Supplementary Information

Table of Contents.

Compound 1: $(4R^*, 5R^*, 9S^*, 10R^*, 11Z)$ -4-methoxy-12,15-epoxy-11(13)-en-9-((dimethylamino)-methyl)-decadehydronaphthalen-16-ol. Compound 2: $(1R^*, 2R^*, 4S^*, 15E)$ -loba-8,10,13(14),15(16)-tetraen-17,18-diol-17-acetate

Figure S1. ¹ H NMR spectrum (300 MHz) of (1) in CD ₃ OD	5
Figure S2. ¹³ C NMR spectrum (75 MHz) of (1) in CD ₃ OD	6
Figure S3. DEPT spectrum (75 MHz) of (1) in CD ₃ OD	7
Figure S4. COSY spectrum (300 MHz) of (1) in CD ₃ OD	8
Figure S5. HSQC spectrum (300 MHz) of (1) in CD ₃ OD.	9
Figure S6. HMBC spectrum (300 MHz) of (1) in CD ₃ OD	10
Figure S7. Selective NOESY spectrum (300 MHz; 4.16 ppm) of (1) in CD ₃ OD	11
Figure S8. Selective NOESY spectrum (300 MHz; 3.25 ppm) of (1) in CD ₃ OD	12
Figure S9. Selective NOESY spectrum (300 MHz; 3.16 ppm) of (1) in CD ₃ OD	13
Figure S10. Selective NOESY spectrum (300 MHz; 1.08 ppm) of (1) in CD ₃ OD	14
Figure S11. Selective NOESY spectrum (300 MHz; 0.89 ppm) of (1) in CD ₃ OD	15
Figure S12. ¹ H NMR spectrum (300 MHz) of (2) in CD ₃ OD	16
Figure S13. ¹³ C NMR spectrum (75 MHz) of (2) in CD ₃ OD	17
Figure S14. DEPT spectrum (75 MHz) of (2) in CD ₃ OD	18
Figure S15. COSY spectrum (300 MHz) of (2) in CD ₃ OD	19
Figure S16. HSQC spectrum (300 MHz) of (2) in CD ₃ OD.	20
Figure S17. HMBC spectrum (300 MHz) of (2) in CD ₃ OD	21

Figure S18. Selective NOESY spectrum (300 MHz; 5.14 ppm) of (2) in CD_3OD							
Figure S19. Selective NOESY spectrum (300 MHz; 2.31 ppm) of (2) in CD_3OD							
Figure S20. Selective NOESY spectrum (300 MHz; 2.09 ppm) of (2) in CD_3OD							
Figure S21. Selective NOESY spectrum (300 MHz; 1.71 ppm) of (2) in CD_3OD							
Figure S22. Selective NOESY spectrum (300 MHz; 1.03 ppm) of (2) in CD_3OD							
Scheme 1: Structures of known compounds isolated from <i>Sinularia</i> sp							
Figure S23. ¹ H NMR spectrum (300 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in $CD_3OD_{$							
Figure S24. ¹³ C NMR spectrum (75 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in CD_3OD							
Figure S25. DEPT spectrum (75 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S26. COSY spectrum (300 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S27. HSQC spectrum (300 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S28. HMBC spectrum (300 MHz) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S29. Selective NOESY spectrum (300 MHz; 4.65 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S30. Selective NOESY spectrum (300 MHz; 3.15 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S31. Selective NOESY spectrum (300 MHz; 1.74 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S32. Selective NOESY spectrum (300 MHz; 1.71 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S33. Selective NOESY spectrum (300 MHz; 1.25 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S34. Selective NOESY spectrum (300 MHz; 1.23 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Figure S35. Selective NOESY spectrum (300 MHz; 1.02 ppm) of loba-8,10,13(15)-triene-16,17,18-triol in CD ₃ OD							
Table S1. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for loba-8,10,13(15)-triene-16,17,18-triol							
Figure S36. ¹ H NMR spectrum (300 MHz) of lobatrienolide in CD_3OD							
Figure S37. ¹³ C NMR spectrum (75 MHz) of lobatrienolide in CD_3OD							
Figure S38. DEPT spectrum (75 MHz) of lobatrienolide in CD ₃ OD 44							
Figure S39. COSY spectrum (75 MHz) of lobatrienolide in CD ₃ OD 45							
Figure S40. HSQC spectrum (300 MHz) of lobatrienolide in CD ₃ OD							
Figure S41. HMBC spectrum (300 MHz) of lobatrienolide in CD ₃ OD							
Table S2. 1 H and 13 C NMR data (300 MHz and 75 MHz, CD ₃ OD) for lobatrienolide							
Figure S42. ¹ H NMR spectrum (300 MHz) of lobatrientriol in CD_3OD							

Figure S43. ¹³ C NMR spectrum (75 MHz) of lobatrientriol in CD ₃ OD	50
Figure S44. COSY spectrum (300 MHz) of lobatrientriol in CD ₃ OD	51
Figure S45. HSQC spectrum (300 MHz) of lobatrientriol in CD ₃ OD	52
Figure S46. HMBC spectrum (300 MHz) of lobatrientriol in CD ₃ OD.	53
Table S3. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CDCl ₃) for lobatrientriol	54
Figure S47. ¹ H NMR spectrum (300 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	55
Figure S48. ¹³ C NMR spectrum (75 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	56
Figure S49. DEPT spectrum (75 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	57
Figure S50. COSY spectrum (300 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	58
Figure S51. HSQC spectrum (300 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	59
Figure S52. HMBC spectrum (300 MHz) of 14,18-epoxyloba-8,10,13(15)-trien-17-ol in CD ₃ OD	60
Table S4. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for 14,18-epoxyloba-8,10,13(15)-trien-17-ol	61
Figure S53. ¹ H NMR spectrum (300 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	62
Figure S54. ¹³ C NMR spectrum (75 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	63
Figure S55. DEPT spectrum (75 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	64
Figure S56. COSY spectrum (300 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	65
Figure S57. HSQC spectrum (300 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	66
Figure S58. HMBC spectrum (300 MHz) of 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate in CD ₃ OD	67
Table S5. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate	68
Figure S59. ¹ H NMR spectrum (300 MHz) of (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol in CD ₃ OD	69
Figure S60. ¹³ C NMR spectrum (75 MHz) of (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol in CD ₃ OD	70
Figure S61. COSY spectrum (300 MHz) of (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol in CD ₃ OD	71
Figure S62. HSQC spectrum (300 MHz) of (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol in CD ₃ OD	72
Figure S63. HMBC spectrum (300 MHz) of (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol in CD ₃ OD	73
Table S6. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for (17 <i>R</i>)-loba-8,10,13(15)-trien-17,18-diol	74
Figure S64. ¹ H NMR spectrum (300 MHz) of sarcophytol-B in CD ₃ OD	75
Figure S65. ¹³ C NMR spectrum (75 MHz) of sarcophytol-B in CD ₃ OD	76
Figure S66. DEPT spectrum (75 MHz) of sarcophytol-B in CD ₃ OD	77

Figure S67. COSY spectrum (300 MHz) of sarcophytol-B in CD ₃ OD	78
Figure S68. HSQC spectrum (300 MHz) of sarcophytol-B in CD ₃ OD	79
Figure S69. HMBC spectrum (300 MHz) of sarcophytol-B in CD ₃ OD	80
Table S7. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for sarcophytol-B	81
Figure S70. ¹ H NMR spectrum (300 MHz) of (1 <i>E</i> ,3 <i>E</i> ,7 <i>E</i>)-11,12-epoxycembratrien-15-ol in CD ₃ OD	82
Figure S71. ¹³ C NMR spectrum (75 MHz) of 11(1 <i>E</i> ,3 <i>E</i> ,7 <i>E</i>)-11,12-epoxycembratrien-15-ol in CD ₃ OD	83
Figure S72. DEPT spectrum (75 MHz) of (1E,3E,7E)-11,12-epoxycembratrien-15-ol in CD ₃ OD	84
Figure S73. COSY spectrum (300 MHz) of (1E,3E,7E)-11,12-epoxycembratrien-15-ol in CD ₃ OD	85
Figure S74. HSQC spectrum (300 MHz) of (1E,3E,7E)-11,12-epoxycembratrien-15-ol in CD ₃ OD	86
Figure S75. HMBC spectrum (300 MHz) of (1E,3E,7E)-11,12-epoxycembratrien-15-ol in CD ₃ OD	87
Table S8. ¹ H and ¹³ C NMR data (300 MHz and 75 MHz, CD ₃ OD) for (1 <i>E</i> ,3 <i>E</i> ,7 <i>E</i>)-11,12-epoxycembratrien-15-ol	88

142.5	117.8		81.9 76.8 72.7	69.0 60.5 53.1	49.9 45.2 42.3 40.4 38.0 36.3	28.1 27.8 26.3 26.3 26.3 25.0 25.0 18.7 18.7 18.7 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
S2 ¹³ C NMR of 1 in CE						
alego aliman de angelio pangelio angelia angelia angelia angelio da angelio da angelio da angelio da angelio da	ja jawapoli juutaan Alanda ga faraana ayaa ya ahaya ya ahaya ya	Anderski general og som som for anderski for ander som	annin yayayayayayayayayayayayayayayayayayaya	letter på sterrigenen stølse størstørste konstruktion og største største største største største største størst Detter største s	ı — "Triftenlik Mukarıkı, kerintik Veriftin berdiyinder	nniker forhall af de ferskalen af neder for ferskalen for it fan ferskalen ferskalen ferskalen ferskalen fersk F
145 140 135 130 1	125 120 115 110 105	100 95 90 85	80 75 f1 (ppm)	70 65 60 55 5	io 45 40 35	30 25 20 15 10 5

			110.4				
S14. DEPT NM	R of 2 in CD ₃ OI	D					
d (hills distribution is the district, in	in the second state of the second states and the second states are second states and the second states are second states	u a tha a la ta	ilite ¹ Chaile Ingel, ingel, der Mittel, Mitte	(hal haad een die bekerde de die die die die die die die die di	ulululu analah shafatali shafatali shafatali shafatali shafatali shafatali shafatali shafatali shafatali shafat) Maranda da Marana ang kanala da da kanala da kanal Maranda da kanala da k
Ulline, investos dix del la mala sa tasla Ulline, investos dix del la mala sa tasla	enter alle alle alle alle alle alle alle al	alli a li falli a la fa	l ntai llaunin hinnin tainin tainin hinnin tainin hinnin tainin hinnin tainin tainin tainin tainin tainin taini Tainin tainin	lt andrevent folder in some of Astra Kardon i för ste ste stade stadelige ander som	ak alka ku sa a alka ku	a in the second s	ndad kal Juckiel Boneiel Boneiel Bonei and an de
.60 150	140 130	120	110 100	90 80 70 f1 (ppm)	60 50	40 30	20 10 0

Scheme 1: Structures of known compounds isolated from *Sinularia* sp.

0 14 15 `OH $lobatrienolide^7 \\$

15 OH

14,18-epoxyloba-8,10,13(15)-trien-17-ol²⁶

(17*R*)-loba-8,10,13(15)-trien-17,18-diol²⁷

sarcophytol-B²⁴

(1E,3E,7E)-11,12-epoxycembratrien-15-ol⁸

N.	¹³ C	¹ H	COSV		nOe
INO.	δ (m)	δ (m, J Hz)	COSY	ghmbC	
1	40.8 (s)				
2	54.0(d)	2.05 (1H, m)	H-3	C-1, C-3, C-7, C-10, C-11, C-12	H-12
3	33.9 (t)	1.68 (1H, m)	H-2, H-4	C-1, C-4	H-7, H-12
		1.50 (1H, m)		C-1, C-4, C-5	
4	48.6 (d)	1.97 (1H, m)	H-3, H_a -5, H_b -5	C-5, C-13, C-15	
5	27.7 (t)	1.60 (1H, m)	$H-4, H_b-5, H_b-6$	C-1, C-3	
		1.52 (1H, m)	$H-4, H_a-5, H_b-6$		H-7
6	41.1 (t)	1.53 (1H, m)	H_{a} -5, H_{b} -6	C-1, C-7	H-7
		1.43 (1H, m)	H_a -5, H_b -5, H_a -6	C-1, C-2, C-4, C-7	H-7
7	17.1 (q)	1.02 (3H, s)		C-2, C-6, C-8	H_a-3 , H_b-5 , H_a-6 , H_b-6 , $H-8$,
					H_a -9, H_b -9, H_b -11, H-12, H-14
8	151.6 (d)	5.84 (1H, dd, 10.9,	$H_{a}-9, H_{b}-9$	C-1, C-2, C-7, C-8	H-7, H-12
		17.5)			
9	110.4 (t)	4.91 (1H, dd, 1.3,	H-8, H _b -9	C-1, C-2, C-8	H-7, H-14
		17.5)	H-8, H _b -9	C-1, C-2, C-8	Н-7, Н-12, Н-14
		4.87 (1H, dd, 1.3,			
10	140.0 ()	10.9)			
10	149.0 (s)		11 11 11 10		11.10
11	112.7 (t)	4.81 (1H, brt, 1.4)	H_b -11, H_3 -12	C-1, C-2, C-10, C-12	H-12
10	25.2 ()	4.60 (1H, brs)	H_a -11, H_3 -12	C-1, C-2, C-10, C-12	H-7, H-12
12	25.3 (q)	1./1 (3H, brs)	H_a -11, H_b -11	C-1, C-2, C-10, C-11	$H-2$, H_a-3 , $H-7$, $H-8$, H_b-9 , H_a-11
10	151 ()				$11, H_b$ -11, H-15, H-20
13	151.6 (s)	174 (211 1 1 1)		0.4.0.12.0.15	
14	15.3 (q)	1./4 (3H, d, 1.1)		C-4, C-13, C-15	$H_{-}/, H_{a}-9, H_{b}-9, H_{-}15, H_{-}16, H_{-}17, H_{-}20$
15	105 ((1)	5 40 (111 1 1 0 0)	II 14 II 16	0.2.0.4.0.14.0.17	H-17, H-20
15	125.6(d)	5.49 (1H, brd, 8.8)	H-14, H-16	C-3, C-4, C-14, C-17	H-12, H-14, H-16, H-17
16	68.5 (d)	4.65 (1H, dd, 5.0 ,	H-15, H-17	C-13,C-15, C-18	H-14, H-15, H-17, H-18, H-
17	2 (1)	(0.8)	II 16	C 15 C 18 C 10 C 20	19, H-20 H 14, H 15, H 16, H 10, H 20
1/	30.3(a)	3.15 (1H, 0, 3.0)	п-10	C-15, C-18, C-19, C-20	н-14, н-15, н-16, н-19, н-20 ц 16
18	74.2(s)	1.02(211.s)		C 17 C 18 C 20	H-10 H 14 H 17
19	20.3 (q)	1.25 (3H, S) 1.25 (2H, s)		C_{17}, C_{18}, C_{20}	Π -10, Π -1/
20	27.0 (q)	1.20 (SH, S)		U-17, U-18, U-19	п-12, п-14, п-10, н-1/

Table S1. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for loba-8,10,13(15)-triene-16,17,18-triol.

f1 (ppm)

No	¹³ C	H COSV		аНМВС
110.	δ (m)	δ (m, J Hz)	0.051	gnwibe
1	40.7 (s)			
2	53.8(d)	2.10 (1H, dd, 3.5, 12.7)	H_{a} -3, H_{b} -3	C-1, C-3, C-7, C-10, C-11, C-12
3	33.8 (t)	1.71 (1H, m)	H-2, H _b -3, H4	C-1, C-2, C-10, C-11
		1.58 (1H, m)	H-2, H _a -3, H-4	C-1, C-2, C-4, C-5
4	40.2 (d)	2.51 (1H, m)	H_a -3, H_b -3, H_a -5, H_b -5	C-13, C-14, C-15
5	28.5 (t)	1.60 (1H, m)	H4	C-3, C-7
		1.48 (1H, m)	H-4	C-1, C-4
6	41.1 (t)	1.57 (1H, m)	H _b -6	C-1, C-2, C-4, C-5, C-7
		1.43 (1H, m)	H _a -6	C-1, C-2, C-4, C-5, C-7
7	17.1 (q)	1.04 (3H, s)		C-1, C-2, C-5, C-8
8	151.4 (d)	5.85 (1H, dd, 10.8, 17.5)	H-9	C-1, C-2, C-7
9	110.5 (t)	4.92 (1H, dd, 1.4, 17.5)	H-8	C-1, C-2, C-8
		4.89 (1H, dd, 1.4, 10.8)	H-8	C-1, C-2, C-8
10	148.8 (s)			
11	112.8 (t)	4.83 (1H, dq, 1.5, 3.2)	H _b -11, H ₃ -12	C-1, C-2, C-10, C-12
		4.62 (1H, m)	H _a -11, H ₃ -12	C-1, C-2, C-10, C-12
12	25.3 (q)	1.72 (3H, brdd, 0.8, 1.5)	H_a-11, H_b-11	C-1, C-2, C-10, C-11
13	137.3 (s)			
14	167.4 (s)			
15	140.1 (d)	6.82 (1H, ddd, 0.9, 3.6, 4.5)	H-16	C-4, C-14, C-16, C-17
16	25.5 (t)	2.48 (2H, m)	H-15, H-17	C-4, C-13, C-15, C-17, C-18, C-19, C-20
17	84.9 (d)	4.15 (1H, m)	H-16	C-14, C-15, C-18, C-19, C-20
18	71.5 (s)			
19	25.9 (q)	1.24 (3H, s)		C-17, C-18, C20
20	25.4 (q)	1.27 (3H, s)		C-17, C-18, C-19

Table S2. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for lobatrienolide.

Γ	¹³ C	¹ H	COSV	aHMBC
0.	δ (m)	δ (m, J Hz)	0.051	gnwibt
1	40.8 (s)			
2	54.2(d)	2.05 (1H, dd, 3.1, 12.8)	H_a -3, H_b -3	C-1, C-3, C-4, C-7, C-8, C-10, C-11, C-12
3	34.7 (t)	1.65 (1H, m)	H-2, H-4	C-1, C-2, C-4, C-5
		1.57 (1H, m)	H-2, H-4	C-1, C-2, C-4, C-5
4	45.4 (d)	2.14 (1H, m)	H_a -3, H_b -3, H_a -5, H_b -5	C-2, C-3, C-5, C-13, C-14, C-15
5	28.5 (t)	1.64 (1H, m)	H-4, H_{b} -5, H_{b} -6	C-1, C-2, C-4
		1.52 (1H, m)	H-4, H _a -5, H _b -6	C-1, C-4
6	41.3 (t)	1.53 (1H, m)	H_{a} -5, H_{b} -6	C-1, C-4, C-5, C-7
		1.45 (1H, m)	H_a -5, H_b -5, H_a -6	C-1, C-2, C-4, C-7
7	17.1 (q)	1.03 (3H, s)		C-1, C-2, C-6, C-8, C-9
8	151.7 (d)	5.84 (1H, dd, 10.8, 17.6)	H _a -9, H _b -9	C-1, C-2, C-6, C-7
9	110.3 (t)	4.91 (1H, d, 1.4, 17.6)	H-8, H _b -9	C-1, C-2, C-8
		4.87 (1H, 1.4, 10.8)	H-8, H _b -9	C-1, C-2, C-8
10	149.0 (s)			
11	112.6 (t)	4.81 (1H, dq, 1.4, 3.2)	H _b -11, H ₃ -12	C-1, C-2, C-10, C-12
		4.60 (1H, brs)	H _a -11, H ₃ -12	C-1, C-2, C-10, C-12
12	25.3 (q)	1.71 (3H, brs)	H_a -11, H_b -11	C-1, C-2, C-10, C-11
13	146.1 (s)			
14	59.6 (t)	4.18 (1H, d, 11.8)	H _b -14, H-15	C-4, C-13, C-15
		4.04 (1H, d, 11.8)	H_a-14	C-4, C-13, C-15
15	126.0(d)	5.53 (1H, brdd, 7.3, 8.2)	H_a -14, H_a -16, H_b -16	C-4, C-13, C-14, C-16, C-17
16	30.7(t)	2.43 (1H, ddd, 2.3, 7.3, 14.6)	H-15, H _b -16, H-17	C-13,C-15, C-17, C-18
		2.19 (1H, ddd, 8.2, 10.3, 14.6)	H-15, H _a -16, H-17	C-13,C-15, C-17, C-18
17	79.1 (d)	3.29 (1H, brd, 2.3)	H _a -16, H _b -16	C-15, C-16, C-18, C-19, C-20
18	73.8 (s)			
19	24.8 (q)	1.17 (3H, s)		C-17, C-18, C-20
20	26.0(q)	1.20 (3H, s)		C-17, C-18, C-19

Table S3. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for lobatrientriol.

f1 (ppm)

]	$N ^{13}C$	$^{1}\mathrm{H}$	COSV	aHMBC
0.	δ (m)	δ (m, J Hz)	0031	ginvibe
1	40.7 (s)			
2	53.9(d)	2.01 (1H, dd, 4.0, 11.2)	H_{a} -3, H_{b} -3	C-1, C-6, C-7, C-8, C-10, C-11, C-12
3	34.1 (t)	1.60 (1H, m)	H-2, H _b -3, H4	C-2, C-4, C-5, C-10, C-13
		1.52 (1H, m)	H-2, H _a -3, H-4	C-1, C-2, C-4, C-5, C-10, C-12, C-13
4	43.2 (d)	1.86 (1H, m)	H_{b} -3, H_{a} -5, H_{b} -5	C-3, C-5, C-13
5	28.3 (t)	1.57 (1H, m)	H4	C-3, C-2, C-4, C-13
		1.48 (1H, m)	H-4	C-3, C-4
6	41.0 (t)	1.52 (1H, m)	H _b -6	C-2, C-3, C-5, C-7, C-8, C-10
		1.43 (1H, m)	H _a -6	C-2, C-3, C-5, C-7, C-8, C-10
7	17.2 (q)	1.01 (3H, s)		C-1, C-2, C-6, C-8
8	151.3 (d)	5.83 (1H, 10.9, 17.5)	H-9	C-1, C-2, C-6, C-7
9	110.5 (t)	4.90 (1H, dd, 1.4, 17.5)	H-8, H _b -9	C-1, C-8
		4.88 (1H, t, 1.4, 10.9)	H-8, H _b -9	C-1, C-8
10	148.6 (s)			
11	112.9 (t)	4.82 (1H, dq, 1.3, 2.9)	H_{b} -11, H_{3} -12	C-1, C-2, C-10, C-12
		4.60 (1H, brs)	H _a -11, H ₃ -12	C-1, C-2, C-10, C-12
12	25.4 (q)	1.71 (3H, brs)	H_{a} -11, H_{b} -11	C-1, C-2, C-10, C-11
13	142.5 (s)			
14	69.0 (t)	4.17 (2H, m)	H-15	C-4, C-13, C-15, C-16, C-17
15	117.7(d)	5.60 (1H, brddd, 1.2, 3.7, 3.8)	H-14	C-4, C-14, C-16, C-17
16	26.3 (t)	2.13 (1H, m)	H-15, H _b -16, H-17, H-14	C-13, C-15, C-17
		2.01 (1H, m)	H-15, H _a -16, H-17, H-14	
17	82.1 (d)	3.25 (1H, dd, 3.6, 10.7)	H-16	C-14, C-16, C-18
18	72.6 (s)			
19	25.7 (q)	1.17 (3H, s)		C-16, C-17, C-18
20	25.7 (q)	1.18 (3H, s)		C-16, C-17, C-18

Table S4. ¹H and ¹³C NMR data (300 MHz and 57 MHz, CD₃OD) for 14,18-epoxyloba-8,10,13(15)-trien-17-ol.

No	¹³ C	¹ H	COSV	aUMDC
110.	δ (m)	δ (m, J Hz)	COSY	grwide
1	40.8 (s)			
2	54.0 (d)	2.04 (1H, m)	H_{a} -3, H_{b} -3	C-1, C-3, C-5, C-6, C-7, C-10, C-11, C-12
3	34.6 (t)	1.66 (1H, m)	H _b -3, H4	C-1, C-2, C-4, C-5
		1.54 (1H, dt, 4.0, 6.7)	H-2, H _a -3	C-1, C-2, C-4, C-5, C-7
4	45.3 (d)	2.11 (1H, m)	H-15	C-2, C-13, C-14, C-15
5	28.4 (t)	1.64 (1H, m)	H _b -5, H-6	C-1, C-2, C-4
		1.50 (1H, m)	H _a -5	C-8, C-10
6	41.2 (t)	1.55 (1H, m)	H _a -5	C-1, C-2, C-4, C-5,
		1.44 (1H, m)		C-1, C-2, C-4, C-5, C-7, C-8, C-10, C-13
7	17.1 (q)	1.02 (3H, s)		C-1, C-2, C-8, C-9
8	151.5 (d)	5.84 (1H, 10.8, 17.5)	H-9	C-1, C-2, C-7
9	110.4 (t)	4.91 (1H, dd, 1.4, 17.5)	H-8	C-1, C-2, C-8
		4.89 (1H, t, 1.4, 10.8)	H-8	C-1, C-2, C-8
10	148.9 (s)			
11	112.7 (t)	4.81 (1H, brdq, 1.7, 3.0)	H _b -11, H ₃ -12	C-1, C-2, C-10, C-12
		4.60 (1H, brdq, 0.8, 3.0)	H _a -11, H ₃ -12	C-1, C-2, C-10, C-12
12	25.4 (q)	1.71 (3H, brdd, 0.8)	H _a -11, H _b -11	C-2, C-10, C-11
13	141.7 (s)			
14	62.5 (t)	4.71 (1H, dd, 3.7, 12.1)		C-4, C-13, C-15, C-22
		4.66 (1H, dd, 2.6, 12.1)		
15	129.1 (d)	5.71 (1H, brt, 7.2)	H _a -16, H _b -16	C-4, C-13, C-14, C-16, C-17
16	30.9 (t)	2.49 (1H, ddd, 2.4, 7.2, 15.2)	H-15	C-4, C-13, C-14, C-15, C-17, C-18
		2.13 (1H, ddd, 7.2, 10.1, 15.2)	H-14, H-15, H _a -16	C-13, C-14, C-15, C-18
17	79.6 (d)	3.31 (1H, dd, 2.4, 10.1)	H _a -16, H _b -16	C-15, C-16, C-18, C-19, C-20
18	73.7 (s)			
19	24.9 (q)	1.16 (3H, s)		C-14, C-18, C20
20	25.9 (q)	1.19 (3H, s)		C-14, C-18, C-19
OAc	172.9 (s)			
OAcMe	21.0 (q)	2.04 (3H, s)		C-22

Table S5. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for 14,17-epoxyloba-8,10,13(15)-trien-18-ol-18-acetate.

f1 (ppm)

N ^{13}C		$^{1}\mathrm{H}$	COSV	аНМВС				
0.	δ (m)	δ (m, J Hz)	6051	gnivibe				
1	40.8 (s)							
2	54.1(d)	2.03 (1H, dd, 3.1, 12.6)	H-3	C-1, C-2, C-4, C-7, C-10, C-11, C-12				
3	34.2 (t)	1.67 (1H, m)	H-2, H _b -3, H-4	C-1, C-2, C-4, C-5				
		1.48 (1H, m)	H _a -3	C-2, C-5				
4	49.3 (d)	1.98 (1H, m)	H _a -3, H-5	C-3, C-6, C-13, C-15				
5	28.0 (t)	1.54 (2H, m)	H-4, H _b -6	C-3, C-6, C-4, C-14				
6	41.2 (t)	1.53 (1H, m)	H _b -6	C-5, C-7, C-8				
		1.43 (1H, m)	H-4, H _a -6	C-1, C-2, C-4, C-7, C-8, C-10				
7	17.1 (q)	1.02 (3H, s)		C-1, C-2, C-6, C-8				
8	151.7 (d)	5.84 (1H, 10.8, 17.6)	H _a -9	C-1, C-2, C-6, C-7, C-8				
9	110.3 (t)	4.90 (1H, d, 1.4, 17.6)	H-8, H _b -9	C-1, C-2, C-8				
		4.86 (1H, t, 1.4, 10.8)	H-8, H _b -9	C-1, C-2, C-8				
10	149.1 (s)							
11	112.6 (t)	4.80 (1H, dq, 1.4, 3.2)	H _b -11, H ₃ -12	C-1, C-2, C-10, C-12				
		4.59 (1H, brs)	H_a-11, H_3-12	C-1, C-2, C-10, C-12				
12	25.3 (q)	1.71 (3H, brdd, 0.8, 1.4)	H_a-11, H_b-11	C-1, C-2, C-10, C-11				
13	141.8 (s)							
14	15.0 (q)	1.66 (3H, brd, 0.8)	H-15	C-4, C-13, C-15				
15	121.7(d)	5.38 (1H, ddq, 0.8, 6.3, 7.3)	H-4, H-14, H-16, H-17	C-4, C-14, C-16, C-17				
16	31.0 (t)	2.37 (1H, ddd, 2.4, 7.3, 14.8)	H-15, H _b -16, H-17	C-13, C-15, C-17, C-18				
		2.03 (1H, m)	H-15, H _a -16, H-17, H- 14	C-13, C-15, C-17, C-18				
17	80.0 (d)	3.29 (1H, d, 2.4)	H _a -16, H _b -16	C-15, C-16, C-18, C-19, C-20				
18	73.8 (s)	• • • •	··· · •					
19	24.9 (q)	1.16 (3H, s)		C-17, C-18				
20	25.8 (q)	1.19 (3H, s)		C-17, C-18				

Table S6. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for (17*R*)-loba-8,10,13(15)-trien-17,18-diol.

<u> </u>	√122.3 √122.3																40.9	~ 39.5 ~ 39.5		→ 29.2 26.5 26.2	~24.2	→16.7 →15.9	
S66 CD3	DEP [.] OD	TNMR	of Isar	cophyt	ol-B in																		
narion Manufiger	iglamin (A Window)	nophinenanna	winaan	ulternet til traditionet til bestalte	hyrllwiryindayolykwi	alanni) (no an Inden	larnarya baliya na h	n fi fin (n fin (n fin fin fin fin fin fin fin fin fin fi	ndramadanidaan	land man	Kallal forecastic and	Hiv lahi ni wanishi ka	hunnuluun	hibanallaphian	to the second second	nyttillan vir andra di		1.4 1.44401 400/404	alalaanay malya	WW-ANJAMMY4/W	handhamaan	ก _{างส} ุยงงูปท() _ส ุก _{ุม} ง	hunnulm
30 12	25 12	20 1:	15 1	10 10	05 10)0 9	59	0 8	58	07	5 7 f1 (pr	/ /0 6 om)	56	io 5	5 5	0 4	5 4	+ +0 3	5 3	0 2	5 2	0 1	5

Table S7. H and C NMK data (S00 MHz and 75 MHz, CD ₃ OD) for sarcophytor-B.									
	N ⁿ C	[•] H	COSY	gHMBC					
0.	<u>δ (m)</u>	ð (m, J Hz)		8					
1	146.4 (s)								
2	122.3(d)	6.16 (1H, d, 11.5)	H-3, H-13	C-1, C-4, C-14, C-15					
3	123.0 (d)	5.96 (1H, d, 11.5)	H-2, H-18	C-1, C-2, C-5, C-18					
4	136.5 (s)								
5	26.6 (t)	2.21 (1H, m)	H_{b} -5, H_{b} -6	C-3, C-6					
		2.05 (1H, m)	H-7, H _a -5	C-3, C-4, C-6, C-18					
6	40.9 (t)	2.23 (1H, m)	H _b -6, H-7	C-7, C-8					
		2.11 (1H, m)	H-7, H _a -5, H _a -6	C-5, C-7, C-8					
7	125.4 (d)	4.99 (1H, ddq, 1.1, 6.5, 8.5)	H_a -6, H_b -6, H_3 -19	C-6, C-10, C-19					
8	135.6 (s)								
9	39.5 (t)	2.19 (1H, m)	H _b -9	C-7, C-8					
		2.09 (1H, m)	H-10, H _a -9	C-8, C-11, C-19					
10	25.8 (t)	2.18 (2H, m)	H _b -9, H-11	C-11					
11	128.0 (d)	5.37 (1H, tq, 1.0, 11.9)	H _a -10, H _b -10, H-13, H ₃ -	C-9, C-10, C-13, C-21					
			20						
12	135.7 (s)								
13	78.5 (d)	3.84 (1H, d, 8.2)	H-11, H-14	C-1, C-11, C-12, C-14, C-20					
14	73.5 (d)	4.68 (1H, d, 8.2)	H-2, H-13	C-1, C-2, C-12, C-13, C-15					
15	29.2(d)	2.54 (1H, dq, 6.8, 13.7)	H-16, H-17	C-1,C-2, C-14, C-16, C-17					
16	24.2(q)	1.05 (3H, d, 6.8)	H-15	C-1, C-15, C-17					
17	26.2 (q)	1.12 (3H, d, 6.8)	H-15	C-1, C-15, C-16					
18	16.3 (q)	1.73 (3H, d, 1.0)	H-3	C-3, C-4, C-5					
19	15.9(q)	1.47 (3H, brs)	H-7	C-7, C-8, C-9					
20	16.7 (g)	1.64 (3H, d, 1.1)	H-11	C-11, C-12, C-13					

Table S7. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for sarcophytol-B.

Ν	¹³ C	$^{1}\mathrm{H}$	COSV	aUMDC
0.	δ (m)	δ (m, J Hz)	COST	gnwibe
1	147.8 (s)			
2	120.1(d)	6.27 (1H, d, 10.1)	H-3	C-1, C-3, C-4, C-14, C-15
3	121.6 (d)	5.81 (1H, d, 10.1)	H-2, H-18	C-1, C-2, C-5, C-18
4	138.9 (s)			
5	39.2 (t)	2.20 (2H, m)	H _a -6	C-3, C-4, C-6, C-18
6	26.0 (t)	2.32 (1H, m)	H _b -6, H-5	C-4, C-5, C-7, C-8
		2.20 (1H, m)	H _a -6	C-4, C-5, C-7, C-8
7	128.4 (d)	5.28 (1H, brt, 5.7)	H_{a}^{-} -6, H_{b} -6, H_{a} -9, H_{3} -19	C-5, C-9, C-19
8	134.5 (s)			
9	37.8 (t)	2.26 (1H, m)	H-7, H _b -9, H _b -10	C-7, C-8, C-10, C-11, C-19
		2.21 (1H, m)	H _a -9	
10	25.3 (t)	1.96 (1H, m)	H _b -9, H _b -10, H-11	C-9, C-13, C-20
		1.53 (1H, m)	H _a -9, H _a -10, H-11	C-11
11	62.8 (d)	2.94 (1H, dd, 3.9, 8.8)	H_{a} -10, H_{b} -10	C-10
12	63.0 (s)			
13	40.0 (t)	2.11 (1H, m)	H _b -13	C-1, C-2, C-11, C-12, C-13, C-15
	~ /	1.35 (1H, m)	H _a -13, H-14	C-11, C-12, C-14
14	24.5 (t)	2.13(2H, m)	H _b -13	C-1, C-2, C-12, C-13, C-15
15	74.2(s)		-	
16	29.9 (q)	1.32 (3H, s)		C-1, C-14, C-15
17	30.0 (q)	1.32 (3H, s)		C-1, C-14, C-15
18	18.0 (q)	1.74 (3H, brs)	H-3	C-3, C-4, C-5
19	15.2(q)	1.69 (3H, brs)	H-7	C-7, C-8, C-9
20	17.6 (q)	1.27 (3H, s)		C-11, C-12, C-13

Table S8. ¹H and ¹³C NMR data (300 MHz and 75 MHz, CD₃OD) for 1(*E*),3(*E*),7(*E*)-11,12-epoxycembratrien-15-ol.