Supporting Information

Table of Contents

Figure S1. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 5 .	2
Figure S2. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 5.	3
Figure S3. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 6.	4
Figure S4. ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 6 .	5
Figure S5. HSQC (150 MHz, CDCl ₃) spectrum of 6.	6
Table S1. NMR assignments 7a/7b mixture.	7
Figure S6. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 7a/7b mixture.	8
Figure S7. ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 7a/7b mixture.	9
Figure S8. HSQC spectrum (600 MHz, CDCl ₃) of 7a/7b mixture.	10
Figure S9. MS (top) and MSMS spectra (bottom) of 7a/7b.	11
Figure S10. Analytical UPLC Chromatogram of 7a/7b. (a) UV trace 255 nm; (b) ELSD trace; (c)	Base
peak mass chromatogram; (d) Selected ion monitoring m/z 390 [M + H]; (e) Average mass	
spectrum (5.15–5.45 min).	12
Figure S11. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 8 .	13
Figure S12. ¹³ C-NMR (150 MHz, CDCl ₃) spectrum of 8 .	14
Figure S13. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 10 .	15
Figure S14. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 10.	16
Figure S15. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 11 .	17
Figure S16. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 11.	18
Figure S17. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 12 .	19
Figure S18. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 12.	20
Figure S19. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 14 .	21
Figure S20. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 14.	22
Figure S21. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 15 .	23
Figure S22. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 15.	24
Figure S23. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of 16.	25
Figure S24. 13 C-NMR (150 MHz, CDCl ₃) spectrum of 16.	26
Figure S25. ¹ H-NMR (600 MHz, C_6D_6) spectrum of 17.	27
Figure S26. 13 C-NMR (600 MHz, C ₆ D ₆) spectrum of 17 .	28
Figure S27. ¹ H-NMR (600 MHz, $(CD_3)_2SO$) spectrum of 18 .	29
Figure S28. ¹³ C-NMR (600 MHz, (CD ₃) ₂ SO) spectrum of 18 .	30
Figure S29. ¹ H-NMR (600 MHz, CD_3OD) spectrum of 19 .	31
Figure S30. ¹³ C-NMR (600 MHz, CD ₃ OD) spectrum of 19 .	32
Figure S31. ¹ H-NMR (600 MHz, $(CD_3)_2SO$) spectrum of 20 .	33
Figure S32. ¹³ C-NMR (600 MHz, (CD ₃) ₂ SO) spectrum of 20.	34
Scheme S1. Syntheses of 2,3,4,6-tetra- <i>O</i> -benzoyl-β-d-galactopyranosyl trichloroacetimidate (21).	35

Figure S1. ¹H-NMR (600 MHz, CDCl₃) spectrum of **5**.

Figure S2. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 5.

Figure S3. ¹H-NMR (600 MHz, CDCl₃) spectrum of **6**.

Figure S4. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 6.

Figure S5. HSQC (150 MHz, CDCl₃) spectrum of 6.

Table S1. NMR assignments 7a/7b mixture.

1		22 23 HN (+) 25
	¹ 16	

~3:1	ratio	7a/7b

Desition	7a ^a		7b ^a	
Position	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$
1	36.4	3.88, m	36.7	3.88, m
2 a	40.0	2.09, m	40.0	2.09, m
b	-	1.24, m	-	1.24, m
3	34.5	1.24, m	34.4	1.24, m
4	44.67	2.20, m	44.72	2.20, m
5 a	28.0	2.13, m	28.0	2.13, m
b	-	1.04, m	-	1.04, m
ба	32.08	2.24, m	31.99	2.24, m
b	-	1.35, m	-	1.35, m
7	30.1	3.16, m	30.6	3.32, m
8	122.0	-	130.3	-
9	147.9	-	136.9	-
10	138.8	-	149.2	-
11	125.7	-	116.7	-
12	134.6	-	135.6	-
13	136.2	-	135.2	-
14	130.7	4.92, d (9.4)	130.5	
15	128.7	-	128.9	-
16	25.4	1.64, s	25.4	1.65, s
17	17.6	1.74, s	17.6	1.74, s
18	19.73	1.02, d (6.0)	19.77	1.02, d (6.0)
19	22.2	1.36, d (6.6)	23.8	1.41, d (6.6)
20	13.6	2.33, s	12.3	2.24, s
21	161.7	-	161.1	-
C21-Oxazole appendage (AA derived)	-	-	-	-
22	26.49	4.26, s	26.40	4.26, s
23	130.2	-	130.2	-
24	-	8.57 ^b , br	-	8.57 ^b , br
25	134.5	8.50 ^b , br s	134.5	8.50 ^b , br s
26	-	7.82 ^b , br	-	7.82 ^b , br
27	117.3	7.01, br s	117.5	7.01, br s

^a CDCl3, 600 MHz (¹³C: 150 MHz); assigned by HSQC, HMBC & COSY. ^b interchangeable assignments. Note: The NMR data was acquired on material purified by HPLC (MeOH:H2O:HCO2H) and thus the imidazole moiety was protonated. The chemical shifts are sensitive to changes in pH.

Figure S6. ¹H-NMR (600 MHz, CDCl₃) spectrum of **7a/7b** mixture.

Figure S7. ¹³C-NMR (150 MHz, CDCl₃) spectrum of **7a/7b** mixture.

Figure S8. HSQC spectrum (600 MHz, CDCl₃) of 7a/7b mixture.

Figure S10. Analytical UPLC Chromatogram of 7a/7b. (a) UV trace 255 nm; (b) ELSD trace; (c) Base peak mass chromatogram; (d) Selected ion monitoring m/z 390 [M + H]; (e) Average mass spectrum (5.15–5.45 min).

C:\Xcalibur\...\RKMM-TBSP-14SEP2010-D5

9/14/2010 11:37:54 PM

Figure S11. ¹H-NMR (600 MHz, CDCl₃) spectrum of 8.

Figure S12. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 8.

Figure S13. ¹H-NMR (600 MHz, CDCl₃) spectrum of 10.

Figure S14. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 10.

Figure S15. ¹H-NMR (600 MHz, CDCl₃) spectrum of 11.

Figure S16. ¹³C-NMR (150 MHz, CDCl₃) spectrum of **11**.

Figure S17. ¹H-NMR (600 MHz, CDCl₃) spectrum of 12.

Figure S18. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 12.

Figure S19. ¹H-NMR (600 MHz, CDCl₃) spectrum of 14.

Figure S20. ¹³C-NMR (150 MHz, CDCl₃) spectrum of **14**.

Figure S21. ¹H-NMR (600 MHz, CDCl₃) spectrum of 15.

Figure S22. ¹³C-NMR (150 MHz, CDCl₃) spectrum of 15.

Figure S23. ¹H-NMR (600 MHz, CDCl₃) spectrum of 16.

Figure S24. ¹³C-NMR (150 MHz, CDCl₃) spectrum of **16**.

4E+07

Figure S27. ¹H-NMR (600 MHz, (CD₃)₂SO) spectrum of **18**.

Figure S28. ¹³C-NMR (600 MHz, (CD₃)₂SO) spectrum of **18**.

Note: some impurities are present: residual solvent CH_3OD at δ 3.35 and H_2O at δ 4.85. Baseline impurities appear to be glycosylated analogue(s) of **19**. Further HPLC purification of **19** was unsuccessful, however following deprotection compound **20** was purified and characterized.

Figure S30. ¹³C-NMR (600 MHz, CD₃OD) spectrum of **19**.

Figure S31. ¹H-NMR (600 MHz, (CD₃)₂SO) spectrum of **20**.

Figure S32. ¹³C-NMR (600 MHz, (CD₃)₂SO) spectrum of **20**.

Scheme S1. Syntheses of 2,3,4,6-tetra-*O*-benzoyl- β -D-galactopyranosyl trichloro acetimidate (21). Reagents and conditions: (a) BzCl (7.0 equiv.), Pyr; (b) HBr (3.0 equiv.), MeOH (2.0 equiv.), AcOH, 0 °C \rightarrow r.t., 36% over two steps; (c) Ag₂CO₃ (1.2 equiv.), acetone:H₂O (19:1), 85%; (d) CCl₃CN (10 equiv.), K₂CO₃ (1.2 equiv.), DCM, r.t. 36%.

