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Abstract: Glycomics turned out to be a very extensive project where its subdivision is 

consequently emerging. This is seen by the growing number of terminologies used to 

define subprojects concerning particular classes of bioactive carbohydrates. Sulfated fucans 

(SFs) and sulfated galactans (SGs) are relatively new classes of sulfated polysaccharides 

(SPs) that occur mostly in marine organisms, and exhibit a broad range of medicinal 

effects. Their structures are taxonomically dependent, and their therapeutic actions include 

benefits in inflammation, coagulation, thrombosis, angiogenesis, cancer, oxidation, and 

infections. Some red algae, marine angiosperm and invertebrates express SPs of unique 

structures composed of regular repeating oligomeric units of well-defined sulfation 

patterns. This fine pattern of structural regularity is quite rare among any naturally 

occurring long SPs, and enables accurate structure-biofunction correlations. Seeing that, 

fucanomics and galactanomics may comprise distinguished glycomics subprojects. We 

hereby discuss the relevance that justifies the international recognition of these subprojects 

in the current glycomics age associated with the beneficial outcomes that these glycans 

may offer in drug development. 

Keywords: fucanome; fucanomics; galactanome; galactanomics; glycome; glycomics; 
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1. Fucanome and Galactanome: Getting into Glycomics 

After many “ome” projects such as genome, metagenome, transcriptome, proteome, lipidome and 

metabolome, glycome has ultimately launched itself into the world of biology. Glycome is the specific 
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project that deals with carbohydrates or glycosylated molecules [1]. It is generally defined as a set of 

glycans or glycoconjugates expressed by a living form (cell, tissue, organ, or organism) under certain 

circumstances [1]. Likewise, glycomics is defined as the comprehensive structural and functional 

studies of glycome(s) of individual or group of organisms [1,2]. Based on clear evidences, glycomics 

are so far bringing more challenges than the first “omics” [3]. This is particularly due to: (i) higher 

structural complexity and the flexibility of glycans, which consequently make data interpretation more 

difficult [3,4]; (ii) lack of a clear automatic sequencing method for complex carbohydrates as opposed 

to those routinely employed for nucleic acids (in genomics) and proteins (in proteomics) [3];  

(iii) existence of innumerable, possible determinants in the biosynthesis of glycans which usually allows 

multiple questionings [1–3]; and (iv) existence of many sub-classes of glycans or glycoconjugates [3,5]. 

Because of these generally overwhelming challenges, a tendency to undertake or provide sectorized 

emphasis into sub-classes of glycans has consequently and naturally emerged in glycomics [3,5–13]. 

Empirical subprojects defined by novel terminologies are spreading across the community, and they 

aim to deal essentially with particular sub-classes of bioactive carbohydrates. Recent nomenclatures that 

are coming into common use are Proteoglycanome [6], Glycosaminoglycanome [7], Heparanome [8–10], 

Glycolipidome [13], Glycoproteome [12], and Sialome [11]. Glycomics seems perhaps to be ultimately 

evolving more as a conjunction of isolated or individualized works [3,5,11,14] rather than just a single 

compact ongoing project. The propensity to adopt such subdivisions and terminologies seems to be 

less evident than in the other “omics”. 

Sulfated fucans (SFs) and sulfated galactans (SGs) are classes of sulfated polysaccharides (SPs) 

composed essentially of α-L-fucopyranosyl (Fucp), or α-L-, α-D-, β-D-galactopyranosyl (Galp) units, 

respectively. SFs and SGs are distinct from the majority of other glycans in the following aspects: 

(i) relatively young and short literature timeline; 

(ii) basically found in marine organisms in which the structures are taxonomically related; 

(iii) fine and very rare patterns of structural regularity in certain cases; 

(iv) broad range of therapeutic actions with high levels of effectiveness in certain assays; 

(v) well-defined SFs and SGs achieve advanced structure-biofunction correlations more easily. 

In accordance with the actual tendency for assuming subprojects in the current glycomics age, and 

due to the five above-cited features, we herein propose the dissemination of the terms Fucanome and 

Galactanome, and of the respective projects Fucanomics and Galactanomics, each concerning SFs and 

SGs, respectively. These SPs have gained some international recognition and are now under 

investigation in laboratories of many countries. From now on, we hereby discuss in detail the main 

characteristics of SFs and SGs that justify the investments into their research in the current glycomics 

age. We also give appropriate arguments for international assimilation of such projects into a closer 

collaborative network, and suggested topics for discussion in future glycoscientific events. 

1.1. SFs and SGs: Young Molecules of Glycobiology 

The bulk interest in structural and biological studies of SFs and SGs effectively began in the early  

90’s [15]. This particularly results from the worldwide advancement of glycobiology, particularly due 

to the dissemination and progress of powerful analytical tools such nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS), associated with the promising medicinal properties of SFs 
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and SGs [15–21]. Research from some two decades has not been enough to make these SPs as 

internationally prominent as other bioactive carbohydrate classes, such as sialylated glycans or 

glycosaminoglycans (GAGs). Even though the SFs and SGs may show distinguished structural and 

biomedical properties, as discussed here, the latter classes are more widely recognized because of their 

natural physiological roles in humans. Specific terms therefore arose to define particular subprojects of 

these latter glycans: Sialomics [11], and Glycosaminoglycanomics [7], respectively. An even 

hierarchically lower subproject of Glycosaminoglycanomics, and in turn of Proteoglycanomics, have 

appeared: Heparanomics, which aims to deal with the bioactive domain of heparan sulfates [3,6,8–10]. 

The similar use of Fucanomics and Galactanomics still remain, but shall be disseminated across the 

international glyco-society, because of the uniqueness in both structures and functions of SFs and SGs. 

1.2. Marine Taxonomic Distribution of SF and SG Structures 

The richest sources of SFs and SGs are marine organisms, and their lack of occurrence in terrestrial 

mammals, especially humans, is two of the reasons for the narrow international fame of these glycans. 

Considering only the marine environment, SFs and SGs are expressed by macroalgae, marine 

angiosperms and invertebrates [16]. However, few outside works have reported the occurrence of SGs 

in bacteria and fungi as well [22]. Virtually ubiquitous in cell walls of all macroalgae, SFs have been 

synthesized in brown seaweeds (Phaeophyceae), in which they are also commonly known as  

fucoidans [16,18–20]. Whereas in green (Chlorophyceae) and red seaweeds (Rhodophyceae) only SGs 

have been found so far [16,19,21]. However, SFs and SGs can both be found in invertebrate animals, 

such as ascidians (also known as sea squirts or tunicates) (Urochordata, Ascidiaceae), sea cucumber 

(Echinodermata, Holothuroidea) and sea urchins (Echinodermata, Echinoidea) [16,20,21]. In ascidians 

and sea cucumbers, these SPs are known to participate in the structural assemblies of their body  

walls [15], most probably assembling the cell walls in macroalgae. In sea urchins, these SPs have been 

found building the jelly coat that surrounds the female gametes, and are known to participate in  

species-recognition during the initial steps of the fertilization process of these animals [15]. Marine 

angiosperms (Angiospermae, Spermatophyta) are another potential source for SGs, as evidenced by 

the work of Aquino et al. [23]. However, the lack of additional reports compromises the definitive 

assertion of marine superior plants as a confident source for this material. Again, as in algae, the 

angiosperm SGs contribute to build-up of cell walls in different tissues [24]. With no exceptions so far, 

SFs and SGs have unequivocally been shown to exist as essential components of the extracellular 

matrices in these marine organisms [16]. 

The structures of SFs and SGs are directly dependent on the species in which they occur, but some 

general aspects are still restricted to the phyla [15,16]. SFs from brown algae are usually the most 

complex molecules, even though mostly consisting of L-Fucp units. The presence of other 

monosaccharide types associated with occasional sparse branches enhances structural complexity. The 

occurrence of repetitive units in brown algal SFs is somewhat still uncertain, but evidence supporting 

such a concept has appeared along the past few years, at least in certain species [16]. This is most 

likely a consequence of the advances in instrumentation and methods capable for the structural 

analysis of complex carbohydrates. Nonetheless, the currently proposed oligomeric repeating motifs of 

certain fucoidans still show high degrees of heterogeneity (Table 1). Regardless of structural patterns, 
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brown algal SFs are the most abundant SPs in the sea, and perhaps across the entire globe, since brown 

seaweeds by far dominate the sea environment in both number of species (1.5 to 2 thousand) and 

biomass [16], as the sea environment totals more than two-thirds of the planet. 

Table 1. Illustrative examples of repetitive units currently assumed for famous 

phaeophyceae species.  

Brown Seaweed 
Species 

Proposed Repetitive Structure Ref. 

Ascophylum 
nodosum 

[→4-α-L-Fucp-2,3di(SO3
−)-1→3-α-L-Fucp-2(SO3

−)-1→]n + branches of  
non-sulfated α-L-Fucp 

[24] 

Fucus 
evanescences 

[25] 

Fucus 
vesiculosus 

[24] 

Ecklomia kurome [→3-α-L-Fucp-2R,4(SO3
−)-1→]n, where R = H or SO3

− [26] 

Chorda filum [→3-α-L-Fucp-2R1,4R2-1→3-α-L-Fucp-2R1,4R2-1→3-α-L-Fucp-2R1,4R2-1→ 
3-α-L-Fucp-2(→1-α-L-Fucp-2,4diR2), 4R2-1→3-α-L-Fucp-2R1,4R2-1→]n, where 
R1 = H or SO3

− or COCH3,
 and R2 = H or SO3

− 

[27] 

The discovery of SGs in green algae is quite recent. Codium has been the genus most studied so  

far [15,28–30]. Green algal SGs usually show structures that are much less complex than those of 

brown algal SFs, but still more complex than those of red algal SGs, as discussed below [16,21]. 

Although no clear evidence that regular sequences really exist in green algal SG backbones, some 

clues have favored the concept of chains predominantly composed of 4-sulfated 3-linked β-D-Galp  

units [15,29,30]. However, these chains may still bear high degrees of heterogeneity, like pyruvylated 

non-reducing terminal residues, and occasional branches. Sulfation positions other than those at C4 

may also occur and increase complexity as well [29,30]. 

Among the three macroalgal classes, red seaweeds are most likely the only class able to really 

express SPs in regular backbones [21]. Like GAGs, red algal SG backbones are normally composed in 

disaccharide repeating units, but of alternating 3-linked β-D-Galp and 4-linked α-D- or  

α-L-Galp units [16,21]. The possible presence of an extra-bond between C3 and C6 of the same ring 

leads to the 3,6-anhydro-Galp (3,6-AnGalp) unit that can occur only at the 4-linked Galp unit. The 

enantiomeric variation, D- or L-, in this 4-linked unit respectively results in the nomenclature 

“carrageenan” or “agaran”. The names carrageenose or agarose are respectively related to these 

molecules when 3,6-AnGalp units occur along them [21]. Sulfated esters and/or occasionally methyl 

esters may occur at the 2- and/or 4-position(s) of the 3-linked Galp units. These same substituents may 

be placed at 2-, 3-, and/or 6-position(s) of the 4-linked Galp units as well. All these structural 

variations comprise the main heterogeneities in red seaweed SGs. But since the sugar chains of these 

polymers are regularly composed of repeating disaccharides, the difficulties in structural 

characterization are significantly diminished, compared to those from the other algal classes. In works 

concerning structural characterization of red algal SGs, these glycans have usually been extensively 

characterized, generally through a combination of NMR spectroscopy, particularly 13C-based spectra, 

with data analysis generated from chemical reactions [31–33]. 
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1.3. Rare Structural Regularity among Polysaccharides of High-Molecular Weights 

According to what has been stated before, the structural simplicity in macroalgal SPs rises in the 

following order: brown algal SFs, green algal SGs and red algal SGs. But even though red algae 

express SGs in disaccharide repeating units, there are still certain degrees of heterogeneity that impairs 

the arrival of a totally regular structural design. However, most likely through the steps of evolution, 

this complete structural pattern of regularity became noticeable in SPs from superior plants and from 

some marine invertebrates [21,23], probably due to a more organized or even simpler biosynthetic 

machinery in these latter organisms [15,16]. 

Table 2 depicts some illustrative examples of SF and SG of well-defined structures. It is clearly 

seen that the structures occur through a species-specific manner, varying in sulfation patterns (but 

always restricted to 3-O-, 2-O- and/or 4-O-positions), in glycosidic linkages [α(1→3), α(1→4), and 

β(1→3)], in repetitive oligomeric lengths (tetrasaccharides, trisaccharides, disaccharides, and 

monosaccharides), and sometimes in the presence of short branching segments such as the structure of 

Styela plicata, but still conserving the fine pattern of regularity. The molecular weight (MW) of these 

polymers, although quite polydisperse, are commonly very high, frequently ranging above 100 kDa. In 

polymers composed of a repetitive tetrameric unit as observed for echinoderms Ludwigothuria grisea 

and Lytechinus variegatus (Table 2), the chain extension of such glycans would range approximately 

over 100 tetrameric units. Certain red algae express SGs with quite regular structures, and thus must be 

gathered at the list of Table 2 as well. Overall, these fine patterns of regularity are very rare among 

naturally-occurring long polysaccharides. 

Table 2. Oligomeric repetitive units of SFs and SGs from the echinoderms: sea urchins 

(Echinoidea), and sea cucumber (Holothuroidea); from red algae (Rhodophyta): marine 

superior plant (Angiospermae), and ascidians, also known as tunicates (Ascidiacea).  

Species (Class) Structure Occurrence Ref. 

Ludwigothuria grisea 

(Holothurioidea) 

[→3)-α-L-Fucp-2,4(OSO3
−)-(1→3)-α-L-Fucp-(1→3)-α-L-Fucp-

2(OSO3
−)-(1→3)-α-L-Fucp-2(OSO3

−)-(1→]n 

Brazil [34] 

Strongylocentrotus 

purpuratus II (Echinoidea) 

[→3)-α-L-Fucp-2,4di(OSO3
−)-(1→3)-α-L-Fucp-4(OSO3

−)-(1→3)-

α-L-Fucp-4(OSO3
−)-(1→]n 

USA [35] 

Strongylocentrotus 

purpuratus I (Echinoidea) 

80% [→3)-α-L-Fucp-2,4di(OSO3
−)-(1→]n and 20%  

[→3)-α-L-Fucp-2(OSO3
−)-(1→]n 

USA [35] 

Strongylocentrotus 

franciscanus (Echinoidea) 

[3)-α-L-Fucp-2(OSO3
−)-(1→]n USA [36] 

Strongylocentrotus 

droebachiensis 

(Echinoidea) 

[→4)-α-L-Fucp-2(OSO3
−)-(1→]n USA, 

Norway 

[37] 

Strongylocentrotus 

pallidus (Echinoidea) 

[→3)-α-L-Fucp-2(OSO3
−)-(1→3)-α-L-Fucp-2(OSO3

−)-(1→3)-α-

L-Fucp-(1→3)-α-L-Fucp-(1→]n 

USA, 

Norway 

[37] 

Lytechinus variegatus 

(Echinoidea) 

[→3)-α-L-Fucp-2(OSO3
−)-(1→3)-α-L-Fucp-2(OSO3

−)-(1→3)-α-

L-Fucp-4(OSO3
−)-(1→3)-α-L-Fucp-2,4di(OSO3

−)-(1→]n 

Brazil [34] 

Arbacia lixula 

(Echinoidea) 

[→4)-α-L-Fucp-2(OSO3
−)-(1→4)-α-L-Fucp-2(OSO3

−)-(1→4)-α-

L-Fucp-(1→4)-α-L-Fucp-(1→]n 

Brazil [38] 
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Table 2. Cont. 

Echinometra lucunter 

(Echinoidea) 

[→3)-α-L-Galp-2(OSO3
−)-(1→]n Brazil [38] 

Glyptosidaris crenularis 

(Echinoidea) 

[→3)-β-D-Galp-2(OSO3
−)-(1→3)-β-D-Galp-(1→]n Japan [39] 

Botryocladia occidentalis 

(Rodophyta) 

[→3)-β-D-Galp-2R1-3R2-(1→4)-α-L-Galp-2R3-3R4-(1→]n,  

where R1–4 = OSO3
−

 or OH, R1 and R2 = OSO3
− in ~66%, and 

~33%, respectively. 

Brazil [40] 

Gelidium crinale 

(Rodophyta) 

[→3)-β-D-Galp-2R1-4R2-(1→4)-α-L-Galp-2R3-3R4-(1→]n,  

where R1–4 = OSO3
−

 or OH, R1 and R2 = OSO3
− in ~60%, and  

~15%, respectively. 

Brazil [41] 

Gigartina skottsbergii and 

G. chamissoi (Rodophyta) 

[→3)-β-D-Galp-2R1-4R2-(1→4)-α-D-Galp-2R3-6R4-(1→]n,  

where λ-carrageenan R1, R3 = OSO3
−

 and R2, R4 = OH;  

µ-carrageenan R1, R3 = OH, and R2, R4 = SO3
−; ν-carrageenan  

R1 = OH and R2, R3, R4 = SO3
−; κ-carrageenan R1, R3 = OH and 

R2 = OSO3
−; ι-carrageenan R1 = OH and R2, R3 = OSO3

−. κ- and 

ι-carrageenans have 4-linked α-D-Galp units cyclized as  

3,6-anhydro: whereas µ- and ν- are just partially cyclized. 

Argentina, 

others 

[42,43] 

Rupia maritma 

(Angiospermae) 

[→3)-β-D-Galp-2(OSO3−)-(1→4)-α-D-Galp-(1→4)-α-D-Galp-

(1→3)-β-D-Galp-4(OSO3−)-1→]n 

Brazil [23] 

Styela plicata (Ascidiacea) {→4)-α-L-Galp-2[→1)-α-L-Galp]-3(OSO3
−)-(1→}n Brazil [44] 

Hedmania monus 

(Ascidiacea) 

[→4)-α-L-Galp-3(OSO3
−)-(1→]n Brazil [45] 

1.4. The Impressively Wide Range of Medicinal Effects of SFs and SGs 

Besides the natural actions of SFs and SGs in their own organisms of occurrence, these glycans 

have shown potential medicinal effects. In fact, they have been targets of research by many 

international groups, strictly due to their therapeutic promise. As the SFs and SGs consist of highly 

negatively-charged molecules, they have biophysical capacity to electrostatically interact with many 

health/disease-related basic proteins, or with positively-charged structural assemblies, such as the 

positive regions of virus particles. Although these electrostatic interactions depend essentially on a 

difference of net charge, such as sulfation density vs. basic amino acid content, it has been clearly 

proven in the past few years that the molecular interactions involving SFs and SGs are, in fact, mainly 

stereospecific (directly dependent on sulfation and glycosylation sites, anomericity, and 

monosaccharide-type composition), and not a mere consequence of the bulk charges related to 

sulfation degrees [15]. We briefly present below the general biochemical mechanisms of SFs and SGs 

in their main studied medical actions. It is noteworthy that the definitive mechanisms underlying the 

biomedical properties of these glycans are still under investigation. 

1.4.1. Inflammation 

In anti-inflammatory actions, possible mechanisms have been postulated by which SFs and SGs 

may affect the leukocyte recruitment to sites of injury where inflammation normally evolves [46]. The 

ability of SFs and SGs to prevent selectin-mediated cell-cell interactions was successfully evidenced 
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by some in vitro experiments using brown algal SFs [46]. These molecules have proved to bind 

directly to purified and membrane-exposed P- and L-selectins [46,47], but curiously not to  

E-selectins [48]. The interaction of SFs and SGs with specific selectins points toward the concept of a 

selective beneficial action of these glycans in inflammation, and consequently supports the advantages 

of selectivity in drug candidates. The binding of these glycans at selectins therefore impairs the 

consequential selectin-mediated cell migration of the activated leukocytes to go further to the specific 

sites of injury. There is also a current hypothesis that exogenous SPs, like marine SFs and SGs, might 

compete with GAG molecules from cell surface proteoglycans for cytokine/chemokine bonds. This 

consequently arrests the correct formation of cytokine/chemokine gradients necessary for leukocyte 

activation and migration. 

1.4.2. Hemostasis and Vascular Biology 

Disorders related to the cardiovascular system and hematology, are the major cause of human death, 

accounting for around one-third of the total. Despite many downsides, GAG-type heparin is the most 

exploited biomolecule for treating these disorders. Heparin has a narrow therapeutic window and a 

highly variable dose-response relationship, necessitating frequent coagulation monitoring during its 

administration. The main side-effects of this drug are hemorrhage, thrombocytopenia and osteoporosis. 

Moreover, the heparin sources utilized for large-scale production are very limited. It is obtained from 

pig intestine or bovine lung, and contamination of samples with pathogens is a serious concern in the 

extraction procedure from these sources [49,50]. The situation was further complicated recently due to 

contamination of heparin preparations with over-sulfated chondroitin sulfate [51]. This contaminant is 

severe since it induces hypotension associated with kallikrein release when intravenously injected [52]. 

New alternatives for treatments of diseases related to the cardiovascular system are therefore urgently 

required, and, in addition, SFs and SGs also display efficient levels in anticoagulation [15,16,49,50]. In 

fact, it is these marine glycans’ biomedical effects as anticoagulants and antithrombotics that have 

been the most studied so far [15,16,46,49,50]. Their mechanisms of action most likely resemble the 

anticoagulant action of heparin, which potentiates the catalytic rates of natural blood inhibitors: the 

serpins antithrombin and heparin cofactor II [15,16,49,50,53,54]. However, in addition to this action, a 

serpin-independent anticoagulant mechanism was recently discovered for a red algal SG [55]. This 

novel mechanism is still unclear, but points toward a concept of the ability of this SG to blocking 

intermolecular complexes involving blood co-factors in initial steps of the coagulation cascade, such as 

the intrinsic pro-coagulant tenase and protrombinase complexes [55]. 

1.4.3. Angiogenesis 

SFs and SGs have shown the ability to inhibit the formation of neovascularization, mainly by 

interfering in the necessary binding of molecules responsible for angiogenesis, such as vascular 

endothelial growth factors (VEGFs) [46,56], and/or basic fibroblast growth factors (bFGFs) [46,57], to 

their respective receptors. These molecular interventions have proved of huge clinical interest, 

especially for inhibiting the consequential feeding of tumor-affected areas in cancer-committed 

patients. In the report of Cumashi and co-workers [46], through a systematic and comparative 

tubulogenic assay using human umbilical vein endothelial cell (HUVEC) in culture, incubated with 
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fucoidans of different structures, it has been shown that the angiogenic effects of brown algal SFs are 

highly stereospecific. The antiangiogenic effects of a green algal SG (again genus Codium) have also 

been demonstrated [58]. 

1.4.4. Tumor Progression and Spreading 

The clearest mechanisms of SPs as potential candidates in anti-tumor therapies are most likely 

related to the inhibitory action of these glycans on tumor vascular networks, as evidenced by reduced 

rates in hemoglobin content in the affected areas using fucoidans [59]. Besides this neovascularization 

inhibiting function, fucoidans have proved to synergically reduce tumor spreading. This was observed 

through in vitro assays of cell-adhesion using highly metastatic breast cancer cell lines capable of 

binding normally onto human platelets fixed in a Matrigel. In some tests in which differential fractions 

of fucoidans were added, the binding property of the tumor cells can be abolished or reduced [59]. The 

ability of certain fucoidan-derivatives to interfere with breast cancer cell adhesion onto platelet-coated 

surfaces favors the concept that specific internal bioactive structural motifs of brown algal SFs really 

exist, and are responsible for combating metastasis [59]. This same experiment type was carried out 

using nine different fucoidans and heparin [46]. The authors observed that SFs from five specific 

brown algal species were able to reduce approximately 80% of the cell adhesion of tumor cells onto 

human platelet-coated plates [46]. The effectiveness reached by these fucoidans in tumor cell-adhesion 

was significant, and even higher than that achieved by highly sulfated glycans such as heparin, 

corroborating again the structural specificity in such clinical actions, rather than just a consequence of 

simple net charges. 

1.4.5. Antioxidation 

Recent reports have pointed out the ability of algal SGs to reduce oxidation levels through  

in vitro assays that might resemble the mechanisms of oxidative stress in mammals [60–64]. These 

reports have shown that these marine SPs are capable of inhibiting hydroxyl and superoxide radical 

formation or to chelate oxidant iron ions such as Fe(II), thus impairing their prompt oxidative effects in 

metabolisms, and consequently preventing their damaging effects on health. The primary antioxidant 

action of these glycans seems to be notably dependent on their charge nature, and future work must be 

done to prove the possible structural or conformational behavior of these SPs in such activities. The 

description of antioxidative effects of these marine SPs heavily corroborates the concept of 

Fucanomics and Galactanomics as promising projects of glycomics in terms of their medicinal impact, 

but, above all, supports the consumption of marine algae as food supplements—mainly because of the 

beneficial nutraceutical components contained in these organisms, such as antioxidants. 

1.4.6. Infections 

Infections and parasitic diseases are the second largest cause of death in humans, accounting for 

around one-fourth of the total. SFs and SGs have shown effects in preventing infections of viral  

origin [21,65,66], and bacterial origin, including those caused by Staphylococcus aureus [67]. The 

main mechanisms behind the antiviral activity of the reported algal SFs have been speculated to be 
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through the binding properties of the sulfated glycans to positive regions of the viral particles during 

the adsorption period [21,65,66]. This SP-bonded virus particle loses its virulence in attaching to the 

host cells. Thus the consequent internalization of the virus particles, which would ultimately leave the 

infection progression, is blocked. As far as we know, no clear structure-function relationships have 

been achieved regarding this pharmacological activity. Nonetheless, it has been reported that certain 

structures may show more effectiveness in viral inhibition than others [21]. Although there is some 

speculation that marine SFs and SGs can act as antiprotozoal or antifungal agents, no solid evidence 

exists so far supporting these activities. Their antibacterial action is also unclear as well. 

2. Conceptions in Fucanomics and Galactanomics 

Fucanomics and Galactanomics would be defined specifically as international subprojects of 

glycomics, comprising a systematic, compiled body of research about the structures, functions and 

metabolic paths involving SFs and SGs, respectively. This should be done using as many different 

species as possible. The characterization, notation and deposition of the structures would result in a 

large library of bioactive glycans from the sea. Based on the current definition of glycomics, this 

project about structural notation related to scientific names of the respective species adequately fits 

into the field of glycomics [1]. 

As detailed below, the intense research and publication of biomedical properties and mechanisms of 

SFs and SGs would represent a large, if not the most valuable, task of Fucanomics and Galactanomics. 

Additionally, an understanding about the regulative mechanisms involved in the biosynthesis of SFs 

and SGs, and the consequent impact of such mechanisms on the structural features, and in turn on the 

resultant biomedicinal properties of these glycans, would comprise another important objective of 

research. In fact, some reports concerning structural and functional changes influenced by either 

environmental or biological conditions have already started to emerge [68–71]. 

Annual seasons (winter vs. summer) have been demonstrated to be influential in sulfation patterns 

of sea urchin SFs, and thus a hypothetical controlling season-related mechanism in reproducing this 

invertebrate was raised [69]. Seasonal changes were also documented to be influential in structures of 

algal SFs and SGs, but still with no clear reasons [70]. The changes in sulfation density and 

consequently in both structural and functional properties of SGs in marine angiosperms were recently 

reported to be directly coupled to variations in salinity levels of the estuary regions which these 

organisms naturally inhabit [68]. Metal contamination in polluted areas has been shown to be 

influential in the expression of algal SPs, and hence in their respective abundance in cell walls [71]. 

These two last observations raise speculation about sulfation content of these glycans, somewhat 

related to the balance of counter-ions in the environment in which these polymers have been 

synthesized. In any event, unveiling these influential mechanisms associated with the task of 

deciphering the unknown biosynthetic routes of SFs and SGs would consequently give to Fucanomics 

and Galactanomics the proper knowledge to better handle and explore the beneficial properties of SFs 

and SGs. This is the rational research conduct in drug development based on naturally occurring 

carbohydrate-based molecules that might show possible structural variations dependent on external 

factors. The achievements from delineated researches might provide a boost to the current medicinal 

status-quo of SFs and SGs. 
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3. What Make Fucanomics and Galactanomics Special Glycomics Subprojects? 

At first glance, the full structural assignment of an over 400 residue-complex glycan would appear 

to be an impossible mission for any glycoscientist. However, structural patterns based on oligomeric 

repetitions (Table 2) can greatly reduce the obstacles in structural studies involving complex 

carbohydrates. This regular pattern makes the structures of long glycans more manageable to common 

analytical practices, thus facilitating data interpretation [15,17]. Even though the glycans listed in 

Table 2 apparently show some relative structural simplicity, the diversity in structural forms and 

sulfation patterns is still high. Such variety still keeps both the species-specific identity and the 

capacity of these glycans to achieve biological actions through their structural “codes” [15]. This was 

initially and successfully accomplished in data interpretation of sea urchin fertilization through 

species-specific acrosome reactions [15,16,36,37] It seems to be similarly useful to understand the 

differential effective levels in medicinal properties of SFs and SGs [15,16]. 

Among naturally occurring bioactive high-MW SPs described so far in glycobiology, GAGs for 

example, SFs and SGs are even more unique in terms of structural patterns, together with their potent 

medicinal properties, from the viewpoint of achieving accurate structure-function correlations [15,16]. 

The consequent accuracy in structural-biofunction relationships can be exemplified by the amplified 

anticoagulant effect of SFs carrying lower proportions of Fucp residues, exclusively  

2-O-sulfonated [15,16]. 

It is worth highlighting that the majority of the work undertaken so far to study the biomedical 

properties of marine SFs and SGs (section 1.4), has used molecules extracted from algae with a high 

degree of heterogeneity [46–67]. Although algal molecules may reach great levels of effectiveness in 

certain assays, their structure-function correlations are more difficult to determine. On the other hand, 

the use of well-defined SFs and SGs from invertebrates, and a few red algal species (Table 2), have 

enabled more confident propositions [15,16]. This places Fucanomics and Galactanomics as quite 

distinct subprojects as compared to other “glycan-omics”, especially for those that may show 

therapeutic action [3,5,6–11]. It also comprises a huge step of glycomics towards the next pre-clinical 

testing of carbohydrate-based drug candidates, once potential bioactive glycans can be presented 

together with their respective biomedical mechanisms, and accurately studied through reliable 

structure-biofunction relationships. 

4. The Impact of Drug Development in Glycomics 

Glycomics would lose some of its major impact if the medicinal uses of exogenous glycans were 

left aside. In the case of GAG molecules, however, the importance of such therapeutic actions, of 

carbohydrate-based molecules has already been discussed previously [7]. It is worth remembering that 

GAG heparin is the second most used (to peptide insulin) natural macromolecule in medicine. Heparin 

naturally occurs in mast cells, and seems to have a primary key role in inflammation and allergic 

reactions [72]. However, due to its great affinity to the thrombin-inhibitor, antithrombin [73], 

unfractionated heparin and its low-MW derivatives are clinically explored for stopping the clotting 

processes in patients undergoing extracorporeal circulation during surgery or renal dialysis [74]. The 

low molecular variants of heparins also serve as the primary treatment of deep vein thrombosis, since 
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these molecules contain more antithrombin-binding motifs per chain unit. As a consequence of the 

high incidence of thromboembolic disorders, especially in developed countries, there is a large-scale 

production of heparins. But due to some side-effects of this drug, new alternative anticoagulant agents 

are needed (Section 1.4.2) [15,16]. Anticoagulant effects have also been observed for some SFs and 

SGs, although at lower potencies than heparins, but clearly with lower side-effects also (Section 1.4.2). 

In addition, as opposed to heparin that can exhibit a high risk of contamination because of its 

mammalian origin, the SFs and SGs present an additional advantage over this GAG type: they are basically 

isolated from marine organisms which results in a much lower incidence of contaminants [15,16,50]. 

Such clinical benefits of SFs and SGs in anticoagulation likely in other biomedical functions (Section 1.4) 

are relevant contributing elements from Fucanomics and Galactanomics as from glycomics. The 

development of drugs based on natural occurring carbohydrates should be one of the greatest 

objectives of these projects, mainly because of their direct implications to human health. 

5. Future Approaches of Fucanomics and Galactanomics 

Because of the relatively recent description of SFs and SGs, many tasks have yet to be 

accomplished in Fucanomics and Galactanomics. One would be the prompt depositing of structures 

already characterized (Table 2) in an informative public carbohydrate databank. The deposition of 

structures related to their scientific names would end up in a valuable library of potential biomedical 

glycans to be shared with many laboratories in the world, thus speeding up data generation and 

collaborative networks regarding the science of SFs and SGs. 

Another task would be research on the biosynthetic mechanisms of SFs and SGs. As opposed to 

GAGs, in which all steps are well-known at such a level that enables even proper manipulation of the 

biosynthetic systems for different purposes [75], the biosynthesis pathways of SFs and SGs are 

virtually unknown. Although some information about sea urchin (sulfo)transferases [76] and precursor 

nucleotide-sugars may exist, the biosynthetic routes of these glycans seem still to be unknown. 

Clarification of the abiotic and biotic determinants in molecular biology of SFs and SGs comprises 

another fruitful research line, as described in section 2. 

Another task would be an attempt to establish some concise phylogenetic relationships between SFs 

and SGs. For instance, up to now, only linear SFs or SGs have occurred in echinoderms. In echinoidea 

(sea urchins), the structures are limited to a very short set of characteristics: only  

2-O- and/or 4-O-sulfonation, together with a few types of glycosidic bonds (either α(1→3), or α(1→4), 

or β(1→3)) [15,16]. This observation raises the hypothesis of a possible short number of 

(sulfo)transferases in these invertebrates and the concept of very organized or simpler biosynthetic 

machinery as opposed to those of mammal SPs, like GAGs. In the latter case, a higher number of 

anabolic enzymes (including isoforms), is the largest contributing source for the consequent structural 

heterogeneities [77]. In a previous report, we have established a tentative phylogenetic view for  

SGs [15,16,21]. We noticed that chains of 3-linked β-Galp are heavily conserved throughout marine 

taxonomic groups (including red and green algae, sea angiosperm, clams, sea urchins, and tunicates), 

with a strong tendency toward 4-O-sulfonation in algae and marine angiosperm, 2-O-sulfonation in 

invertebrates, and 6-O-sulfonation, more randomly distributed among various organisms. This 

indicates that galactosyltransferases seem to be preserved through marine species, but sulfotransferases 
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are likely to be more specifically distributed. Although 4- and 2-sulfotransferases are hypothetically 

considered to be preserved in plants and in invertebrates, respectively, 6-sulfotransferases are broadly 

dispersed among marine organisms. This phylogenetic assumption is quite preliminary and no 

correlation with SF structures has been undertaken so far. It is worth mentioning that these 

phylogenetic points are just speculative because they were based solely on the structural characteristics 

of glycans. The structural features of SFs or SGs taken alone cannot become the main tools to propose 

a definitive phylogenetic relationship if gene expression, transcription levels and amounts of 

nucleotide-sugar precursors and anabolic enzymes are not considered. Hence, this phylogenetic study 

is intrinsically dependent on the researches about the biosynthetic routes of SFs and SGs, discussed in 

the previous paragraph. 

The studies concerning the spatial geometry (3D structural view) of SFs and SGs, their 

thermodynamic behaviors, and their conformational changes upon molecular interactions with the 

main proteins involved in the diseases documented in section 1.4 (coagulation (co)-factors, selectins, 

cytokines/chemokines, growth factors, endothelial adhesion-molecules, surface receptors of virus 

particles and bacteria) would represent outstanding breakthroughs of Fucanomics and Galactanomics. 

However, the high-MW of these glycans is the main issue for these advanced approaches, and would 

enhance complexity in both data acquisition and interpretation. Therefore, the production of SF- and 

SG-derived oligosaccharides is a fundamental primary step. In this direction, we have already 

established a protocol to efficiently produce low-MW SF-derivatives that still retain both well-defined 

molecular structures and biological properties [78,79]. Specific experiments of NMR spectroscopy 

(relaxation rates, NOE-based or residual dipolar coupling techniques) should be able to provide 

information regarding conformation (with or without the presence of binding proteins) as well as 

flexibility of these specific marine SPs. Degrees of freedom in studies of molecular motions related to 

sulfation patterns would help to understand the structural influences in molecular dynamics, as well as 

the binding capacities in protein interactions during their biomedical roles. 

6. Inclusion of SFs and SGs as Topics in Forums, Consortiums, and Meetings of Glycomics 

In the USA, the working group convened by the Division of Blood Diseases and resources of the 

National Heart, Lung, and Blood Institute (NHLBI), was created with the primary objective of 

identifying scientific opportunities and priorities emerging from the recent explosion of technological 

and biological advances from the glycosciences [80]. Fucanomics and Galactanomics would fit 

perfectly as topics of this objective. This reunion was a consequence of specific glycoscientific 

objectives raised by the Consortium for Functional Glycomics, funded by the National Institute of 

General Medical Science (NIGMS). This consortium was initiated and funded by the US National 

Institute of Health (NIH). In this report about the roles of glycans in hemostasis, inflammation and 

vascular biology [80], the following is said: “there is a need for funding mechanisms that will bring 

together the existing experts in the study of glycans with investigators in blood and vascular diseases, 

to foster fruitful collaboration that will bridge the existing gulf. Importantly, this frontier area is also 

ripe for translational research and drug development. It is also noteworthy that this situation is 

different in many European and Asian countries, e.g., Sweden, Australia, and Japan, where there are 
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major nationwide commitments to, and interest in, the study of glycans. Thus, the USA lags behind the 

rest of the world in taking advantage of these opportunities”. 

Here, we want to reiterate that Brazil might even lag behind the USA in terms of creating these  

glyco-organizations and in taking the proper advantages of its own national glycoscientific 

opportunities. This can be seen by the lack of an official consortium in Brazil specifically concerning 

glycoscience. As documented here though, it is noteworthy that the majority of the results obtained 

with SFs and SGs of well-defined structures (Table 2), and with promising medicinal activities, were 

conducted by Brazilian scientists in Brazil! Furthermore, most of the marine species from which these 

novel SPs were extracted, were collected along the sea-shores of this country (Table 2). 

Through this publication, we want to express the high importance in including these new glycans 

(Table 2) into either National or International Organization(s), in order to prompt the progress of 

Fucanomics and Galactanomics via possible collaborative and growing research networks. This should 

be undertaken with high priority, always keeping in mind the main objective of these glycomics 

subprojects, which is to provide to human society the right and proper medicinal benefits from SFs and 

SGs, especially those involved in hemostasis, inflammation and vascular biology, as pointed out by the 

committee of the above-mentioned glyco-forum report [80]. SFs and SGs exhibit great effectiveness in 

these three systems mentioned (section 1.4), and must be a topic in this or other glyco-forums as well. 

7. Concluding Remarks 

Here, we have made clear the importance of Fucanome and Galactanome to glycomics. This 

subdivision would make SFs and SGs more well known and participative within glycobiology. By 

definition, Fucanomics and Galactanomics comprise the full science related to the specific marine 

glycans composed mostly of sulfated Fucp and Galp units. These glycans show a broad range of 

medicinal functions and thus would serve as valuable carbohydrate-based therapeutic candidates in the 

science of drug discovery and development. Their pharmacological actions cover many systems, 

including inflammation, vascular biology, oncology, oxidative stress, virosis, pathogenesis, among 

other possible systems not discussed here. The significance of these therapeutic applications of 

Fucanomics and Galactanomics is highly relevant in order to enhance the glycomics impact, and its 

international recognition and importance. The rare structural features of some SFs and SGs (those 

composed of well-defined sulfation patterns and regular repeating oligomeric units, Table 2) make 

Fucanomics and Galactanomics unique glycomics subprojects because of the facilitated correlation of 

the biomedicinal levels achieved with the structural properties of SFs and SGs. The establishment of 

these structure-biofunction relationships has been more difficult to accomplish using other native 

glycans, including GAG polymers, but conversely have proved to be quite feasible using SFs and SGs. 

It has also become clear that even though the division of glycomics into subprojects is really 

demanding and necessary, the complexity of studying such subprojects still remains high. There is a 

high chance in the future for assuming Agaranomics and Carrageenomics as hierarchically-related 

subprojects of Galactanomics here proposed. This would raise the complexity of Galactanomics, but 

would make easier the organization of large amounts of data. Possible other “glycan-omics” about to 

show up are Chondroitinomics, Heparinomics, Dermatanomics. All these are hierarchically included in 

Glycosaminoglycanomics, and in turn, in Proteoglycanomics as well. 
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Empirically speaking, Glycomics turned out to be undertaken more as a set of isolated research 

lines than just a single ongoing project. Even taking this subdivision trend, the subprojects themselves 

are quite challenging. By analogy to what was previously mentioned: “The Sialome—Far more than 

the sum of its parts” [11], here we reiterate: “The Glycome—Bigger than the division of its total”. This 

division has been shown necessary for Glycomics’ own evolution! 
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