Supplementary Information

Table S1. Distribution of transcripts annotated according to the SEED subsystems in MG-RAST. Transcript gene function was assigned in MG-RAST, with the following parameters: maximum e-value of 10^{-5} , minimum of 50% identity cutoff and minimum alignment cutoff of 50.

Subsystem Hierarchy 1	Subsystem Hierarchy 2	Subsystem Name	# transcripts
		Alanine biosynthesis	1
	Alanine, serine, and glycine	Glycine Biosynthesis	1
	Alannie, sernie, and grychie	Glycine cleavage system	2
		Serine Biosynthesis	1
		Arginine Biosynthesis	8
	Arginine; urea cycle, polyamines	Polyamine Metabolism	2
		Urea decomposition	1
		Aromatic amino acid degradation	1
		Chorismate: Intermediate for synthesis of PAPA antibiotics,	
		PABA, anthranilate, 3-hydroxyanthranilate and more	2
	Aromatic amino acids and	Chorismate Synthesis	6
	Aromatic amino acids and derivatives	Common Pathway For Synthesis of Aromatic Compounds (DAHP	
		synthase to chorismate)	13
Amino Acids and Derivatives		Phenylalanine synthesis	2
		Tryptophan synthesis	5
		Branched-Chain Amino Acid Biosynthesis	10
	Branched-chain amino acids	HMG CoA Synthesis	1
		Valine degradation	1
	Histidine Metabolism	Histidine Biosynthesis	6
		Cysteine Biosynthesis	5
		Lysine Biosynthesis DAP Pathway	3
	Lysine, threonine, methionine, and	Methionine Biosynthesis	8
	cysteine	Methionine Degradation	4
		Threonine and Homoserine Biosynthesis	9
		Threonine degradation	1
	Osmotic stress	Choline and Betaine Uptake and Betaine Biosynthesis	1
	Proline and 4-hydroxyproline	Proline, 4-hydroxyproline uptake and utilization	1

	Aminosugars	Chitin and N-acetylglucosamine utilization	15
	CO2 fixation	CO2 uptake, carboxysome	8
	CO2 mation	Calvin-Benson cycle	7
	Carbohydrates	beta-glucuronide utilization	1
		Dehydrogenase complexes	6
		Dihydroxyacetone kinases	1
		Entner-Doudoroff Pathway	6
		Glycolate, glyoxylate interconversions	5
		Methylglyoxal Metabolism	1
	Central carbohydrate metabolism	Pentose phosphate pathway	7
		Pyruvate:ferredoxin oxidoreductase	7
		Pyruvate Alanine Serine Interconversions	1
		Pyruvate metabolism I: anaplerotic reactions, PEP	2
		Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate	6
		TCA Cycle	1
	Chartenine has a dealer setamo	Cluster Ytf and putative sugar transporter	1
	Clustering-based subsystems	Putative sugar ABC transporter (ytf cluster)	1
O11 1 1		Lactose and Galactose Uptake and Utilization	6
Carbohydrates	Di- and oligosaccharides	Maltose and Maltodextrin Utilization	3
	-	Dehydrogenase complexes Dihydroxyacetone kinases Entner-Doudoroff Pathway Glycolate, glyoxylate interconversions Methylglyoxal Metabolism Pentose phosphate pathway Pyruvate:ferredoxin oxidoreductase Pyruvate Alanine Serine Interconversions Pyruvate metabolism I: anaplerotic reactions, PEP Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate TCA Cycle Cluster Ytf and putative sugar transporter Putative sugar ABC transporter (ytf cluster) Lactose and Galactose Uptake and Utilization	3
		Acetoin, butanediol metabolism	1
	Fermentation	Acetyl-CoA fermentation to Butyrate	1
		Putative sugar ABC transporter (ytf cluster) Lactose and Galactose Uptake and Utilization Maltose and Maltodextrin Utilization Sucrose Metabolism Acetoin, butanediol metabolism Acetyl-CoA fermentation to Butyrate	1
		D-gluconate and ketogluconates metabolism	3
			1
		Deoxyribose and Deoxynucleoside Catabolism	9
	Monosaccharides		1
		L-fucose utilization temp	6
		1	1
		Xylose utilization	2
			2
	One-carbon Metabolism		7
	0		1
	Organic acids	Glyoxylate Synthesis	2
		Glycerol and Glycerol-3-phosphate Uptake and Utilization	1
	Sugar alcohols	Hexitol degradation	1

Table S1. Cont.

Cell Division and Cell		Bacterial Cell Division	9
	Cell cycle in Prokaryota	Bacterial Cytoskeleton	19
Cycle		Two cell division clusters relating to chromosome partitioning	3
		CMP-N-acetylneuraminate Biosynthesis	1
		Colanic acid biosynthesis	1
	Compular and autrocallular	O-Methyl Phosphoramidate Capsule Modification in	
	Capsular and extracellular	Campylobacter	1
	polysacchrides	Rhamnose containing glycans	3
		Sialic Acid Metabolism	1
		dTDP-rhamnose synthesis	2
Call Wall and Canada		Peptidoglycan Biosynthesis	11
Cell Wall and Capsule	Cell Wall and Capsule	UDP-N-acetylmuramate from Fructose-6-phosphate Biosynthesis	2
	•	YieE	3
		KDO2-Lipid A biosynthesis	8
		LOS core oligosaccharide biosynthesis	4
	Gram-Negative cell wall	Lipid A-Ara4N pathway (Polymyxin resistance)	3
	components	Lipopolysaccharide assembly	5
	•	Teichoic and lipoteichoic acids biosynthesis	3
		Teichuronic acid biosynthesis	1
	Biosynthesis of galactoglycans and		
	related lipopolysacharides	CBSS-258594.1.peg.3339	2
	CRISPRs and associated		
	hypotheticals	CBSS-216592.1.peg.3534	1
	Carotenoid biosynthesis	CBSS-320388.3.peg.3759	1
	Cell Division	CBSS-281309.1.peg.50	5
Clustering-based		CBSS-160492.1.peg.550	2
subsystems		CBSS-176279.3.peg.868	1
		CBSS-176280.1.peg.1561	4
		CBSS-176299.4.peg.1996	4
	Clustering-based subsystems	CBSS-224911.1.peg.435	1
	-	CBSS-228410.1.peg.134	1
		CBSS-235.1.peg.567	3
		CBSS-243277.1.peg.4359	3
		CBSS-251221.1.peg.1863	2

Table S1. Cont.

		CBSS-257314.1.peg.752	4
		CBSS-261591.3.peg.3916	5
		CBSS-281090.3.peg.464	2
		CBSS-288681.3.peg.1039	2
		CBSS-290633.1.peg.1906	7
		CBSS-296591.1.peg.2330	3
		CBSS-312309.3.peg.1965	2
		CBSS-316057.3.peg.1294	24
		CBSS-316057.3.peg.563	1
		CBSS-316279.3.peg.746	1
		CBSS-320372.3.peg.6046	2
		CBSS-335283.3.peg.454	19
		CBSS-342610.3.peg.1794	6
		CBSS-345072.3.peg.1318	2
		CBSS-56780.10.peg.1536	1
		CBSS-630.2.peg.3360	1
		Conserved gene cluster associated with Met-tRNA	-
	Clustering-based subsystems	formyltransferase	4
	(continued)	Conserved gene cluster possibly involved in RNA metabolism	2
		EC49-61	2
		EC699-706	1
		Putative hemin transporter	1
	Cytochrome biogenesis	CBSS-196164.1.peg.461	1
Clustering-based			14
subsystem (continued)	Fatty acid metabolic cluster Hypothetical associated with RecF	CBSS-218491.3.peg.427	9
		CBSS-246196.1.peg.364	4
		Hypothetical Coupled to RecF	1
	Hypothetical in Lysine biosynthetic	Trypodictical Coupled to Reel	1
	cluster	CBSS-323850.3.peg.3269	1
	Hypothetical lipase related to	CD33-323630.3.pcg.3209	1
	Phosphatidate metabolism	CBSS-316407.3.peg.1371	3
	Hypothetical protein possible	CD00-310407.3.pcg.1371	3
	functionally linked with Alanyl-		
	tRNA synthetase	CBSS-257314.1.peg.488	5
	uxiva synunciase	CD00-201014.1.pcg.400	<u> </u>

Table S1. Cont.

enoid/cell wall biosynthesis:		
	CDCC 92221 1 2020	7
	1 0	/
	1 &	l
* 1	PmbA and a Hypothetical Protein	1
	CBSS-176299.4.peg.1292	4
	CBSS-306254.1.peg.1508	1
	CBSS-316057.3.peg.659	1
* *		
		3
*	CBSS-393121.3.peg.2760	12
ive GGDEF domain protein		
d to agglutinin secretion	CBSS-323850.3.peg.3284	3
ive asociate of RNA		
nerase sigma-54 factor rpoN	CBSS-316057.3.peg.1308	3
scine/GABA utilization	• •	
er-temporal,to add to SSs	GABA and putrescine metabolism from cluters	2
mbination related cluster		12
somal Protein L28P relates to		
of uncharacterized proteins	*	1
•	*	1
some-related cluster	· · · · · · · · · · · · · · · · · · ·	2
cluster	. •	2
	1 6	7
		3
<u> </u>	. •	2
	OICTED UNDECAPRENYL IOSPHATE PHOSPHATASE protein B cluster A Related Hypothetical ably GTP or GMP signaling dubly Pyrimidine biosynthesis-dubly Ybbk-related hypothetical brane proteins ably organic hydroperoxide ance related hypothetical bin in export? The ive GGDEF domain protein dubly to agglutinin secretion in a sociate of RNA prerase sigma-54 factor rpoN scine/GABA utilization extemporal, to add to SSs ambination related cluster	OBSS-221988.1.peg.3039 CBSS-221988.1.peg.2137 PmbA and a Hypothetical Protein OBSS-306254.1.peg.1292 OBSS-306254.1.peg.1508 OBSS-316057.3.peg.659 OBSS-393121.3.peg.2760 OBSS-323850.3.peg.3284 OBSS-323850.3.peg.3284 OBSS-316057.3.peg.1308 CBSS-316057.3.peg.1294 CBSS-323850.3.peg.3284 OBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-316057.3.peg.1294 CBSS-323850.3.peg.3284 OBSS-316057.3.peg.1308 CBSS-316057.3.peg.1308 CBSS-316057.3.peg.1308

Table S1. Cont.

	Biotin	Biotin biosynthesis	2
	Coenzyme A	Coenzyme A Biosynthesis	3
		5-FCL-like protein	2
		Folate Biosynthesis	16
	Folate and pterines	Molybdopterin biosynthesis	4
		Pterin metabolism 3	3
		YgfZ	4
	Isoprenoids	Isoprenoid Biosynthesis	7
Cofactors, Vitamins,	Lipoic acid	Lipoic acid metabolism	3
Prosthetic Groups,	NAD and NADP	NAD and NADP cofactor biosynthesis global	3
Pigments	Pyridoxine	Pyridoxin (Vitamin B6) Biosynthesis	2
	Quinone cofactors	Menaquinone and Phylloquinone Biosynthesis	1
	Quinone coractors	Pyrroloquinoline Quinone biosynthesis	1
		Chlorophyll Degradation	1
	T 4 1	Cobalamin synthesis	1
	Tetrapyrroles	Coenzyme B12 biosynthesis	2
		Heme and Siroheme Biosynthesis	8
	Thiamine and thiamine		
	pyrophosphate	Thiamin biosynthesis	2
		DNA structural proteins, bacterial	1
	DNA Metabolism	Restriction-Modification System	13
		YefH	1
		DNA Repair Base Excision	3
NA Metabolism		DNA repair, UvrABC system	4
JNA Metabolishi	DNA repair	DNA repair, bacterial	1
		DNA repair, bacterial RecFOR pathway	2
		Rad50-Mre11::SbcD-SbcC DNA Repair Module	1
	DNA replication	DNA-replication	15
	DNA replication	DNA topoisomerases, Type II, ATP-dependent	2
	Fatty Acids and Lipids	Polyhydroxybutyrate metabolism	1
Fatty Acids and Lipids	Fatty acids	Fatty Acid Biosynthesis FASII	2
	Phospholipids	Glycerolipid and Glycerophospholipid Metabolism in Bacteria	3
Magramalagular Crinthagia	Control of Macromolecuar		
Macromolecular Synthesis	Synthesis	CBSS-243277.1.peg.511	1

Mar. Drugs **2012**, 10

	ABC transporters	ABC transporter tungstate (TC 3.A.1.6.2)	1
Manalana Taranan	Lipoprotein sorting	Lipoprotein sorting system	2
Membrane Transport	Membrane Transport	Transport of Zinc	2
	Uni- Sym- and Antiporters	Na(+)H(+) antiporter	6
	Metabolism of central aromatic	Catechol branch of beta-ketoadipate pathway	1
Metabolism of Aromatic	intermediates	Phenylacetate pathway of aromatic compound degradation	1
Compounds	Peripheral pathways for catabolism	Benzoate degradation	1
-	of aromatic compounds	Biphenyl Degradation	1
Miscellaneous	Miscellaneous	Transporters In Models	6
	Flagellar motility in Prokaryota	Flagellum	6
Motility and Chemotaxis	Social motility and nonflagellar		
	swimming in bacteria	Bacterial motility:Gliding	3
		Ammonia assimilation	1
Nitrogen Metabolism	Nitrogen Metabolism	Denitrification	1
		Nitrate and nitrite ammonification	5
	Detoxification	Nudix proteins (nucleoside triphosphate hydrolases)	3
		De Novo Pyrimidine Synthesis	6
	Nucleosides and Nucleotides	Hydantoin metabolism	1
Nucleosides and	Nucleosides and Nucleotides	Purine Utilization	3
Nucleotides		Ribonucleotide reduction	7
Nucleotides	Purines	De Novo Purine Biosynthesis	5
	runnes	Purine conversions	5
	Pyrimidines	Pyrimidine utilization	2
	1 yriiliumes	pyrimidine conversions	3
		Alkylphosphonate utilization	1
Phosphorus Metabolism	Phosphorus Metabolism	Phosphate metabolism	8
		Phosphonate metabolism	3
Potassium metabolism	Potassium metabolism	Glutathione-regulated potassium-efflux system and associated	
1 Otassium metabonsiii	i otassium metavonsm	functions	7

Table S1. Cont.

		cAMP signaling in bacteria	8
	2	Two-component regulatory systems in Campylobacter	2
5 6	Regulation and Cell signaling	Phytochromes	1
ignaling		MazEF toxin-antitoxing (programmed cell death) system	2
egulation and Cell	F. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Glutaredoxins	4
	Proteolytic pathway	Coagulation cascade	5
	Toxin-antitoxin Systems	Toxin-antitoxin systems (other than RelBE and MazEF)	1
	Programmed Cell Death and	<u>g</u>	
		Twin-arginine translocation system	1
	Secretion	General secretory pathway (Sec-SRP) complex (TC 3.A.5.1.1)	8
	modification	General Secretion Pathway	10
	modification	Inteins	1
	Protein processing and	1 rotem emperones	17
	C	Protein chaperones	14
	Protein folding	Periplasmic disulfide interchange	1
		Peptidyl-prolyl cis-trans isomerase	2
		Proteolysis in bacteria, ATP-dependent GroEL GroES	1 1
Totem Metadonsin		Protein degradation	ے 1
Protein Metabolism		Protein degradation	11
		Protessome bacterial	5
		tRNA aminoacylation	27
	•	Universal GTPases	11
	Protein biosynthesis	Translation factors bacterial	l 11
		Ribosome activity modulation	1
		Ribosome SSU bacterial	10
		Ribosome LSU mitochondrial	1
		Ribosome LSU bacterial	29
		Asp-tRNA(Asn) transamidation	4

	ATP synthases	F0F1-type ATP synthase	11
		Anaerobic respiratory reductases	4
		Terminal cytochrome C oxidases	7
		Na(+)-translocating NADH-quinone oxidoreductase and rnf-like	
	Electron according reactions	group of electron transport complexes	8
	Electron accepting reactions	NiFe hydrogenase maturation	1
		Respiratory Complex I	11
Dogwinstian		Respiratory dehydrogenases 1	4
Respiration		Succinate dehydrogenase	1
		Biogenesis of c-type cytochromes	2
		Biogenesis of cbb3-type cytochrome c oxidases	2
	F	Biogenesis of cytochrome c oxidases	2
		Formate hydrogenase	3
		Soluble cytochromes and functionally related electron carriers	1
	Codium Ion Counted Engageties	Na+ translocating decarboxylases and related biotin-dependent	
	Sodium Ion-Coupled Energetics	enzymes	1
	RNA Metabolism	Group II intron-associated genes	36
	RNA processing and modification	ATP-dependent RNA helicases, bacterial	1
		Polyadenylation bacterial	3
		Queuosine-Archaeosine Biosynthesis	4
		RNA processing and degradation, bacterial	5
RNA Metabolism	KNA processing and modification	eukaryotic rRNA modification and related functions	1
KNA Wietabolisiii		rRNA modification Bacteria	1
		tRNA modification E.coli	14
		tRNA processing	3
		RNA polymerase II	1
	Transcription	RNA polymerase bacterial	7
		Transcription factors bacterial	5
	Plant hormones	Auxin biosynthesis	2
Casandamy Matahalian	Biologically active compounds in		
Secondary Metabolism	metazoan cell defence and	Quinolinic acid and its derivatives	2
	differentiation		

Table S1. Cont.

	Cold shock	Cold shock, CspA family of proteins	1
	Osmotic stress	Hyperosmotic ectoine biosynthesis	1
		Glutathione Redox Metabolism	1
	Oxidative stress	Oxidative stress	8
		Protection from Reactive Oxygen Species	1
Ctuaga Daguanga		Acid resistance mechanisms	1
Stress Response		Bacterial hemoglobins	2
		Carbon Starvation	2
	Stress Response	Copper homeostasis	10
	•	Dimethylarginine metabolism	1
		Flavohaemoglobin	5
		Heat shock dnaK gene cluster extended	2
	Inorganic sulfur assimilation	Sulfate assimilation	1
	Organic sulfur assimilation	Alkanesulfonate assimilation	1
Sulfur Metabolism	Organic surrur assimilation	Utilization of glutathione as a sulphur source	1
Sullui Metabolisili	Sulfur Metabolism	Galactosylceramide and Sulfatide metabolism	3
		Sulfate reduction-associated complexes	2
		Sulfur oxidation	12
		Branched chain amino acid degradation regulons	2
		CBSS-224911.1.peg.7673	3
		CBSS-393121.3.peg.1913	2
		CBSS-412883.3.peg.2513	1
		CBSS-83332.1.peg.3803	5
		CBSS-87626.3.peg.3639	1
		CR clusters Euk 7 GlucoseP isomerase	1
Unclassified	Unclassified	Experimental-Ubiquinone BiosynthesisVDC	3
Uliciassified	Officiassified	Iron-sulfur cluster assembly	9
		Iron-sulfur experimental	9
		RuvABC plus a hypothetical	3
		Selenoprotein O	1
		Sugar catabolome in Shewanella species	2
		YgfZ-Fe-S	1
		YgfZ-Fe-S clustering	1
		Zinc regulated enzymes	1

Mar. Drugs **2012**, 10

	Adhesion	Adhesins in Staphylococcus	1
	Invasion and intracellular	• •	
	resistance	Listeria surface proteins: Internalin-like proteins	2
		Hemin transport system	2
	Iron Scavenging Mechanisms	Pyoverdine biosynthesis new	1
		Transport of Iron	1
	Pathogenicity islands	Staphylococcal pathogenicity islands SaPI	1
	Posttranslational modification	N-linked Glycosylation in Bacteria	6
		Acriflavin resistance cluster	7
Jimilanaa Digaaga and		Beta-lactamase	2
/irulence, Disease and Defense	Resistance to antibiotics and toxic	Cobalt-zinc-cadmium resistance	8
Detense	compounds	Methicillin resistance in Staphylococci	16
	_	Multidrug Resistance Efflux Pumps	1
		Resistance to fluoroquinolones	5
		ESAT-6 proteins secretion system in Firmicutes	1
	Type III, Type IV, ESAT secretion	Mannose-sensitive hemagglutinin type 4 pilus	1
		Type 4 secretion and conjugative transfer	20
	systems	Type III secretion system orphans	1
		Type IV pilus	6
	Virulence	C jejuni colonization of chick caeca	1
	v iruiciice	Ton and Tol transport systems	5

Mar. Drugs 2012, 10

Table S2. Distribution of transcripts annotated according to the COG in MG-RAST. Transcript gene function was assigned in MG-RAST, with the following parameters: maximum e-value of 10^{-5} , minimum of 50% identity cutoff and minimum alignment cutoff of 50.

Major Categories	Description	# Hits
CELLULAR PROCESSES AND SIGNALING	Cell cycle control, cell division, chromosome partitioning	4
	Cell wall/membrane/envelope biogenesis	25
	Defense mechanisms	4
	Intracellular trafficking, secretion, and vesicular transport	12
	Posttranslational modification, protein turnover, chaperones	27
	Signal transduction mechanisms	10
INFORMATION STORAGE AND PROCESSING	RNA processing and modification	1
	Replication, recombination and repair	30
	Transcription	11
	Translation, ribosomal structure and biogenesis	52
METABOLISM	Amino acid transport and metabolism	42
	Carbohydrate transport and metabolism	21
	Coenzyme transport and metabolism	28
	Energy production and conversion	45
	Inorganic ion transport and metabolism	18
	Lipid transport and metabolism	14
	Nucleotide transport and metabolism	20
	Secondary metabolites biosynthesis, transport and catabolism	2
POORLY CHARACTERIZED	Function unknown	6
	General function prediction only	44