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Abstract: Four new sesquiterpenes, sinularianins C–F (3–6), together with known 

sinularianins A (1) and B (2) were identified from a South China Sea soft coral  

Sinularia sp. Compounds 1–6 were evaluated for inhibition of NF-κB activation using the 

cell-based HEK293 NF-κB luciferase reporter gene assay. Compounds 1 and 4 were 

exhibited a potent effect with inhibitory rates of 41.3% and 43.0% at the concentration of 

10 µg/mL, respectively. 
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1. Introduction 

The genus Sinularia is the most widely distributed soft coral, consisting of almost 90 species, of 

which more than 50 have been chemically examined [1–5]. Up to now, Sinularia has yielded many 

metabolites, including sesquiterpenes, diterpenes, alkaloids, and polyhydroxylated steroids [6–12]. 

These metabolites display a wide range of biological activities, such as antimicrobial, anti-inflammatory, 

and cytotoxic activities [13–18]. In our endeavor to explore the bioactive secondary metabolites from 

marine invertebrates, sinularianins A (1) and B (2) were reisolated along with four new sesquiterpenes, 

sinularianins C–F (3–6) from soft coral Sinularia sp., collected at Dongluo Island, Hainan province, 
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China, at a depth of 10 m. Sinularianin A and B have been isolated from the Formosan coral  

Sinularia sp., but their anti-inflammatory activation were tested for the first time. Similar 

sesquiterpenes had been isolated mostly from the plant Valeriana officinalis, which was used as an 

anti-inflammatory remedy in Europe, and were active as inhibitors of NF-κB [19]. In this paper, we 

describe the isolation, structure elucidation, and the NF-κB inhibitory potential of these compounds. 

2. Results and Discussion 

The soft coral Sinularia sp. was dissolved in 85% EtOH, and the extract separated by silica gel 

column chromatography, Sephadex LH-20, and semi-preparative HPLC to obtain new sesquiterpenes, 

sinularianins C–F (3–6), and two known compounds (1, 2) (Figure 1). 

Figure 1. Structures of the compounds 1–6. 

 

Sinularianins A (1) and B (2) were previously isolated from the soft coral Sinularia sp., collected 

off the northeastern Taiwan coast, in May 2004, at a depth of 10 m. Sinularianin A (1) possesses an 

unprecedented bicyclic skeleton sinulariolane. Sinularinin B (2) was the only example of  

valerenane-related sesquiterpene with a spiro-butenolide moiety [10]. The valerenane-related 

sesquiterpenes had been firstly reported from the plant Valeriana officinalis [20,21], and several 

representatives have been reported from a marine alga [22] and a soft coral [23]. Sinularinin A (1) and 

B (2), were reisolated and identified by comparison of their 
1
H and 

13
C NMR data with those reported [10]. 

Sinularianin C (3) was isolated as a colorless oil. Its molecular formula was established as C16H22O4 

on the basis of the positive HRESIMS at m/z 301.1416 (Calcd for C16H22NaO4, 301.1416), indicating 

six degrees of unsaturation (Supplementary Figure S1). The 
1
H NMR spectrum (Table 1) revealed the 

presence of four singlet methyls (δH 1.00, 1.41, 1.86, 3.17), three methylene signals (δH 1.95, 1H, m; 

1.53, 1H, m; 1.96, 1H, m; 1.56, 1H, m; 2.26, 1H, d, J = 16.0 Hz; 1.76, 1H, dd, J = 16.0, 5.0 Hz), three 

methine signals (2.00, 1H, d, J = 13.0 Hz; 2.43, 1H, m; 3.11, 1H, d, J = 5.0 Hz), and one olefinic 

proton (δH 7.17, 1H, d, J = 1.5 Hz) (Supplementary Figure S2). The 
13

C NMR spectra, together with 

HSQC, showed 16 signals for four methyls (δC 10.3, 20.5, 21.3, 50.8), three sp
3
 methylenes (δC 23.6, 

35.7, 38.7), three sp
3
 methines (δC 41.1, 50.4, 59.5), three sp

3
 oxygenated quaternary carbons (δC 61.8, 
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84.2, 86.5), one sp
2
 methine (δC 154.7), one sp

2
 quaternary carbon (δC 129.5), and one carbonyl carbon 

(δC 175.6) (Supplementary Figures S3 and S4). Both the 
1
H and 

13
C NMR spectra of 3 showed a close 

similarity to those of 2 [10]. However, the close comparison of the 
13

C NMR spectroscopic data of 2 

and 3 revealed some differences: one trisubstituted double bond in 2 was changed to the epoxy  

three-menbered ring (δC 61.8, 59.5) in 3, and an additional methoxyl (δC 50.8, δH 3.17, 3H, s, H-16) 

was observed in 3. This assumption was supported by the correlation of H-11 to C-4, C-5, and C-6,  

H-6 to C-5, and C-7, H-7 to C-5 and C-6 in the HMBC spectrum (Figure 2). Furthermore, the 

methoxyl substituent was determined to be connected to position C-1 on the basis of the HMBC 

correlation from 16-OMe to C-1 (Supplementary Figure S5).  

Table 1. 
1
H and 

13
CNMR spectroscopic data for compounds 3 (500/125 MHz, in MeOD,  

δ in ppm, J in Hz) and 4 (in CDCl3). 

Position 3 4 
1
H 

13
C 

1
H 

13
C 

1  84.2  78.4 

2 1.95 m  35.7 1.92 m 43.1 

 1.53 m   1.79 m  

3 1.96 m  23.6 2.01 m 25.9 

 1.56 m     

4 2.43 m  41.1 2.90 m  41.8 

5  61.8  137.5 

6 3.11 d (5.0) 59.5 5.26 s 117.2 

7 2.26 d (16.0) 38.7 2.53 m  39.4 

 1.76 dd (16.0, 5.0)  1.91 m   

8  86.5  85.6 

9 2.00 d (13.0) 50.4 1.55 d (12.5) 55.5 

10 1.00 s 21.3 1.26 s 28.5 

11 1.41 s 20.5 1.74 s 20.5 

12 7.17 d (1.5) 154.7 7.03 d (1.5) 150.9 

13  129.5  129.7 

14  175.6  174 

15 1.86 s 10.3 1.94 d (1.5) 10.6 

16 3.17 s 50.8   

Figure 2. Selected HMBC correlations (H → C) of compounds 3, 5, and 6. 
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The relative stereochemistry of 3 was established by the detailed analysis of correlations observed 

in the NOESY spectrum (Figure 3). In the NOESY spectrum, H-9 showed correlation with H-7β  

(δH 2.26, d, J = 16.0 Hz), which in turn correlated with H-12, suggesting the β orientations of H-9 and  

H-12. Furthermore, NOE interactions were observed between H3-10/H-4, H3-11/H-4, H3-11/H-6, and 

H-6/H-7α (δH 1.76, dd, J = 16.0, 5.0 Hz), while both H3-10 and H-4 did not show correlations with  

H-9, suggesting the α orientation of H3-10, H3-11, H-4, and H-6 (Supplementary Figure S6).  

Figure 3. Selected NOE correlations of compounds 3 and 4. 

 

Sinularianin D (4) was isolated as a colorless oil. The ESI-MS showed the [M + Na]
+
 ion at  

m/z: 271 (Supplementary Figure S7). Its 
1
H and 

13
C NMR spectroscopic data were also very similar to 

those of 2 (Supplementary Figures S8 and S9). However, a close inspection of their 
1
H NMR 

spectroscopic data revealed some difference: H-4 and H3-10 were shifted downfield from 2.57 to 2.90, 

and from 1.12 to 1.26 respectively, and H-9 was shifted upfield from 1.99 to 1.55. This suggested that 

the configuration at H-1 and H-4 in 4 should be β orientation compared to α orientation in 2, which 

was supported by the NOESY experiment (Figure 3). In the NOESY spectrum, H-9 showed  

correlation with H3-10, H-4, and H-7β, suggesting the β orientations of H-4, H-9, H-7β, and H3-10 

(Supplementary Figure S10).  

Sinularianin E (5) was isolated as a colorless oil, and assigned the molecular formula of C16H24O4 

by the positive HRESIMS at m/z 303.1563 (Calcd for C16H24NaO4, 303.1572) (Supplementary 

Figure S11). The 
1
H and 

13
C NMR spectroscopic data of 5 indicated sixteen carbon signals: four 

singlet methyls, four methylenes, three olefinic methines, and five quaternary carbons (Supplementary 

Figures S12–S14). The 
1
H NMR spectrum showed signals of four olefinic protons (δH 5.42, 1H, t,  

J = 7.0 Hz; 6.36, 1H, dd, J = 17.5, 10.5 Hz; 5.13, 1H, d, J = 17.5 Hz; 4.96, 1H, d, J = 10.5 Hz), one 

methoxy group (δH 3.72), two vinyl methyls (δH 2.14, s; 1.74, s), and one other methyl (δH 1.40, s) 

(Table 2). The gross structure of 5 was established by the assistance of extensive 2D NMR analysis 

(Figure 2). The methoxycarbonyl was confirmed by HMBC correlations from 16-OMe to C-1. The 

methyl protons resonating at δH 1.40 and the quaternary carbon resonating at δC 72.9 indicated that this 

methyl and a hydroxyl group should be positioned at C-2 by the HMBC correlations from H-15 to C-1, 

C-2, and C-3 (Supplementary Figure S15). The olefinic methyls (δH 2.14, s; 1.74, s) attached at C-6 

and C-10 were confirmed by the HMBC correlations from H-14 to C-5, C-6, and C-7 and H-13 to C-9, 
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C-10, and C-11. Furthermore, the HMBC correlations from H-9 to C-8, and C-10, H-12 to C-10, and 

C-11 established the terminal diene unit. Other key informative HMBC correlations from H-3 to C-2, 

and C-4, H-5 to C-4, H-8 to C-7, C-9, and C-10, established the planar structure of 5. The double bond 

at C-5 was assigned the Z-geometry on the basis of the downfield chemical shifts of C-14 (δH 19.7) [24]. 

The geometry of the disubstituted double bond (C-9) was determined to be E by comparison of the 

spectral data with those reported in literature [24], whereas the configurations at C-2 remained to be 

determined. On the basis of above evidences, compound 5 was then identified, and named sinularianin E. 

Table 2. 
1
H and 

13
C NMR spectroscopic data for compounds 5 and 6 (500/125 MHz, in 

CDCl3, δ in ppm, J in Hz). 

Position 5 6 
1
H 

13
C 

1
H 

13
C 

1  176.5  203.2 

2  72.9 5.86 s 131.2 

3 3.15 d (17.5) 52.9  174.9 

 2.80 d (17.5)    

4  199.3 4.79 s 75.3 

5 6.01 s 122.9 2.65 s 61.5 

6  160.3  78 

7 2.22 m 40.9 1.82 m 34.1 

   2.12 m  

8 2.34 m 25.8 2.19 m 22.1 

 2.20 m    

9 5.42 t (7.0) 130.8 5.52 m 132.3 

10  135  134.1 

11 6.36 dd (17.5, 10.5) 141 6.36 dd (17.0, 10.5) 141.5 

12 5.13 d (17.5) 111.3 5.10 d (17.0) 110.7 

 4.96 d (10.5)  4.94 d (10.5)  

13 1.74 s 11.7 1.76 s 11.6 

14 2.14 s 19.7 1.03 s 22.7 

15 1.40 s 26.2 3.21 s 48.5 

16 3.72 s 52.7 2.16 s 15.6 

Sinularianin F (6) was isolated as a colorless oil. It was assigned a molecular formula of C16H24O3 

by positive HR-ESI-MS at m/z 287.1613 (Calcd for C16H24NaO3, 287.1623) (Supplementary 

Figure S16). Analysis of 
1
H and 

13
C NMR data revealed the presence of four methyl groups, three 

methylene carbons, five methine carbons, and four quaternary carbons (Supplementary Figures S17–S19). 

The 
1
H NMR spectrum showed signals of five olefinic protons (δH 5.86, s; 5.52, m; 6.36, dd, J = 17.0, 

10.5 Hz; 5.10, d, J = 17.0 Hz; 4.94, d, J = 10.5 Hz), one oxygenated methane (δH 4.79, s), one methoxy 

group (δH 3.21, s), two vinyl methyls (δH 1.76, s; 2.16, s), and one other methyl (δH 1.03, s) (Table 2). 

The HMBC correlations from H-9 to C-8, and C-10, H-12 to C-10, and C-11, H-13 to C-10, and C-11 

established the terminal diene unit (Supplementary Figure S20). The key HMBC correlations of H3-16 

to C-2, C-3, and C-4 and H-2 to C-1, C-3, C-4, and C-5 indicated the presence of a five-membered 

carbocycle containing a ketone carbonyl and a trisubstituted double bond (Figure 2), as well as by 
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comparison of the data with that of in agreement with the data of cycloabiesesquine A [25]. The two 

fragments may be connected via the correlations of H-15 to C-5, C-6, and C-7, H-14 to C-6 and H-7 to 

C-6, C-7, and C-8 in the HMBC spectrum. Two double bonds in the molecule possessed 2Z and 9E 

configuration on the basis of the chemical shifts of C-16 and C-13 (δ 15.6 and 11.6, respectively) [24,25]. 

Although sinularianins E (5) and F (6) formally displayed a quite different skeleton from that of 

sinularianins A–D (1–4), however, they are actually related to each other. From a biosynthetic aspect, 

sinularinins A–D (1–4), and F (6) could be generated from sinularinin E (5), via different reaction 

cascades as illustrated in the hypothetical biosynthetic pathway (Scheme 1). As a precursor, 

sinularianin E (5) potentially could be transformed into the key intermediate A by dehydration 

reaction. Intermediate A could be through different intramolecular Diels Alder cyclization reaction to 

form sinularianin A (1) or valerenolic acid, respectively, and the latter was further modified to produce 

sinularianin B (2). Intermediate A could be also adapted by Michael addition under the H2O attack and 

then immediately lactonized, followed by a DA cyclization to yield sinularianin B (2), which after 

epoxidation and dehydration potentially could be produce epoxide sinularianin C (3). Intermediate A 

might form sinularianin F (6) by an aldol condensation. 

Scheme 1. Proposed biosynthetic pathway for 1–6. 

 

Nuclear factor-κ B (NF-κB) plays a key role in regulating the immune response to infection. 

Incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, 

septic shock, viral infection, and improper immune development [26]. Compounds 1–6 were evaluated 
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for inhibition of NF-κB activation using the cell-based HEK293 NF-κB luciferase reporter gene assay. 

At concentration of 10 µg/mL, sinularianin A and D exhibits a potent effect with inhibitory rates of 

41.3%, and 43.0%, respectively. At the same concentration, other compounds showed moderate effects 

at the same (Table 3). The past studies have provided biochemical evidence of valerenane-related 

sesquiterpenes as anti-inflammatory agents acting via the NF-κB inhibitory potential. The valerenic 

acid (3) reduced NF-κB activity to 25% at concentration of 100 µg/mL [19]. 

Table 3. Inhibitory rates of NF-κB activation of compounds 1–6. 

Concentration IR (%) 

1 2 3 4 5 6 

10 µg/mL 41.3 29.6 24.3 43.0 30.0 36.1 

3. Experimental Section  

3.1. General Experimental Procedures  

The NMR spectra were recorded on a Bruker AC 500 NMR spectrometer with TMS as an internal 

standard. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. UV spectra were recorded 

on a Shimadzu UV-2600 UV-Vis spectrophotometer. Optical rotations were measured on a PerKin 

Elmer 341 polarimeter using a 1 dm path length cell. HR-ESI-MS data were measured on AQUITY 

UPLC/Q-TOF mass spectrometer. ESI-MS data were measured on Bruker’s amaZon SL ion trap 

LC/MS. Materials for column chromatography were silica gel (100–200, 200–300 mesh, Qingdao 

Marine Chemical Factory, Qingdao, China), Sephadex LH20 (40–70 µm, Amersham Pharmacia 

Biotech AB, Uppsala, Sweden), and YMC Gel ODS-A (12 nm, S-50 µm YMC, MA, USA). The silica 

gel GF254 (0.4–0.5 mm) used for TLC were supplied by the Qingdao Marine Chemical Factory, 

Qingdao, China. HPLC was carried on shimadzu LC-10ATvp with YMC ODS SERIES (YMC-Pack 

ODS-A, 250 × 10 mm I.D., S-5 µm, 12 nm). 

3.2. Animal Material  

The soft coral Sinularia sp. was collected from Dongluo Island, Hainan province of China in July 

2009 (7–10 m depth) and identified by Professor Hui Huang, South China Sea Institute of Oceanology, 

Chinese Academy of Sciences. A voucher specimen (No. 0907010) was deposited in the CAS Key 

Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, 

Chinese Academy of Sciences, Guangzhou, China. 

3.3. Extraction and Isolation  

The fresh soft coral (wet, 6 kg) was extracted three times with 95% EtOH (20 L). The extract was 

concentrated under reduced pressure, and partitioned between H2O (4 L) and CHCl3 (4 L); the CHCl3 

layer (120 g) was further partitioned between 85% EtOH (4 L) and petroleum ether (PE; 4 L) to yield 

85% EtOH (34 g) and PE (75.6 g) fractions. The 85% EtOH fraction was separated by silica gel 

column using CHCl3/MeOH to yield 11 portions (Frs. s1–s11). Fr. s3 was purified by silica gel column 

to yield 12 portions, and portion 10 was further purified with semi-preparative HPLC, eluting with 
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MeOH/H2O = 65:35 at a flow rate of 2 mL/min, to afford 1 (6.0 mg) and 2 (7.2 mg). Fr. s5 was 

purified by Sephadex LH-20 using CHCl3/MeOH = 1:1 to yield 3 portions, and portion 1 was further 

purified with semi-preparative HPLC, eluting with MeOH/H2O = 57:43 at a flow rate of 2 mL/min, to 

afford 5 (2.2 mg) and 6 (2.6 mg). Fr. s6 was separated by silica gel column using PE/EtOAc to yield  

7 portions, and portion 1 was further purified with semi-preparative HPLC, eluting with  

MeOH/H2O = 70:30 at a flow rate of 2 mL/min, to afford 3 (2.2 mg) and 4 (3.7 mg).  

Sinularianin C (3): Colorless oil; 
1
H- and 

13
C-NMR (see Table 1); HR-ESI-MS m/z 301.1416  

[M + Na]
+
, (Calcd for C16H22NaO4, 301.1416).  

Sinularianin D (4): Colorless oil; [α]
25
 D = −6.0 (c = 0.01, MeOH); UV (MeOH): λmax (log ε) = 204.2 

(1.70); IR (KBr) νmax 3421, 2927, 2854, 1735, 1666 cm
–1

 (Supplementary Figure S21); 
1
H- and  

13
C-NMR (see Table 1); ESI-MS m/z 271 [M + Na]

+
, 519 [2M + Na]

+
.  

Sinularianin E (5): Colorless oil; 
1
H- and 

13
C-NMR (see Table 2); HR-ESI-MS m/z 303.1563  

[M + Na]
+
, (Calcd for C16H24NaO4, 303.1572).  

Sinularianin F (6): Colorless oil; 
1
H- and 

13
C-NMR (see Table 2); HR-ESI-MS m/z 287.1613  

[M + Na]
+
, (Calcd for C16H24NaO3, 287.1623). 

3.4. The Cell-Based HEK293 NF-κB Luciferase Reporter Gene Assay 

All compounds were evaluated for inbibition of NF-κB activation using the cell-based HEK 293 

NF-κB luciferase reporter gene assay according to the previously reported procedures [19].  

4. Conclusions  

The investigation of bioactive natural products from a Hainan soft coral, Sinularia sp., has led to the 

isolation of four new sesquiterpenes, sinularianins C–F (3–6), along with two other analogues, 

sinularianins A (1) and B (2). Compounds 1 and 4 were exhibited a potent inhibitory effect with 

inhibitory rates of 41.3% and 43.0% at the concentration of 10 µg/mL, respectively. The discovery of 

new compounds 3–6 has added to an extremely diverse and complex array of soft coral sesquiterpenes. 
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