, 

hundreds of the more than 6000 phenazine-containing compounds identified have biological activities, 

usually antibiotic properties [9]. However, their natural physiological function and mode of action still 

remains largely unknown [10]. The phenazine iodinin (1,6-dihydroxyphenazine 5,10-dioxide) was 

discovered to function as an anti-bacterial compound [11], and one study reported low activity against a 

mouse sarcoma model [12]. The aim of the present study was to elucidate the anti-cancer potential of 

iodinin, which was identified as a potent anti-cancer compound in a screen of marine actinomycetes 

bacteria. We found iodinin to be particularly potent against leukemia cell lines and AML-patient blasts, 

and it was less toxic than DNR towards peripheral blood leukocytes (PBL), rat cardiomyoblasts and 

blood platelets. These data suggest that iodinin or related compounds should be further investigated as 

potential lead structures for the development of drugs for AML treatment. 
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2. Results  

2.1. Iodinin Shows High Selectivity towards Myeloid Leukemia Cells 

Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) produced from MP53-27 was identified by UV and 

MS-analyses (Supplementary Information Figures S1–S3) and isolated to a chromatographic purity 

>90% (Figure S1) prior to cytotoxicity testing. We first tested iodinin for cytotoxicity against a panel of 

seven cell lines (Table 1), and found that iodinin showed selectivity towards the leukemia cells in the 

panel. Iodinin was, for instance, more than 15 times more effective towards the human lymphoid 

leukemia cell line Jurkat T than normal NRK fibroblasts (Table 1). We next tested iodinin against 

several AML cell lines (Table 1 and Figure 1). 

Table 1. EC50 values (±SEM) of iodinin against various cell lines. The cells were treated 

with increasing doses of iodinin for 24 h before viability was assessed by microscopic 

evaluation of apoptosis and the WST-proliferation assay as described in the Experimental 

section. The data are based on regression analyses of 3 to 6 experiments. 

Cell 
Reference or 

ATTC No. 
Origin Disease Features EC50 (μM)

Primary heptaocytes  Rat  
Freshly isolated primary 

hepatocytes in suspension 
>5.0 

Cardiomyoblasts CRL-1446 Rat   >5.0 

NRK CRL-6509 Rat  Normal rat kidney fibroblasts >10 

Jurkat T, Clone E6-1 TIB-152 Human 
Acute T-cell 

lymphoblastic leukemia
 0.8 ± 0.2 

SH-SY5Y CRL-2266 Human Neuroblastoma  2.7 ± 0.2 

HeLa CCL-2 Human 
Cervical epithelial 

adenocarcinoma 
Low levels of p53 expression >10 

U-87 MG HTB-14 Human Astrocytoma  >10 

NB4 [13] Human 
Acute promyelocytic 

leukemia (APL) 

t(15;17) (q22;q11-12) 

translocation, ATRA-induced 

differentiation 

0.75 ± 0.13 

NB4-LR1 [14] Human 
Acute promyelocytic 

leukemia (APL) 

ATRA and cAMP needed to 

induce differentiation 
0.70 ± 0.10 

IPC-81  [15] Rat APL 
Brown Norwegian rat myeloid 

leukemia model 
0.24 ± 0.15 

IPC-81 Bcl-2 [16] Rat APL Enforced expression of Bcl-2 3.15 ± 0.15 

Molm13 [17,18] Human 
Acute myeloid 

leukemia (AML) 
ins(11;9)(q23;p22p23), FLT3 itd 1.0 ± 0.12 

Molm13-SHp53  Human AML Silenced p53 1.0 ± 0.09 

MV-4-11 [18,19] Human AML, myelomonocytic t(4;11) translocation, FLT3 itd 0.50 ± 0.20 
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Table 2. AML patient characteristics. APL and AML blasts were isolated from 6 patients. 

Patient age and sex are listed, together with FAB classification, cytogenetic findings, and 

Flt3 and NPM1 mutation state of their isolated blasts. ITD = internal tandem duplication,  

ins = insertion, nd = not determined. Patient AML#1 and AML#6 reached complete 

haematological remission after two induction cycles (cytarabine in combination with an 

anthracycline), whereas patients AML#3 and AML#5 reached complete remission after the 

first induction cycle. AML#4 relapsed 11 months after first remission and was given  

22 rounds of intensive chemotherapy (cytarabine), but second remission was not reached. 

Blasts from patient AML#4 were obtained after diagnosis of relapse. APL#2 was treated 

according to the regimen described by Fenaux et al. [1], and reached haematological 

remission after the induction cycle, and was in molecular remission after the second 

consolidation cycle before start of maintenance therapy.  

Patients Age Sex Cytogenetics FABclassification FLt3 NPM1 

AML#1  24 M Multiple M2 wt wt 
APL#2  39 M T(15;17) M3 wt wt 
AML#3  48 M Inv(16) M4 wt wt 
AML#4  29 M Normal M4 ITD Ins 
AML#5  18 F Inv(16) M4 wt wt 
AML#6  29 F Normal M5 wt nd 

Figure 4. Iodinin induces apoptosis in leukemia patient blasts. Blasts isolated from 

peripheral blood samples from six leukemia patients were treated with iodinin (0.3, 1 or 3 μM) 

or DNR (0.2 or 0.5 μM) for 18 h. Samples were assessed for drug-induced cell death by 

FACS analysis of AnnexinV and PI labeling. The background (control) was subtracted from 

the data. See Table 2 for description of the patient samples.  
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sub-types of AML iodinin can be effective against, we conclude that iodinin shows anti-leukemic 

activity based on its ability to induce apoptosis in cells with several mutations that are associated with 

poor disease outcome. Iodinin induces an apoptotic phenotype, with activation of pro-apoptotic signals 

(Figure 2), that could be inhibited by enforced expression of the anti-apoptotic protein Bcl-2 (Table 1), 

suggesting that iodinin triggers fundamental death pathways in the leukemic cells. We noticed that cells 

treated with iodinin for a short period of time followed by washing still underwent apoptosis (Figure 1F,G). 

This points towards not only rapid uptake of iodinin by the leukemia cells, but also that it is retained 

inside the cells for instance by binding to DNA (Figure 3) or other cellular components. 

In addition to being a potent apoptosis inducer in many leukemia cell lines (Figure 1), iodinin proved 

to have low toxicity towards non-AML cells like primary rat hepatocytes and NRK-cells (Table 1) as 

well as rat cardiomyoblasts, PBL and blood platelets (Figure 5). The three latter are all susceptible to 

DNR-induced toxicity [6–8,28,32]. Interestingly, iodinin showed no adverse effects in cardiomyoblasts, 

whereas DNR induced 50% cardiomyoblast death at 1 μM (Figure 5A), and DNR was about five times 

more toxic than iodinin against PBL (Figure 5B). This indicates that normal cells and tissues have higher 

tolerance to iodinin than DNR. The low toxicity of iodinin was also demonstrated in mice. There were no 

signs of damage in tissues excised from mice treated with 10 mg/kg iodinin for three days (Figure 5E), 

and mice appeared healthy three weeks after iodinin administration. These preliminary results suggest 

that iodinin exhibit low toxicity also in vivo. 

Natural compounds have for long been recognized as a prolific source for potential anti-cancer drugs, 

and the number of drug candidates from natural origin increases [33]. Their potency is often caused by 

activation of the cell death machinery [34,35], interference with mitotic machinery [36], or by indirect 

initiation of cell death by, e.g., DNA-breaks or mitochondrial damage [37]. We present evidence 

suggesting that iodinin initiates apoptotic cell death by causing DNA-breaks (Figure 3B), which is 

similar to many anti-cancer drugs currently used today [38]. We therefore believe that it can be worth to 

pursue iodinin as an anti-leukemic lead compound.  

The next obstacle to overcome is the poor solubility of iodinin in aqueous media, caused by a lattice 

formed by strong hydrogen bonds between the molecules [39]. The hydrogen donors and acceptors 

responsible for this appear to partly define the drug characters of iodinin (Figure 3), and chemical 

modification of iodinin at these sites could attenuate its anti-leukemic activity. Although the solubility of 

iodinin in aqueous media is low, it is sufficient for intravenous infusion therapy similar to what is done 

with other anti-leukemic drugs [20]. Moreover, the recent advances in nanonization [40] paves way for 

the use of drugs with high melting temperature and low water solubility. If the apparent in vivo drug 

availability can be improved, we believe that iodinin and related compounds can prove to be valuable 

leads for treatment of AML, particularly in patients who tolerate conventional therapy poorly.  

4. Experimental Section  

4.1. Purification and Identification of Iodinin from Isolate MP53-27  

The actinomycete isolate MP53-27 was mass cultured in 1000 mL batches with medium consisting of 

oatmeal (30 g/L), malt extract (5 g/L), yeast extract (3 g/L), MgSO4·7H2O (0.4 g/L), NaCl (1 g/L), 

CaCO3 (5 g/L), glycerol (30 g/L), soluble starch (30 g/L) and glucose (30 g/L), with pH of 7.2. The 
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biomass in the production culture was harvested by centrifugation and the pellet was freeze-dried. The 

freeze-dried pellet was homogenized with magnetic iron beads and extracted with 400 mL DMSO/g 

together with glass beads (1 mm) for 1 h. The cell pellet was removed by centrifugation followed by 

filtration to remove all insoluble matter. The clear supernatant was added an equal amount of water and 

kept on the bench for 30 min in order to precipitate iodinin. The precipitate was collected by 

centrifugation, washed with water to remove remaining DMSO and freeze-dried. The crude product was 

dissolved in DMSO and purified by reverse-phase HPLC, using an Agilent 1100 series preparative 

HPLC with fraction collection system with a 21 × 250 mm Zorbax SB-CN-column. 10 mM ammonium 

acetate pH 4 and methanol was used as mobile phases. The methanol was removed from the 

LC-fractions using a SpeedVac at 50 °C, and the precipitate washed with water. The isolated iodinin was 

freeze-dried and stored at −80 °C. 

LC-DAD-TOF analyses of purified iodinin (Figure S1) were done on an Agilent LC system with a 

Zorbax Bonus-RP column (2.1 by 50 mm, 3.5 μm) connected to a G1315B DAD and a G1969 

time-of-flight (TOF) apparatus to determine the accurate mass and UV-profile of the bioactive 

compound. The mobile phase was 10 mM ammonium acetate (pH 7) and acetonitrile. Electrospray 

ionization was performed as described previously [41]. Trap MS was performed on an Agilent G2445D 

IonTrap instrument equipped with electrospray ion source. IonTrap MS and MSMS experiments were 

performed by infusion of DMSO extracts diluted in methanol.  

4.2. Cell Maintenance and Experimental Conditions 

The cell lines are described in Table 1. The NB4, Molm-13 and Jurkat T leukemia cell lines were 

cultured in RPMI medium enriched with 10% foetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA). 

IPC-81 cells were cultured in Dulbecco’s Modified Eagles Medium (DMEM) enriched with 10% horse 

serum (Invitrogen, Carlsbad, CA, USA) and MV4-11 were cultured in Iscove’s medium added 8 mM 

L-glutamine and 10% FBS. HeLa human cervical epithelial adenocarcinoma cells, U-87 MG human 

glioma, NRK normal rat kidney epithelial cells and H9C2 rat cardiomyoblasts were cultured in DMEM 

medium enriched with 10% FBS. All cell lines were cultured in media supplemented with 100 IU/mL 

penicillin and 100 mg/mL streptomycin (both from Cambrex, Verviers, Belgium) in a humidified 

atmosphere (37 °C, 5% CO2). All culture media were from Sigma (Sigma, La Jolla, CA, USA).  

For cytotoxic testing, the cells were seeded in 96 well tissue culture plates at 150,000 cells/mL  

(NB4, NB4-LR1, Jurkat-T, Molm13, MV4-11, IPC-81 wt and IPC-81 Bcl-2) or 50,000 cells/mL 

(SH-SY5Y, U-87 MG, NRK, H9C2). The adherent cell lines were left over night to attach to the 

substratum before experiments. The cells were exposed to various concentrations of iodinin for 24 h 

before assessment of viability by the reporter dye WST-1 (except for the H9C2 cardiomyoblasts) as 

described by the supplier (Roche Diagnostics, Basel, Switzerland). The cells were next fixed in 2% 

buffered formaldehyde (pH 7.4) with the DNA-specific dye Hoechst 33342 (Polysciences Inc., 

Eppelheim, Germany) and scored for apoptosis and necrosis as previously described [42,43]. EC50 

values were determined by analyses of WST-1 data and microscopic evaluation and these data gave 

consistent dose-response curves (see Figure 1F,G). To mimic DNR-therapy, cells were exposed to 

iodinin for 2 h, washed and incubated in fresh medium for 22 h before another 2-h iodinin treatment 

followed by wash and a final 22 h incubation. Apoptosis was then assessed as described. Extraction of 



Mar. Drugs 2013, 11 342 

 

 

DNA and agarose electrophoresis of internucleosomal DNA fragmentation was as described in [44]. 

Tests for significance (ANOVA or student-t) were performed in SPSS statistical software [45].  

4.3. Transmission Electron Microscopy 

IPC-81 cells were treated with vehicle or 0.3 μM iodinin for 18 h before fixation in 1.5% 

glutaraldehyde in buffer (0.1 M sodium cacodylate, 0.1 M sucrose, 2.5 mM CaCl2, pH 7.4) for 20 min. 

They were further processed for TEM as described [46]. The specimens were examined using a Jeol 

JEM-1230 transmission electron microscope (JEOL Ltd., Tokyo, Japan).  

4.4. Western Blotting  

NB4 cells treated with iodinin, daunorubicine or vehicle for 6 h were lysed in lysisbuffer  

(10 mM K2HPO4, 10 mM KH2PO4, 1 mM EDTA (pH 6.8) containing 10 mM CHAPS, 50 mM NaF, 

0.3 mM NaVO3 and Complete mini protease inhibitor (Roche Diagnostics, Mannheim, Germany)), 

homogenised and centrifuged (13,000 rpm, 30 min, 4 °C). Protein lysates (50 μg) were separated by 

SDS-PAGE (5% stacking gel and 7.5 or 12.5% resolving gels) and blotted onto a polyvinyldifluoride 

membrane (Hybond, Amersham Biosciences, Freiburg, Germany). Primary antibodies were from Santa 

Cruz Biotechology (Santa Cruz, CA, USA; γH2AXgamma, caspase 3), Abcam (Cambridge, UK; actin), 

and secondary alkaline-phosphatase-conjugated antibodies (a-3687 and a-3562) were from Sigma. 

CDP-Star substrate was from Tropix (Bedford, MA, USA). Chemiluminescence was detected using a 

Luminescent Image Analyser Aparatus (LAS 3000, FujiFilm, Tokyo, Japan) and Image Gauge Software 

(FujiFilm, Tokyo, Japan). 

4.5. Molecular Visualisation  

Pharmacophore models were prepared with the Phase [47] module of the Maestro software [48]. Low 

energy conformations of DNR and iodinin tautomers at neutral pH were generated and pharmacophore 

sites were defined with default settings. The structures were then aligned based on the pharmacophores 

with the highest survival score. Structural alignment of iodinin and DNR in DNA was based on the 

generated pharmacophore model as well as previous studies [27] and visualized with the Discovery 

Studio 3.1 software [49]. 

4.6. Isolation of Blood Platelets and Measurement of P-Selectin Translocation 

Freshly drawn venous blood was provided by the Blood Bank (Haukeland University Hospital, 

Bergen, Norway), and isolated as previously described [50,51]. In brief, blood was collected into a final 

0.15 volume of acid citrated dextrose (ACD; 71 mM citric acid, 85 mM Na3-citrate, 100 mM glucose). 

Platelet-rich plasma (PRP) was obtained by centrifugation and transferred into a Ca2+-free Tyrode’s 

buffer by gel filtration through a Sepharose CL-2B gel matrix (Pharmacia Biotec, Uppsala, Sweden). 

The concentration of gel filtrated platelets (GFP) was measured by a ZM Coulter Counter  

(Coulter Electronics Ltd., Luton, UK) and adjusted to 3.5 × 108 platelets/mL with Tyrode’s buffer.  

Flow cytometric measurement of P-selectin translocation to the platelet surface was performed  

as previously described [52,53]. GFP in PBS were incubated with vehicle, DNR or iodinin, and 
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R-phycoerythrin (R-PE)-conjugated anti-human CD62 (BDIS, San Jose, CA, USA). After 15 min of 

pre-incubation, the samples were stimulated for 20 min with various concentrations of the synthetic 

thrombin receptor agonist peptide (TRAP, SFLLRN) from the Biotechnology center of Oslo 

(Rikshospitalet, Oslo, Norway). The level of P-selectin translocation was assessed by flow cytometric 

analysis using a FACSort Flow Cytomter and CellQuest Software from BDIS as previously  

described [53]. 

4.7. Flow Cytometry of AML Patient Material 

The collection of patient cells was approved by the regional research ethics committee (Health 

Region III, Bergen, Norway) and conducted in accordance with the Declaration of Helsinki. Samples 

were collected after informed consent, and stored in biobanks approved by the Norwegian Royal 

Ministry of Health and the Norwegian Directorate for Health and Social Affairs. Primary peripheral 

blood mononuclear cells were isolated by density gradient separation (Ficoll-Hypaque; NyCoMed, 

Oslo, Norway); the percentage of leukemic cells after gradient separation exceeded 95% for all patients. 

For patient details, see Table 2. Normal peripheral blood leukocytes (PBL) were isolated from blood 

from healthy donors (Blood bank, Haukeland University Hospital, Bergen, Norway) as described in [54]. 

Patient cells were stored frozen in liquid nitrogen [55]. After thawing, blasts were suspended at  

0.5 × 106 cells/mL in Stem Span medium (Stem Cell Technologies, Vancouver, Canada) or RPMI with 

10% FBS (peripheral blood leukocytes) before addition of drugs. Drug induced cell death was assessed 

by flow cytometric analysis of cells stained with AlexaFluor 647-AnnexinV (Molecular Probes) and 

propidium iodide (PI). At least 30,000 non-gated events were collected for each sample on an AccuriC6 

(Ann Arbor, MI, USA). Non-specific cell death was subtracted. Drug-induced cytotoxicity increases the 

number of cells positive to both AnnexinV and PI. 

4.8. Histopathological Analysis 

NOD/SCID/B2mnull mice were given daily doses of vehicle or iodinin orally, or DNR i.v. through 

the tail vein for three days. Tissues and organs were excised from anesthetized mice, washed in ice-cold 

PBS and fixed in 2% buffered formalin (pH 7.4). The samples were embedded in paraffin, sectioned (2 μm) 

and stained with haematoxylin- and eosin. Some mice were given iodinin and kept for three weeks 

before being euthanized and checked for signs of tissue damage. Both groups of mice were weighed 

before and after administration of iodinin, but no weight loss was observed during the experiment. 

Animals were kept in arrester particulate filtered cages during the experiments, and were given water 

and food ad libitum. The experiments were approved by the Norwegian Animal Research Authority and 

conducted according to the European Convention for the Protection of Vertebrates Used for  

Scientific Purposes. 

5. Conclusions  

In this article, we wanted to explore the marine natural compound iodinin as a possible anti-leukemic 

drug. Based on the high selectivity towards leukemia cells from the myeloid lineage (Table 1 and 

Figures 1 and 4) compared to non-AML cells (Table 1 and Figure 5), we conclude that iodinin has 
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potential as a anti-leukemic lead compound. Although DNR had higher potency than iodinin against 

AML patient blasts, iodinin was significantly less toxic against relevant normal cell lines (Table 1 and 

Figure 5) with an apparent therapeutic window that is comparable to many anti-cancer drugs in use. 

There are several examples of leads originated from natural sources that have been modified 

hemisynthetically to yield compounds with higher bioactivity or specificity, which could also be applied 

in cancer therapy [56,57]. We therefore believe that iodinin and related natural compounds could also 

prove to be important lead structures in the development of novel drugs.  
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Supplementary Information 

Iodinin (1,6-dihydroxyphenazine 5,10-dioxide) was isolated and purified to >90% chromatographic 

purity (Figure S1) from freeze-dried cell pellets (also containing precipitated product) from MP53-27 

cultures. Extracts and purified material from MP53-27 were analysed by two different MS techniques, 

LC-DAD-TOF and LC-IonTrap. The LC-DAD-TOF results showed a significant UV absorption peak at 

288 nm, and smaller peaks at 346 and 527 nm (Figure S2) with dominating masses in ESI negative mode 

at m/z 243.040 m/z 509.073 (Figure S3A). The Trap MS experiments were performed in parallel  

(Figure S3B). In these experiments, fragmentation patterns confirmed that both the ion m/z 243.040 and 

m/z 509.073 were associated with the chromatographic peak corresponding to the bioactive compound 

(Figure S3B). 

Figure S1. UV-DAD spectra of purified iodinin. 
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Figure S2. UV profile of purified iodinin produced by isolate MP55-27. UV absorption (nm) 

at UV max and % of UV max stated in the figure. 

 

Figure S3. LC-TOF (A) and LC-Trap spectra (B) of iodinin. Two main ions were detected, 

and the accurate mass of the most abundant isotope peak in each spectrum is stated above 

each MS-spectrum. The two main ions represent iodinin monomer and the Na-adduct of the 

iodinin dimer. The spectrum inserted in (B) is the MS/MS spectrum of the Na-adduct of the 

iodinin dimer (m/z = 509).  

 

These results could only be explained if the molecular formula of the bioactive compound was 

C12H8N2O4, the accurate mass of the protonated molecule was M = 244.0484, and the ion m/z 509.073 

was identified as a complex of two iodinin molecules associated with one Na+. Complexes, adducts and 

dimers are frequently seen in electrospray mass spectrometry [58] and it has been shown that polar 

N-oxide groups (present in iodinin) may form intermolecular hydrogen bonds with the hydroxyl groups [59]. 

Database search with the monomer accurate mass and UV spectrum [60] supported our conclusion 

that the bioactive compound identified in our study was iodinin.  
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