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Abstract: The cytotoxic and antiproliferative properties of many natural sesquiterpene-
quinones and -hydroquinones from sponges offer promising opportunities for the 
development of new drugs. A review dealing with different strategies for obtaining 
bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches 
for the preparation of the most relevant quinones/hydroquinones are described. 
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1. Introduction 

The chemical substances from plants and animals have been and remain to be an important source 
of drugs and products used in food products, cosmetics and agriculture, amongst other fields. Natural 
compounds offer an enormous structural diversity and in some cases, a big biological power and thus it 
is unlikely that the chemistry of synthesis can replace cellular biochemistry as the source of new 
compound. These observations, in addition to the enormous biodiversity of the planet (plants, sea and 
microorganisms), which is in a lot of cases inexplored, point to natural compounds as a promising 
source of drugs [1–45]. 

Natural products have been a rich source of agents of value to medicine. More than half of the 
currently available drugs are natural compounds or are related to them, and in the case of cancer this 
proportion surpasses 60% [4,8]. This situation is accompanied by increasing interest from drug 
companies and institutions devoted to the search for new drugs [46,47]. Additionally, many new 
natural compounds of diverse structures have been considered prototypes, leads or heads of series and 
their later structural modification has afforded compounds with pharmacological activity and 
extraordinary therapeutic possibilities [11,22,25,26,48]. 
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The research in natural compounds, which is continually expanding and is of enormous  
interest, explores new compounds coming from different sources, among which the sea could be 
considered as an almost infinite source of natural resources, some of which have important therapeutic 
potential [49–126]. The discovery of drugs from marine natural products has enjoyed a renaissance in 
the past few years. Ziconotide (Prialt®; Elan Pharmaceuticals), a peptide originally discovered in a 
tropicalcone snail, was the first marine-derived compound to be approved in the United States in 
December 2004 for the treatment of pain [127]. Combination of ziconotide and morphine allows safe 
and rapid control of oral opioid-refractary malignant pain [128]. In October 2007, trabectedin 
(Yondelis®; PharmaMar) became the first marine anticancer drug to be approved in the European 
Union. Trabectedine is an intravenous antineoplastic agent originally derived from tne Caribbean 
marine tunicate Ecteinascidia turbinata and now produced synthetically [129]. Trabectedine shows 
variable levels of activity against several types of solid tumor including soft tissue sarcoma, ovarian 
cancer, breast, melanoma, non small lung cancer, prostate and endometrial cancer [130–132]. The drug 
is especially active in leiomyosarcoma and liposarcoma and is a therapeutic option in the palliative 
approach to the metastatic uterine leiomyosarcoma patient [133]. Eribulin mesylate (E7389), designed 
by the Japanese laboratory Eisai (Eisai Research Institute, Andover, MA, USA), shows antitumor 
properties for the treatment of breast cancer [134]. This is a synthetic analogue of the natural product 
halichondrin B, isolated from Halichondria okadai (Lissodendoryx sp.), a marine sponge commonly 
found in Japanese seas; its antitumor activity was discovered in 1986. Eribulin binds to the vinca 
domain of tubulin and inhibits the polymerization of tubulin and theassembly of microtubules, 
resulting in the inhibition of mitotic spindle assembly, the induction of cell cycle arrest at G2/M, and, 
potentially, tumor regression. Eribulin mesylate is now in phase II clinical trials and is active in 
metastatic or locally advanced breast cancer [135–138]. 

Excellent reviews on natural compounds of marine origin have been published [49–126] that 
explore the taxonomy, structural elucidation, role of databases, biosynthetic studies, biomedical 
potential, synthesis and the technologies necessary for advancing bioactive marine natural product lead 
compounds into actual pharmaceuticals. Amongst these, the recently published review by  
Fattorusso et al. [124] particularly stands out. 

Among the natural compounds that are receiving an increasing interest we can find the 
terpenylpurines and the terpenilquinones from marine sources [139,140]. Particularly, the 
terpenylquinones constitute an interesting group of marine natural product [141–143] for which a wide 
variety of biological activities have been described, including anti-inflamatory, antifungal, anti-HIV 
and most often antitumor activities [144,145].  

The cytotoxic and antiproliferative properties of many natural sesquiterpene quinones and 
hydroquinones from sponges of the order Dictyoceratida [71,76,140,144] such as avarol 1, avarone 2, 
illimaquinone 3, nakijiquinone 4 and bolinaquinone 5 (Figure 1), amog others, offer promising 
opportunities for the development of new antitumor agents [144,145]. This has sparked interest in the 
chemical composition and cytotoxicity of a large number of marine species that contain metabolites 
with hybrid structures between terpenes and quinones/hydroquinones [76,140,141,146–150]. 
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Figure 1. Some examples of bioactive terpenequinones/hydroquinones. 
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Avarol 1 and avarone 2 are the most representative compounds of bioactive terpenequinones.  
In addition to the above-mentioned pharmacological properties, two monophenyl thioavarol 
derivatives have recently been described as lacking cytotoxicity, which could point to promising UVB 
photoprotective agents through the potent inhibition of NF-kappaB activation [151] with a mild 
antioxidant pharmacological profile. Various formulations with high avarol 1 content have been used 
for the prevention and treatment of psoriasis, dermatitis, skin cancer, tumors in the gastrointestinal 
tract, urinary tract and viral infection [152]. 

It is also important to note the antituberculosis and antimalarial activities of puupehenone 6 
[93,153,154], the cardiotonic activity of xestoquinone 7 [155], the antifungal activity of several 
nakijiquinones 4 [156] and the antiinfective activity of aureol derivatives 9 [157]. 

Sesquiterpenequinones represent a substance class with increasing pharmacological interest [140]. 
New developments and new discoveries in the field of terpenequinones continually occur. Recently, 
neopetrosiquinones A 10 and B 11 (Figure 2), sesquiterpene benzoquinones have been isolated from 
the deep-water sponge Neopetrosia cf. proxima, of the Petrosiidae family [158]. Neopetrosiquinones A 
10 and B 11 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line 
with IC50 values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell 
line with IC50 values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A also inhibited the in vitro 
proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC50 value of 6.1 μM. The 
compounds are structurally related to known terpene quinine xestoquinone 7. This research is part of 
the program to identify novel marine natural products with therapeutic properties from a library of 
extracts of the Harbor Branch Oceanographic Institute (HBOI) [158]. 
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Figure 2. Neopetrosiquinones A 10 and B 11. 
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Regarding the mechanism of action of terpenylquinones, the accumulated data about the biological 
activity of quinone moieties suggest redox processes and/or Michael-type addition-elimination 
reactions [144]. Their cytotoxicity has been explained in terms of their ability to undergo redox cycling 
and the generation of reactive oxygen species, which would damage tumor cells [159–161]. 
NADH/NAD+ dehydrogenase reduction of the several terpenylnaphthoquinones increases the rate of 
oxygen consumption, such rates being higher for quinones with more positive redox potentials. In this 
process, reactive oxygen species are formed in small amounts, which also correlate with the quinine 
redox potential. Semiquinone derivatives of these quinones are generated under anaerobic conditions 
and in the presence of NADH/NAD+ dehydrogenase. Since this enzymatic system is found in 
mitochondria, a possible pathway in the cytotoxic activity of these terpenylnaphthoquinones could be 
by interference with or the inhibition of mitochondrial respiration, as reported for other 
naphthoquinone derivatives, in addition to free radical degradation [162,163]. The results obtained 
with avarol 1 and avarone 2 supported the mechanism of antitumor action via the reactive oxygen 
radicals [164,165] but there were also indications of the relevance of arylation of biomolecules, such as 
proteins [144,166,167]. 

Regarding such terpenequinone structures, many studies have been published addressing the isolation, 
structural elucidation, activity and mechanisms of action of the compounds [140,143,144,146,147,160]. 
We present in this review a compilation of the different synthetic approches for the preparation of the 
most relevant compounds. 

2. Synthetic Approches Terpenylquinone/Hydroquinone 

The synthesis of marine natural products has been widely researched and published in excellent 
reviews [3,168–183], and is of particular interest in the case of compounds that have some kind of 
biological or therapeutic activity. The two major obstacles to advancing a natural product lead into 
drug development are compound supply and adequate structural elucidation. One must not underestimate 
how much material may be needed. Even the most straightforward courses of pre-clinical studies 
require hundreds of grams of highly consistent well-characterized product, which represents a major 
hurdle for natural products derived from non-renewable sources [3]. Therefore, it is of interest to 
consider the relative role of chemical synthesis in the structure elucidation. Moreover, in the case of 
revision of relative and absolute configuration, total synthesis is a proven partner for natural product 
structure elucidation for marine, as well as terrestrial species [169]. Structural misassignments continue 
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to be made even for recently reported marine natural products, and thus, it seems that the increasingly 
high-field magnets and sensitive probes do not necessarily attenuate the rate of structural 
misassignments. Rather, they permit the attempted structure elucidation of increasingly limited 
quantities of minor components from natural products extracts, as well as larger molecules of greater 
structural complexity. Therefore, total synthesis of natural products will surely continue to be central 
to the confirmation of the structure of natural products, as well as providing material for biological 
testing towards pharmaceutical development, and investigations of biosynthetic pathways [169]. 
Advances in total synthesis, especially function-oriented syntheses, biosynthetic technologies and 
genomic research offer new strategies for the medicinal chemical optimization of biologically active 
secondary metabolites as sources of novel drug leads [3]. 

In the case of biologically active terpenoquinones, the limited quantities components from the 
natural sources and the structural complexity are the main problems in continuining the clinical 
studies. Most of these terpenoquinones are characterised by possessing a quinone fragment attached to 
a terpenoid, which usually includes a decaline core, mostly with a drimane or rearranged drimane 
skeleton. Most sesquiterpenequinone/hydroquinones have been isolated from sponges, although some 
of them have been described from brown algae [74] and fungi [184]. The initial extract of the natural 
material usually consists of a complex mixture after fractionation. It may contain small quantities of 
bioactive substances, often as a mixture with structurally related molecules. The initial concentration 
of an interesting compound may be too low to be effectively tested in some biological and 
pharmacological assays. Thus, compounds have become attractive to carry out its total synthesis and 
obtaining of derivatives to improve the biological properties of natural compounds. Consequently, the 
development of these marine natural products is highly desirable and worthwhile from the viewpoint 
of medicinal chemistry and pharmaceuticals.  

In the present paper, the most interesting strategies addressed in the total synthesis of 
sesquiterpenilquinones by terpenic structure coupling to an aromatic ring have been reviewed.  
In general, the strategies employed in the total synthesis of sesquiterpenilquinones, are as follows: 

 Diels-Alder cycloaddition reaction. 
 Coupling of the aldehydes with lithiated hydroquinone ether. 
 Radical decarboxylation and quinone addition reaction 
 Grignard reagent conjugated addition to α,β-unsaturated carbonyl group. 
 Reductive alkylation of enones. 
 Cross-coupling reaction. 
 Furylation of quinones. 
 Furan polyene cationic cyclization. 

In addition, the application of cell culture for the production of bioactive compounds from sponges 
is a promising way to utilize the bioactive potential of marine terpenoquinones sources. 

3. Diels-Alder Cycloaddition Reaction 

The Diels-Alder cycloaddition reaction continues to fuel the imaginations of synthetic chemists 
engaged in the assembly of complex molecular structures, in particular biologically significant  
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natural products and provide rich opportunities for the rapid and selective generation of molecular 
complexity [185].  

Mamanuthaquinone 12 is a cytotoxic metabolite collected in the Fiji islands from  
Fasciospongia sp. [186]. In the first total synthesis of (±)-mamanuthaquinone 12 (Scheme 1) [187] an 
exothermic Diels-Alder reaction have been used as main reaction, giving the decalin system that 
already contains the aromatic moiety. The Diels-Alder reaction proceeded via an exo transition state, 
favored by the steric hindrance between the aromatic ring of 13 and a methyl of the cyclohexene 14. 
This exo approach mode reached the desired stereochemistry for mamanuthaquinone 12. With the 
configuration of the three stereocenters established, the cycloadduct 15 was treated with LiAlH4 
yielding the reduction of the ketone and the demethylation of one methoxyl in the ortho position: 
diastereomers 16a,b. The acetylated derivative 17a,b which Li/NH3 gave deoxygenation at C-15 and 
was acetylated in alcohol C-21 leading to 19. Finally, oxidation with CAN, followed by saponification 
of the acetate at C-21 yielded (±)-mamanutaquinone 12. 

Scheme 1. Synthesis of (±)-mamanuthaquinone 12. 
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Starting from natural terpenes, various approaches to terpenoquinones analogues have been 
reported. The terpene contributes the decalin part that attaches via Diels-Alder cycloaddition to 
commercial quinones. Thus, some diterpenylquinones/hydroquinones have been prepared through a 
Diels-Alder cycloaddition between myrceocommunic acid 20 and p-benzoquinone 21 or 
naphthoquinone 22 [149,159,188] (Scheme 2). The natural labdane acid used as starting material was 
isolated from berries of Juniperus oxycedrus. In order to optimise the synthesis of cycloadduct, two 
Diels-Alder procedures were considered, one in ethereal solution using BF3·Et2O as a catalyst and the 
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other under Mw irradiation in the absence of solvent. Although the Mw irradiation has the advantage 
of shortening reaction time, this procedure needs an excess of quinone that impeeds the purification of 
the final product. Several derivatives of cycloadducts 23 and 29 were evaluated in vitro for determinig 
their cytotoxicity against the human cell lines HT-29 (colon carcinoma), A-549 (lung carcinoma) and 
MEL-28 (malignant melanoma). Some of them were cytotoxic with IC50 values under the μM level. 

Scheme 2. Diels-Alder cycloaddition between myrceocummunic acid and  
p-benzoquinone/naphthoquinone. 
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Puupehenones belong to an important class of marine terpenequinone metabolites from Hyrtios sp. 
and other marine sponges [189–192], which are constructed from drimane and polyphenolic moieties. 
Puupehenones exhibit a wide variety of biological activity including angiogenesis inhibition [193]. 
The Diels Alder cycloaddition approach has been used to synthesize puupehenone related  
metabolites [194,195]. Utilizing this, the potent angiogenesis inhibitor 8-epipuupehedione 33 was 
synthesized from sclareol oxide 30, via ent-chromazonarol 32 (Scheme 3); in this case, the 
methodologie used prevents the obtention of the 8-epimer which is formed when the electrophilic 
cyclization methodology is utilized [196,197]. Microwave-assisted Diels-Alder reaction of  
1,3,3-trimethyl-2-vinyl-1-cyclohexene 34 with chromones 35 (Scheme 4) is an expeditious approach to 
analogues of the puupehenone group 36 of marine diterpenoids [198]. 

Scheme 3. Diels-Alder cyclooaddition approach to puupehenone-related metabolites. 
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Scheme 4. Microwave-assisted Diels-Alder reaction of 1,3,3-trimethyl-2-vinyl-1-cyclohexene 
with chromones. 
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The marine (−)-cyclozonarone 37 has been isolated from the Pacific brown algae Dictyopteris 
undulata and possesses a potent feeding-deterrent activity towards young abalones [199]. The total 
synthesis was achieved starting from albicanol 38 (Scheme 5) [200]. Elimination of water led to  
drima-(8,12)(9,11)-diene 39, which reacted in the key step of the synthesis, a Diels-Alder reaction, 
with benzoquinone. Further oxidation led to 37. 
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Scheme 5. Synthesis of (−)-cyclozonarone 37. 

 

The Diels-Alder cycloaddition between two polygodial-derived dienes 41 and 43 and simple 
quinones 42 and 22 yield substituted naphthaquinones 40 and anthraquinones 44, some of them with  
in vitro trypanocide activity (Scheme 6) [201]. 

Scheme 6. Diels-Alder reaction between polygodial-derived dienes and simple quinones. 

 

Halenaquinone 8, a pentacyclic polyketide isolated from Xestospongia sp. [202], has been 
synthesized both through a strategy based on an intramolecular inverse-electron-demand Diels-Alder 
reaction and an intramolecular Heck cyclization [203,204]. 

4. Coupling of the Aldehydes with Lithiated Hydroquinone Ethers 

This strategy is an efficient and general way of accessing drimane-type sequiterpenequinones. The 
strategy consists on the coupling of an aldehyde as terpene precursor and a lithium anion which carries 
the quinone structure. The five marine natural products yahazunol 45, zonarone 46, zonarol 47, 
isozonarone 48 and isozonarol 49 have been synthesised starting from (+)-albicanic acid  
(+)-51 [205,206]. Yahazunol 45, zonarone 46 and zonarol 47 have been obtained from the East Pacific 
brown algae Dictyopteris undulata Okamura. Isozonarone 48 and isozonarol 49 have been isolated 
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from the same species collected in the Gulf of California [207]. These compound present fungitoxic, 
anti-inflammatory activities and locks the MCF-7 cells initially in the mitose phase (G2/M-phase) and 
induce apoptosis, also blocks the synthesis phase with replication of DNA (S-phase) [72,142,207,208]. 

Scheme 7. Retrosynthesis of yahazunol 45 and isozonarone 48. 
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Scheme 8. Total synthesis of zonarol 47, isozonarol 49, zonarone 46 and isozonarone 48. 
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The synthesis of the marine natural products zonarone 46 and isozonarone 48 was achieved via  
(+)-albicanic acid 51, a sesquiterpene of the drimane type (Scheme 7). Coupling of the appropiate 
drimane-synthon with lithiated hydroquinone ethers led to sesquiterpene arenes, which were further 
modified to the target molecules. Stereoselective epoxidation followed by regioselective opening of 
the oxirane ring yielded yahazunol [205,206]. The key step of the synthesis (Scheme 8) was the 
coupling of the sesquiterpene part with the lithiated arene unit. The starting quiral aldehydes  
(+)-albicanal ((+)-52) and (−)-drim-7-en-11-al (−)-50 were obtained from (+)-albicanic acid (+)-51. 
This chiral synthon was prepared starting from β-ionone via a known route [209]. The di-THP-ether of 
hydroquine was lithiated with sec-butyllithium and added (+)-albicanal 52, respectively  
(−)-drim-7-en-11-al 50, to formed lithium organyl. The reaction afforded the benzyl alcohol 54a,b and 
56a,b, as coupling products as mixture of diastereoisomers. Removal of the hydroxyl group led to the 
deoxygenated species zonarol-di-THP-ether 55 and isozonarol-di-THP-ether 57, respectively. 
Desprotection in presence of oxalic acid [205] gave zonarol 47 and isozonarol 49. Optimized oxidation 
of zonarol and isozonarol with cerium (IV) ammonium nitrate (CAN) yielded the sesquiterpenequinone 
zonarone 46 and isozonarone 48. 

The synthesis of the marine sesquiterpene quinones (+)-hyatellaquinone 58 and spongiaquinone 60 
was respectively achieved starting from the sesquiterpene aldehydes (+)-albicanal 52 and (−)-albicanal 61 
(Scheme 9) [210,211]. The sesquiterpene quinone hyatellaquinone has been isolated from the alga 
Peyssonnelia sp. and the marine sponges Hyatella intestinalis [212] and Spongia sp. [211]. 
Spongiaquinone 60 has been obtained from the sponges Spongia sp. [211] and Stelospongia  
conulata [213]. These terpenequinone were attractive candidates for pharmacological testing as 
antitumor, HIV-1 reverse transcriptase inhibitor and immunomodulatory activities [72,142,208]. 

Scheme 9. Retrosynthesis of hyatellaquinone 58 and spongiaquinone 60. 
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The synthesis of (+)-hyatellaquinone 58 was achieved starting from the sesquiterpene aldehyde  
(+)-albicanal 52 (Scheme 10) [210]. Coupling of (+)-albicanal 52 with 2,3,5,6-tetramethoxyphenyllithium 
63 led to the aryl-sesquiterpene system 59, which was modified to the target molecule. Furthermore, 
the first total synthesis of spongiaquinone 60 was carried out starting from (−)-albicanal 61  
(Scheme 11) [211] in a reaction sequence encompassing a stereoselective C=C bond hydrogenation 
and a one-pot AcOH elimination/demethylation reaction. 

Scheme 10. Synthesi of (+)-hyatellaquinone 58. 
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Siphonodictyal C 69, isolated from sponge Siphonodictyon sp. [214,215], was tested for its 
pharmacological activities in assays in search of antiproliferative, cytotoxic, antiphlogistic, 
antirheumatic and anti-inflammatory drugs [70,208]. Synthesis of siphonodictyal C 69 was achieved 
via drim-7-en-11-al 70 by coupling with 5-lithium sesamol MEM-ether to the benzylic alcohols  
(±)-71a,b (Scheme 12) [206,208]. Treatment of (±)-71a,b with p-toluene sulfonic acid (PTS) in 
THF/H2O led to the deprotection of the MEM-group and benzylic dehydration. The formed phenol 
was rearranged in a six membered cyclic transition state to the alkylidenecyclohexadienone which by 
reduction with NaBH4 in EtOH yielded the phenol that was deprotonated with n-Bu4NOH and the 
phenolate was methylated with dimethylsulfate (DMS), deprotonated with n-BuLi in o-position to the 
methoxy-group and formylated with DMF to (±)-72. The deprotection of (±)-72 with different reagents 
always led to decomposition.  
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Scheme 11. Synthesis of (−)-spongiaquinone 60. 
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In addition, aureol 9 and their analogues were synthesized by coupling of the aldehydes with 
lithiated hydroquinone ethers using, in this case, a cis-decaline as starting material [216,217]. Aureol 
was isolated from the Caribbean sponges Smenospongia aurea [218] and Verongula gigantea [219].  
Aureol 9 has been shown to exhibit selective cytotoxicity against A-549 human non-small cell lung 
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cancer cells and antiinfluenza-A virus activity [67,220]. As shown in Scheme 13, the synthesis 
commenced with the crucial coupling reaction of the cis-fused aldehyde [221,222] previously prepared 
from the enantiomerically pure (−)-Wieland-Miescher ketone 73 analogue (Figure 3) [223,224] with 
commercially available 2-bromoanisole.  

Figure 3. Wieland-Miescher Ketone 73. 
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Scheme 13. Synthesis of (+)-arearone 80, (+)-arenarol 81 and (+)-aureol 9 staning from 
cis-fused decalin. 
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Thus, the aryllithium generated in situ by treatment of 2-bromoanisole with n-butyllithium in THF 
was allowed to react with 74 providing an excellent yield of the desired coupling product 75. 
Simultaneous removal of both the benzylic hydroxyl group and the ethylene acetal moiety in 75 was 
achieved effectively by initial formation of the corresponding trifluoroacetate 76 followed by reaction 
under the conditions for hydrogenolysis, wich led to the production of the carbonyl group 77. 
Subsequent methylenation of the sterically hindered carbony group in 77 was achieved by employing 
the Takai procedure [225]. Thus, treatment of 77 with a mixture of dibromoethane, zinc powder and 
titanium (IV) chloride in THF furnished the exo-olefinic compound 78. The methylenation of 77 with 
Wittig reagent, Peterson’s reagent or Tebbe reagent gave none of desired product 78. Next, deprotection 
of the methyl ether protecting group of exo-olefin by treatment with lithium n-butylthiolate in 
hexamethyl-phosphoramide afforded the liberated phenolic compound 79. The pivotal conversion of 
the phenolic derivative to arenarone 80 was effected by reaction of 79 with molecular oxygen in the 
presence of salcomine in DMF. Subsequent reduction of the quinone system in arenarone 80 using 
sodium hydrosulfite gave arenarol 81. By treating of arenarol with BF3·Et2O, the desired  
acid-promoted rearrangement/cyclation reaction was found to proceed, producing aureole 9 with a 
good stereoselectively in excellent yield [221,222]. 

Scheme 14. Enantiospecific synthesis of (+)-puupehenone 6. The arenol oxidative 
activation route. 
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The total synthesis of the (+)-puupehenone 6 was achieved in 10 steps (Scheme 14) by the arenol 
oxidative activation route [153] starting from commercially available (+)-sclareolide 86. The key 
feature of this synthesis is the construction of the heterocycle via an intramolecular attack of the 
terpenoid-derived C-8 oxygen function onto an oxidatively activated 1,2-dihydroxyphenyl unit.  
The sequiterpene moiety of puupehenone 6 features a normal drimane skeleton annelated to a  
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shikimate-derived hydroxyquinone unit. The drimane precursor (+)-sclarolide 86 already possesses the 
correct chirality for three of the four (+)-puupehenone 6 stereogenic centers. It can be purchased from 
commercial sources or convenientelly prepared from labdane 85 [226]. The nucleophilic character of 
the terpenoid 8-oxygen will serve to mediate the desired heterocyclization by attacking an oxidatively 
activated 1,2-dihydroxyphenyl unit. The shikimate unit 84 was elaborated from catechol 83 through 
bromination and benzylation to give bromide. Coupling of this bromide with aldehyde 87 obtained 
from (+)-sclarolide 86, was achieved via a standard halogen-metal exange protocol. A subsequent 
hydrogenolysis under standard conditions allowed removal of both benzyl protective groups, and the 
benzylic C-15 hydroxyl group that was unveiled at the previous coupling reaction, to afford the 
catechol 88 in good yield. The remarkable deprotection-deoxygenation step set the stage for the key 
oxidative activation of the catechol unit toward intramolecular attack by the drimane 8-oxygen. This 
activation relied on the use of [bis(trifluoroacetoxy)iodo]benzene (BTI), that as other iodine reagents, 
constitute today a convenient alternative to the use of toxic heavy metal-based reagents for activating 
arenols toward oxidative nucleophilic substitution reaction [227,228]. 

The synthesis of peyssonol A 90 is a special case of fusion between a cis-decalin and the aryl  
ring [229]. Peissonol A was isolated from the Red Sea marine alga Peyssonnelia sp. that has been 
shown to act as an allosteric inhibitor of the reverse transcriptases of Human Immunodeficiency  
Virus [212,230]. This compound is the only known natural product possessing a cis-decalin framework 
likely arising from a halonium-induced cation-π cyclization. As indicated in Scheme 15, the 
retrosynthetic analysis suggested that the late-stage disconnection on the pendant aryl ring projecting a 
nucleophilic addition onto the aldehyde 92 to effect its incorporation, might afford the most efficient 
means to reach a suitable polyene cyclization precursor. 

Scheme 15. Retrosynthetic analysis of peyssonol A 90. 
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5. Radical Decarboxylation and Quinone Addition Reaction 

The application of the Barton’s radical decarboxylation reaction, in which the generated radicals are 
trapped by a quinone trap, gives rise to addition products in good to excellent yields. This addition 
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reaction is characterized by good chemoselectivity, taking place only at conjugated and unsubstituted 
double bonds, and regioselectivity, being strongly influenced by the resonance effect of heteroatoms 
located on the quinone ring. The synthetic value of this reaction was demonstrated by the synthesis of 
selected members of a family of quinone sesquiterpenes. Both symmetric and unsymmetric quinones 
can be used as radical traps and provide facile access to heteroatom-substituted quinone sesquiterpenes. 
The versatility of our strategy was further expanded by developing reaction conditions that allow 
subsequent oxygenation of the quinone adducts, providing access to complementary oxygenated 
structures [231].  

Essential to this strategy is a radical addition reaction that permits the attachment of a fully 
substituted bicyclic core 97 to a variably substituted p-quinone 98 (Scheme 16). The addition product 
96 can be further functionalized, giving access to natural products with a high degree of oxygenation at 
the quinone unit. The quinone addition reaction is characterized by excellent chemoselectivity, taking 
place only at conjugated and unsubstituted double bonds, and regioselectivity, being strongly 
influenced by the resonance effect of heteroatoms located on the quinone ring. These features were 
successfully applied to the synthesis of avarol 1, avarone 2, ilimaquinone 3 and smenospongidine 116, 
thereby demonstrating the synthetic value of this method [231]. 

Scheme 16. Strategic bond disconnections of quinone sesquiterpenes. 
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Avarol 1 and its quinone derivative avarone 2 are secondary metabolites isolated from the marine 
sponge Dysidea avara [232,233]. Both compounds were first discovered as anti-leukaemia agents  
in vitro and in vivo, and later it was found that they had an in vitro inhibitory capacity against HIV-1. 
Controlled clinical studies revealed, however, that it was not efficient in the clinical treatment of 
patients with AIDS. Additionally, the potent T-lymphotropic cytostatic activity shown by avarol 1, and 
its low toxicity in mice, its ability to cross the blood-brain barrier and its ability to stimulate the 
synthesis of interferon make both these compounds optimum candidates for transformations aimed at 
improving their cytostatic and antiviral activity [234–238].  
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Scheme 17. Total synthesis of avarol 1 and avarone 2 via radical decarboxyation and 
quinone addition reaction. 
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The synthetic approach toward the core fragment of avarol and avarone (Scheme 17) began with 
enantimerically enriched enone 73 (Figure 3), which was readily available through a L-phenylalanine-
mediated asymmetric Robinson annulation [239]. The selective protection of the more basic C4 
carbonyl group followed by reductive alkylation of the enone functionality with allyl bromide afforded 
ketone 99. Conversion of ketone 99 to silyl ether 100 was accomplished via a sequence of three steps 
including ozonolysis of the terminal double bond, reduction of the resulting aldehyde, and selective 
silylation of the primary alcohol. The C8 ketone functionality that also suffered reduction during the 
above procedure was subsequently restored upon treatment with Dess-Martin periodinane [240]. 
Functionalization of C8 stereocenter was achieved by Wittig olefination, followed by a Pd-catalyzed 
hydrogenation of the resulting exocyclic methylene unit, furnishing alcohol 102. Acid-catalyzed 
deprotection of the C4 ketal of 102 gave rise to ketone 103, which a second Witting methylenation 
provided the exocyclic alkene 104. The exocyclic double bond of 104 was isomerized to produce de 
most substituted alkene 105, wich after a two-step oxidation involoving Dess-Martin periodinane and 
sodium chlorite, produced the desired carboxylic acid 106. The stage was now set for the attachment of 
the aromatic residue on the decalin ring. This was accomplished by DCC-induced esterification of 106 
with commercially available 2-mercaptopyridine-N-oxide 108, which furnished the photolabile ester 
108. Light-induced decarboxylation of ester 108 in the presence of benzoquinone 21 produced the 
substituted quinone 110. At this point, brief treatment of 110 with Raney nickel produced synthetic 
avarol 1 in 84% yield. Consequently, avarone 2 was produced from 1 via heterogeneous oxidation  
with MnO2. 

Scheme 18. Total synthesis of ilimaquinone and smenospongidine. 
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One of the synthetic strategies to ilimaquinone 3 and smenospongidine 116 is also based  
on a radical decarboxylation and quinone addition methodology (Scheme 18) [231,241]. These 
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terpenoquinones were colleted from Hippospongia sp. [224,242,243]. The cytotoxicity against the 
NCI-H460, HepG2, SF-268, MCF-7, HeLa, and HL-60 human tumour cell lines, the inhibitory effects 
on the maturation of starfish oocytes, and cell cycle arrest in the HepG2 cell line were evaluated [242]. 

The chemical structures of ilimaquinone 3 and smenospongidine 116 differ from those of  
avarone-like molecules at the position of unsaturation of the decalin core and the additional 
oxygenation at the C21 center of the quinone ring. The application of radical decarboxylation and 
quinone addition methodology produces quinone 113 from reaction of thiohydroxamic acid derivative 
with benzoquinone 21. Functionalization of 113 to ilimaquinone 3 is achieved by exploiting the 
electronic effects of the residual thiopyridyl group. Finally, exposure of 3 to phenylethylamine under 
basic conditions afforded synthetic smenospongidine 116. 

Ent-halimic acid 117 is used as starting material for the synthesis of aureole (−)-9, 
neomammanuthaquinone 120, smenoqualone 121, and cyclosmenospongine 122. The Barton 
decarboxylation in presence of benzoquinone is the key reaction in this synthesis (Scheme 19) [244]. 

Scheme 19. Retrosynthetic analysis of some sesquiterpenequinones/hydroquinones from 
ent-halimic acid. 
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6. Grignard Reagent Conjugated Addition to α,β-Unsaturated Carbonyl Group 

The total synthesis of (±)-zonarol 47, (±)-isozonarol 49 [205,206] and (−)-yahazunol 45 [207,208] 
also were achieved by Grignard reagent (1,4) conjugated addition to α,β-unsaturated carbonyl group 
(Schemes 20 and 21) [245]. 
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Scheme 20. Synthesis of yahazunol 45 by Grignard reagent conjugated 1,4-addition to 
enone 12-nordrim-9-dn-8-one. 
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The synthesis of yahazunol 45 started from (+)-11-hydroxy-12-nordriman-8-one 123 which  
was transformed with p-toluene sulfonic acid by elimination of water to enone (+)-124. The  
cuprate catalyzed conjugated 1,4-addition of 2,4-dibenzyloxyphenylmagnesium bromide to  
(+)-12-nordrim-9-en-8-one (+)-124 yielded the enolate anion which was trappe with acetic anhydride. 
Treatment of the resulting enolacetate (−)-125 with potassium hydroxide in methanol afforded the 
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ketone (+)-126. Wittig reaction of (+)-126 with PH3PCH2 gave (+)-zonarol dibenzyl ether  
(+)-127. Epoxidation in position 8–12 gave the oxirane ring which was opened with LiAlH4 to  
(+)-yahazunol dibenzyl ether. Debenzylation of (+)-10 with H2 and Pd/C yielded (−)-yahazunol 45 
(Scheme 20) [245]. 

In the synthesis of (±)-zonarol 47 and (±)-isozonarol 49 (Scheme 21), the terpene ketone 128, was 
prepared following a sequence of reactions [246] from the racemic mixture of the Wieland-Miescher 
ketone 73 (Figure 3). This ketone and its analogs are of great interest as starting materials to 
terpenequinones by asymmetric synthesis [223,224,239]. After preparing the Grignard reagent 129, 
which provides the hydroquinone moiety, it was reacted with the α,β-unsaturated ketone 128, and 
Ac2O, yielding the enol acetate obtained by conjugate addition. Treatment of the enol acetate with 
KOH gave ketone 130, which established the stereochemistry of the molecule. From compound 130, 
(±)-zonarol 47 and (±)-isozonarol 49, were obtained by two different ways. Wittig reaction, followed 
by demethylation, zonarol racemate 6 was obtained. By 1,2-addition of organolithium to the ketone 
130, (±)-isozonarol 49 was obtained through a tertiary alcohol, which by dehydration gave a mixture 
of compounds 131 and 132. Finally, the demethylation of the methoxy group by treatment with lithium 
butanetiolate and HMPA led to (±)-zonarol 47 and (±)-isozonarol 49. 

7. Reductive Alkylation of Enones 

This strategy to connect the unit to a terpene quinone is based on the alkylation in the reaction 
medium during metal reduction of a conjugated double bond. Lithium with a solvent proton reduces 
the double bond through electron transfer giving an enolate. Thus, alkyl halide reaction generates the 
desired alkylated ketone. In all cases, the α,β-unsaturated ketone that is coupled to the quinone has the 
(S)-(+)-Wieland-Miescher diketone 73 as the starting material.  

The synthesis of (+)-avarone 2, (+)-avarol 1, (−)-neoavarone, 134 (−)-neovarol 133 and (+)-aureol 9 
is a good example of reductive alkylation of enones with bromides (Scheme 22) [247]. Thus,  
the enone 139 with bromide 140, and applying previously described protocols from the  
literature [156,239,248–251] gave the exo-olefin 138. The endo-olefin 136 should be accessible from 
138 by isomerization at the C4 olefinic double bond. 

The synthesis of the decalin derivative 138 (Scheme 23), a common key intermediate for the 
synthesis of (+)-avarone 2, (+)-avarol 1, (−)-neoavarone 134, (−)-neovarol 133 and (+)-aureol 9, 
started with the reductive alkylation of enantiomerically pure enone 139 with 2-methoxybromide 140. 
Thus, treatment of enone 139 with lithium metal in liquid ammonia followed by reaction of the 
intermediary lithium enolate with bromide 140 provided the expected coupling product 141 as a simple 
diastereomer. Subsequent methylenation of the sterically hindered carbonyl group in 141 was achieved 
by employing a combination of Ph3P+CH3Br- and t-BuOK furnishing the exo-olefin. To establish the 
C8 sterogenic center, the ethylene acetal moiety was first removed by acid treatment and the resulting 
ketone 142 was subjected to hydrogenation, which afforded the product 143 and its C8 epimer 144 
after separation by coumn chromatography on silica gel. Finally, compound 144 was efficiently 
converted to the desired key intermediate 138 by Wittig methylenation [247]. 
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Scheme 22. Synthetic plan for (+)-avarone 2, (+)-avarol 1, (−)-neoavarone 134,  
(−)-neovarol 133 and (+)-aureol 9 by enones reductive alkylation. 
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Scheme 23. Synthesys of key intermediate 138. 
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The Scheme 24 shows the synthesis of avarol 1 and avarone 2 from key intermediate 138. 
Isomerization of the exo-olefin moiety in 138 to endo-olefinic double bond was efficienthly achieved 
by treatment with RhCl3·3H2O. The endo-olefin 145 was then converted to avarone 2 and avarol 1 via 
phenol 146. To construct the quinone system directly, phenol 146 was allowed to react with molecular 
oxygen in the presence of salcomine, producing (+)-avarone 2. Subsequent treatment of avarone 2 with 
NaBH4 in THF/H2O resulted in the quinol avarol 1 [247]. 

Ilimaquinone 3 [224,242] and nakijiquinones 4, 163–165 [252–257] have also been synthesized 
using this strategy. In the synthesis of (−)-ilimaquinone 3 (Scheme 25) [250,251], compound 147 was 
treated with Li/NH3 giving the lithium enolate and subsequent treatment with benzyl halide 148 led to 
the α-alkylation product 149. The configuration of the remaining stereocenter (C-8) was established 
with a Wittig reaction followed by hydrogenation to yield compound 151 and its diastereomers (3:1). 
The oxidation of alcohol at C-4 and subsequent formation of the olefin led to 153. Finally, treatment 
with CAN and Pd (0) in basic medium, yielded (−)-ilimaquinone 3. 
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Scheme 24. Synthesis of avarol 1 and avarone 2 reductive alkylation of enones. 
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Scheme 25. Synthesis of ilimaquinone 3 by reductive alkylation of enones. 
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The reductive alkylation as strategy for building sesquiterpenilquinones has also been used in the 
synthesis of nakijiquinones [156,252]. From extracts of sponges from the family Spongiidae, collected 
in Okinawa several nakijiquinones were isolated. Nakijikinones are terpenequinones with an amino 
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acid on the benzoquinone ring [253–257]. The HER2/Neu receptor tyrosine kinase is hugely 
overexpressed in about 30% of primary breast, ovary, and gastric carcinomas. Nakijiquinones are the 
only naturally occurring inhibitors of this important oncogene, and structural analogues of nakijiquinones 
may display inhibitory properties against another tyrosine kinase receptor involved in cell signaling 
and proliferation [156]. The synthetic route (Scheme 26), was optimized to obtain nakijiquinone C, 
using as intermediate the isospongiaquinone 162 and later the strategy was extended to obtain 
nakijiquinones A–D 4, 163–165. 

Scheme 26. Synthesis of isospongiaquinone and nakijiquinone A–D 4, 163–165 by reductive 
alkylation of enones. 
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8. Cross-Coupling Reaction 

This strategy consists on the application of a (dppf)NiCl2-mediated neopentyl coupling in natural 
product synthesis and emphasizes the attractive combination of hydroxyl-directed hydrogenation to 
control stereochemistry followed by a neopentyl coupling to elaborate the carbon skeleton. 
Retrosynthetic analysis as summarized in Scheme 27 readily dissects arenarol to a neopentyl iodide 
166 and 2,4-dimethoxyphenylmagnesium bromide [258]. The neopentyl iodide turn could be derived 
from the corresponding alcohol 167, assuming that the hydroxyl group could be employed to control 
the stereochemistry of reduction at an adjacent exocyclic olefin, or the diene alcohol 169, if the 
hydroxyl group could be employed to fix both adjacent stereocenters. Either olefin could be viewed as 
a derivative of the decalin 168, depending on the sequence employed to accomplish methylation, 
introduction of the exocyclic olefin, and for compound 168, reduction of the endocyclic olefin. The 
synthesis of arenarol, based on this approach, includes both directed introduction of two key 
stereogenic centers and a (dppf)NiCl2-mediated coupling at a neopentyl center. 

Scheme 27. Retrosynthetic analysis of arenarol 81. 
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Arenarol 81, isolated from Dysidea sp. and Fenestraspongia sp. [259,260] is a cis-decalin the 
synthesis of which calls for stereocontrol at two tertiary and two quaternary carbons. These compounds 
showed cytotoxic activity when assayed against P-388 leukaemia cells, with ED50 = 17.5 μg/mL for 
arenarol 81 and ED50 = 1.7 μg/mL for arenarone 80 [259]. Arenarol 81 showed DPPH radical 
scavenging activity with an IC50 value of 19 μM [260]. The Grignard reagent needed for preparation  
of arenarol 81, (2,5-dimethoxyphenyl)magnesium bromide 129, has been shown to undergo a  
cross-coupling reaction with neopentyl iodide in the presence of (dppf)NiCl2 and Zn2 dioxane forming 
the desired coupling product 171. Conversion of 171 to the target compounds required cleavage of the 
methyl protecting groups. Treatment of compound 171 with ceric ammonium nitrate (CAN) resulted in 
oxidation to the natural product arenarone 80. Mild reduction of arenarone 80 with Na2S2O4 gave the 
final target arenarol 81 (Scheme 28). 
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Scheme 28. Synthesis of arenarone 80 and arenatol 81 by cross-coupling reaction. 
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9. Furylation of Quinones 

This procedure consists on furylation of quinones and hydroquinones through oxidative coupling 
and Michael addition reactions. Thus, the oxidative coupling reaction of (+) euryfuran with  
1,4-quinones in acetic acid yielded euryfuryl-1,4-quinones with leishmanicidal activity. The influence 
of the solvent to promote the Michael addition and the regioselectivity of the reaction with 
unsymmetrical quinones are important feactures that can be useful for the synthesis of new bioactive 
members of the euryfurylquinones series [261] (Scheme 29). The Michael reaction of (+) euryfuran 
172 with activated monosubstituted 1,4-benzoquinones 22 provides a regiospecific access to 
antiprotozoal active euryfuran derivatives 173 containinig a quinone or hydroquinone fragment bond to 
the 12 position [262]. Access to furylnaphthoquinones from unactivated quinones requires  
acid-induced conditions. However, oxidative coupling reactions of activate quinones proceed under 
neutral conditions. Most of the furyl-1,4-quinones exhibited good antiproliferative activity against 
MCF-7, NCI-H460 and SF-268 cancer cell lines [145]. 

Scheme 29. Furylation of quinones. 
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10. Furan Polyene Cationic Cyclization 

This strategy is a diversity-oriented synthesis that follows a biomimetic route [263] to marine 
natural products like liphagal 1, the first member of a new of new liphagane type of meroterpenoid 
carbon skeleton. Liphagal 180 isolated from the methanol extract of the sponge Aka coralliphaga, 
collected from reefs in Prince Rupert Bay, Portsmouth, Dominica [264] exhibited impressive biological 
activity including inhibitory activity against PI3K a (phosphoinositide-3-kinase α) and cytotoxic to 
LoVo and CaCo human colon, and MDA-468 human breast tumor cell lines [264–266].  

Scheme 30. Synthesis of meroterpenoid natural product (±)-liphagal 180 Retrosynthetic 
analysis by furan polyene cationic cyclization. 
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Liphagal 180 has a tetracyclic skeleton, harboring a trans-fused 6,7-bicarbocyclic core with three 
stereogenic centers. The retrosynthetic strategy toward liphagal (Scheme 30) was based on the 
proposed biogenetic pathway and hinged on a key C–C bond disconnection that mandated connecting 
a preformed benzofuran precursor 178 with a readily available monoterpenoid 177 to establish the 
crucial C–C bond and access the framework 8. Further elaboration of 176 into 175 was envisaged to 
set up the furan polyene cationic cyclization cascade en route to the target.The key furan precursor 178 
was to be ascessed from a readily available aromatic precursor 179. 

11. Application of Cell Culture for the Production of Bioactive Compounds from Sponges 

Sponges [phylum Porifera] are a rich source of biologically active and pharmacologically valuable 
compounds with a high potential to become effective drugs for therapeutic use. However, until now, 
only a few compounds have been introduced into clinics because of the limited amounts of starting 
material available for extraction. To overcome this serious problem in line with the rules for a 



Mar. Drugs 2012, 10         
 

387 

sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, 
second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a 
bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor [267]. 

Recently, it was demonstrated that the in vitro culture of primmorph from the marine sponge 
Dysidea avara produces avarol 1. Single cells apparently do not have the potency to produce this 
secondary metabolite, but the primmorph model is a suitable system for the synthesis of bioactive 
compounds in vitro [268,269]. In addition, it has also been suggested that some of the bioactive 
secondary metabolites isolated from sponges are produced by functional enzyme clusters, which 
originated from the sponges and their associated microorganisms. In order to exploit the bioactive 
potential of both the sponge and the “symbionts”, a 3D-aggregate primmorph culture system was 
studied, and it was proved that avarol/avarone is produced by the sponge Dysidea avara. Another 
promising way to utilize the bioactive potential of the microorganisms is the cloning and heterologous 
expression of enzymes involved in secondary metabolism [270]. 

In situ sponge aquaculture is nowadays one of the most reliable methods to supply pharmaceutical 
companies with sufficient quantities of the target compound. Its use in addition to immortalization of 
sponge cells by transfection with genomic DNA appears to be a promising way, since recent studies 
underscore the applicability of this technique for sponges [270]. 

12. Summary 

Sesquiterpenequinones represent a substance class with increasing pharmacological interest. The 
initial concentration of an interesting compound may be too low to be effectively tested in some 
biological and pharmacological assays. Thus, the total synthesis of terpenequinones has become 
attractive in order to obtain the required amounts of compounds natural product analogues with 
optimized biological properties. Consequently, the development of these marine natural products is 
highly desirable and worthwhile from the viewpoint of medicinal chemistry and pharmaceuticals. 
Therefore, total synthesis of natural products will surely continue to be central to confirmation of 
natural product structure assignment, as well as providing material for biological testing towards 
pharmaceutical development, and investigations of biosynthetic pathways.  

The main routes to synthesize terpenequinones/hydroquinones include Diels-Alder cycloaddition 
reaction, coupling of the aldehydes with lithiated hydroquinone ether, radical decarboxylation and 
quinone addition reaction, Grignard reagent conjugated addition to α,β-unsaturated carbonyl group, 
reductive alkylation, cross-coupling reaction, furylation of quinones and furan polyene cationic 
cyclization. In addition, the application of cell culture for the production of bioactive compound from 
sponge is a promising way to utilize the bioactive potential of marine terpenoquinones sources. 

Advances in total synthesis, especially function-oriented synthesis, biosynthetic technologies, 
primmorph models and genomic research offer new strategies for the medicinal chemical optimization 
of biologically active terpenequinones/hydroquinones.  

Acknowledgements 

The author would like to thank the Regional Government of Castile & Leon (Consejería de 
Educación, SA-4/2010) and the Ministerio de Ciencia e Innovación CTQ2010-16170.  



Mar. Drugs 2012, 10         
 

388 

References 

1. Mishra, B.B.; Tiwari, V.K. Natural Product in Drug Discovery: Clinical Evaluations and 
Investigations. In Opportunity, Challenge, and Scope of Natural Products in Medicinal 
Chemistry; Tiwari, V.K., Mishra, B.B., Eds.; Research Signpost: Kerala, India, 2011; pp. 1–61. 

2. Mishra, B.B.; Tiwa, V.K. Natural products: An evolving role in future drug discovery.  
Eur. J. Med. Chem. 2011, 46, 4769–4807. 

3. Carter, G.T. Natural products and Pharma 2011: Strategic changes spur new opportunities.  
Nat. Prod. Rep. 2011, 28, 1783–1789. 

4. Newman, D.J.; Cragg, G.M. Natural products of therapeutic importance. Compr. Nat. Prod. II 
2010, 2, 623–650. 

5. Li, J.W.-H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless 
frontier? Science 2009, 325, 161–165. 

6. Bhakuni, D.S.; Rawat, D.S. Bioactive Natural Products; Springer & Anamaya Publishers:  
New York, NY, USA, 2005. 

7. Harvey, A.L. Natural products as a screening resource. Curr. Opin. Chem. Biol. 2007, 11,  
480–484. 

8. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years.  
J. Nat. Prod. 2007, 70, 461–477. 

9. Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. 
Nat. Prod. Rep. 2000, 17, 215–234. 

10. Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the 
period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. 

11. Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 
2005, 310, 451–453. 

12. Wang, B.; Deng, J.; Gao, Y.; Zhu, L.; He, R.; Xu, Y. The screening toolbox of bioactive 
substances from natural products: A review. Fitoterapia 2011, 82, 1141–1151. 

13. Verpoorte, R. Exploration of nature’s chemodiversity: The role of secondary metabolites as leads 
in drug development. Drug Discov. Today 1988, 3, 232–238. 

14. Sticher, O. Natural product isolation. Nat. Prod. Rep. 2008, 25, 517–554. 
15. Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life. Nat. Prod. Rep. 2009, 

26, 44–71. 
16. Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. 

Chem. 1996, 39, 2887–2893. 
17. Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. 

Biol. 2008, 12, 306–317. 
18. Cragg, G.M.; Newman, D.J. Natural products sources of drugs: Plants, microbes, marine 

organisms, and animals. Compr. Med. Chem. II 2007, 1, 355–403. 
19. Buss, A.D.; Butler, M.S. Natural Product Chemistry for Drug Discovery; RSC Publishing: 

Cambridge, UK, 2009. 
20. Grothaus, G.P.; Cragg, G.M.; Newman, D.J. Plant natural products in anticancer drug discovery. 

Curr. Org. Chem. 2010, 14, 1781–1791. 

http://www.mendeley.com/research/screening-toolbox-bioactive-substances-natural-products-review/
http://www.mendeley.com/research/screening-toolbox-bioactive-substances-natural-products-review/
http://www.ingentaconnect.com/content/ben/coc


Mar. Drugs 2012, 10         
 

389 

21. Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. 
AAPS J. 2006, 8, E239–E253. 

22. Koehn, F.E.; Carter, G.T. The envolving role of natural products in drug discovery. Nat. Rev. 
Drug Discov. 2005, 4, 206–220. 

23. Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78,  
431–441.  

24. Jones, W.P.; Chin, Y.-W.; Kinghorn, A.D. The role of pharmacognosy in modern medicine and 
pharmacy. Curr. Drug Targets 2006, 7, 247–264. 

25. Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 
2141–2153. 

26. Butler, M.S. Natural products to drugs: Natural products derived compounds in clinical trials. 
Nat. Prod. Rep. 2005, 22, 162–195. 

27. Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug 
discovery. Environ. Health Perspect. 2001, 109, 69–75. 

28. Kinghorn, A.D. The Discovery of Drugs from Higher Plants. In The Discovery of Natural 
Products with Therapeutic Potential; Gullo, V.P., Ed.; Butterworth-Heinemann: Boston, MA, 
USA, 1994; pp. 81–108. 

29. Raviña, E. The Evolution of Drug Discovery. From Traditional Medicines to Modern Drugs; 
Wiley-WCH: Weinheim, Germany, 2010. 

30. Bailly, C. Ready for comeback of natural products in oncololoy. Biochem. Pharmacol. 2009, 77, 
1447–1457. 

31. Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new  
anti-cancer agents. Chem. Rev. 2009, 109, 3012–3043. 

32. Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776. 
33. Lee, K.-H. Discovery and development of natural product-derived chemotherapeutic agents 

based on a medicinal chemistry approach. J. Nat. Prod. 2010, 73, 500–516. 
34. Cragg, G.M.; Newman, D.J. Industrial Applications Natural Products for Medicinal Purposes. 

Drugs from Nature: Present, Development and Future Prospects. In Natural Products in the New 
Millenium: Prospects and Industrial Applications; Rauter, A.P., Palma, F.B., Justino, J.,  
Araújo, M.E., Dos Santos, S.P., Eds.; Kluwer: Dordrecht, The Netherlands, 2002; pp. 441–461. 

35. Newman, J.; Cragg, G. Natural products in medicinal chemistry. Bioorg. Med. Chem. 2009,  
17, 2120.  

36. Li, M.-Y.; Xiao, O.; Pan, J.-Y.; Wu, J. Natural products from semi-mangrove flora: Source, 
chemistry and bioactivities. Nat. Prod. Rep. 2009, 26, 281–298. 

37. Newman, D.J.; Cragg, G.M.; Kingston, D.G.I. Natural Products as Pharmaceuticals and Sources 
for Lead Structures. In The Practice of Medicinal Chemistry; Wermuth, C.G., Ed.; Academic 
Press: London, UK, 2003; pp. 159–186. 

38. Newman, D.J. Natural products as leads to potential drugs: An old process or the new hope for 
drug discovery? J. Med. Chem. 2008, 51, 2589–2599. 

39. Galm, U.; Shen, B. Natural products drug discovery: The times have never been better.  
Chem. Biol. 2007, 14, 1098–1104. 



Mar. Drugs 2012, 10         
 

390 

40. Rishton, G.M. Natural products as a robust source of new drugs and drug leads: Past successes 
and present day issues. Am. J. Cardiol. 2008, 101, 43D–49D. 

41. Lam, K.S. New aspects of natural products in drug discovery. Trends Microbiol. 2007, 15,  
279–289. 

42. Harvey, A.L. Natural product in drug discovery. Drug Discov. Today 2008, 13, 894–901. 
43. Butler, M.S. Natural product to drug: Natural products derived compounds in clinical trials.  

Nat. Prod. Rep. 2008, 25, 475–516.  
44. Langer, T.; Laggner, C.; Rollinger, J.M.; Stuppner, H. Pharmacophore-based screening for the 

successful identification of bio-active natural products. Chimia 2007, 61, 350–354. 
45. Lang, G.; Mayhudin, N.A.; Mitova, M.I.; Sun, L.; van der Sar, S.; Blunt, J.W.; Cole, A.L.;  

Ellis, G.; Laatsch, H.; Munro, M.H. Evolving trends in the dereplication of natural product 
extracts: New methodology for rapid, small-scale investigation of natural product extracts.  
J. Nat. Prod. 2008, 71, 1595–1599.  

46. Wilson, R.M.; Danishefsky, S.J. Small molecule natural products in the discovery of therapeutic 
agents: The synthesis connection. J. Org. Chem. 2006, 71, 8329–8351. 

47. Wilson, R.M.; Danishefsky, S.J. Applications of total synthesis toward the discovery of clinically 
useful anticancer agents. Chem. Soc. Rev. 2007, 36, 1207–1226. 

48. Lee, K.-H. Current developments in discovery and design of new drug candidates from plant 
natural. J. Nat. Prod. 2004, 67, 273–283.  

49. Hu, G.-P.; Yuan, J.; Sun, L.; She, Z.-G.; Wu, J.-H.; Lan, X.-J.; Zhu, X.; Lin, Y.-C.; Chen, S.-P. 
Statistical research on marine natural products based on data obtained between 1985 and 2008. 
Mar. Drugs 2011, 9, 514–525. 

50. Faulkner, D.J. Marine natural products: Metabolites of marine algae and herbivorous marine 
molluscs. Nat. Prod. Rep. 1984, 1, 251–280.  

51. Faulkner, D.J. Marine natural products: Metabolites of marine invertebrates. Nat. Prod. Rep. 
1984, volume, 1551–1598.  

52. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1986, 3, 1–3.  
53. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1987, 4, 539–576.  
54. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1988, 5, 613–663.  
55. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1990, 7, 269–309.  
56. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1991, 8, 97–147.  
57. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1992, 9, 323–364.  
58. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1993, 10, 497–539.  
59. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1994, 11, 355–394. 
60. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1995, 12, 223–269.  
61. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1996, 13, 75–125.  
62. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1997, 14, 259–302.  
63. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1998, 15, 113–158.  
64. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1999, 16, 155–198.  
65. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2000, 17, 7–5.  
66. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2001, 18, 1R–9R.  
67. Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2002, 19, 1–8.  

http://www.scopus.com.scopeesprx.elsevier.com/scopus/search/submit/author.url?author=Langer%2c+T.&authorId=7102141949&origin=recordpage
http://www.scopus.com.scopeesprx.elsevier.com/scopus/search/submit/author.url?author=Laggner%2c+C.&authorId=9740505400&origin=recordpage
http://www.scopus.com.scopeesprx.elsevier.com/scopus/search/submit/author.url?author=Rollinger%2c+J.M.&authorId=6701352802&origin=recordpage
http://www.scopus.com.scopeesprx.elsevier.com/scopus/search/submit/author.url?author=Stuppner%2c+H.&authorId=7005876606&origin=recordpage
http://www.scopus.com.scopeesprx.elsevier.com/scopus/source/sourceInfo.url?sourceId=23350
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Gu-Ping+Hu&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Jie+Yuan&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Li+Sun&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Zhi-Gang+She&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Jue-Heng+Wu&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Xiu-Jian+Lan&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Yong-Cheng+Lin&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/search/?q=&s_journal=&s_volume=&s_authors=Sheng-Ping+Chen&s_section=&s_issue=&s_article_type=&s_special_issue=&s_page=&s_search=Search
http://www.mdpi.com/1660-3397/9/4/514/


Mar. Drugs 2012, 10         
 

391 

68. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2003, 20, 1–48. 

69. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2004, 21, 1–49. 

70. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2005, 22, 15–61. 

71. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2006, 23, 26–78. 

72. Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine 
natural products. Nat. Prod. Rep. 2007, 24, 31–86. 

73. Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine 
natural products. Nat. Prod. Rep. 2008, 25, 35–39.  

74. Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine 
natural products. Nat. Prod. Rep. 2009, 26, 170–244.  

75. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2010, 27, 165–237. 

76. Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcotec, P.T.; Prinsep, M.R. Marine natural 
products. Nat. Prod. Rep. 2011, 28, 196–228.  

77. Hill, R.A. Marine natural product. Annu. Rep. Prog. Chem. Sect. B 2010, 106, 156–173. 
78. Bergmann, W.; Feeney, R.J. Contributions to the study of marine products XXXII. The 

nucleosides of sponges. I. J. Org. Chem. 1951, 16, 981–997.  
79. Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine 

natural products. Nat. Rev. Drug Discov. 2009, 8, 69–75. 
80. Faulkner, D.J. Highlights of marine natural products chemistry (1972–1999). Nat. Prod. Rep. 

2000, 17, 1–6. 
81. Proksch, P.; Ebel, R.; Edrada, R.A.; Schupp, P.; Lin, W.H.; Sudarsono; Wray, V.; Steube, K. 

Detection of pharmacologically active natural products using ecology. Selected examples from 
Indopacific marine invertebrates and sponge-derived fungi. Pure Appl. Chem. 2003, 75,  
343–432.  

82. Proksch, P.; Edrada, R.A.; Ebel, R. Drugs from the seas-urrent status and microbiological 
implications. Appl. Microbiol. Biotechnol. 2002, 59, 125–214. 

83. Jha, R.K.; Xu, Z.R. Biomedical compounds from marine organisms. Mar. Drugs 2004, 2,  
123–146.  

84. Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. 
Phycol. 2004, 16, 245–322. 

85. Tan, L.T. Bioactive natural products from marine cyanobacteria for drug discovery. 
Phytochemistry 2007, 68, 954–999. 

86. Gulder, T.A.M.; Moore, B.S. Chasing the treasures of the sea-bacterial marine natural products. 
Curr. Opin. Microbiol. 2009, 12, 252–320. 

87. Sabdono, A.; Radjasa, O.K. Microbial symbionts in marine sponges: Marine natural product 
factory. J. Coast. Dev. 2008, 11, 57–66. 

88. Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 2004, 21, 519–558. 



Mar. Drugs 2012, 10         
 

392 

89. Skropeta, D. Deep-sea natural products. Nat. Prod. Rep. 2008, 25, 1131–1166. 
90. Thornburg, C.; Zabriskie, T.M.; McPhail, K.L. Deep-sea hidrotermal: Potencial hot spot for 

natural products discovery. J. Nat. Prod. 2010, 73, 489–499. 
91. Blunt, J.W.; Munro, M.H.G. Review of Dictionary of Marine Natural Products;  

Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2008. 
92. Haefner, B. Drugs from the deep: Marine natural products as drug candidates.  

Drug Discov. Today 2003, 8, 536–544. 
93. El Sayed, K.A.; El Sayed, P.X.; Shen, X.; Perry, T.L.; Zjawiony, J.K.; Mark, T.C. Marine natural 

products as antituberculosis agents. Tetrahedron 2000, 56, 949–953. 
94. Vo, T.-S.; Ngo, D.-H.; van Ta, Q.; Kim, S.-K. Marine organisms as a therapeutic source against 

herpes simplex virus infection. Eur. J. Phar. Sci. 2011, 44, 11–20. 
95. Abad, M.J.; Bermejo, P. Bioactive natural products from marine sources. Stud. Nat. Prod. Chem. 

2001, 25, 683–755. 
96. Garson, M.J. Marine natural products as antifeedants. Compr. Nat. Prod. II 2010, 4, 503–537.  
97. Abad, M.J.; Bedoya, L.M.; Bermejo, P. Natural marine antiviral products. Stud. Nat. Prod. Chem. 

2008, 35, 101–134. 
98. Carter, B.K. Marine natural products as a source of novel pharmacological agents. Curr. Opin. 

Biotechnol. 1993, 4, 275–279. 
99. Chapman, D.J. Natural products of marine algae: The interface of chemistry and biology.  

Mar. Chem. 1983, 12, doi:10.1016/0304-4203(83)90088-9. 
100. Bull, A.T.; Stach, J.E.M. Marine actinobacteria: New opportunities for natural product search 

and discovery. Trends Microbiol. 2007, 15, 491–499. 
101. Davidson, B.S. New dimensions in natural products research: Cultured marine microorganisms. 

Curr. Opin. Biotechnol. 1995, 6, 284–291. 
102. Donia, M.; Hamann, M.T. Marine natural products and their potential applications as  

anti-infective agents. Lancet Infect. Dis. 2003, 3, 338–348. 
103. Glaser, K.B.; Mayer, A.M.S. A renaissance in marine pharmacology: From preclinical curiosity 

to clinical reality. Biochem. Pharmacol. 2009, 78, 440–448. 
104. Mayer, A.M.S.; Rodríguez, A.D.; Berlinck, R.G.S.; Hamann, M.T. Marine pharmacology  

in 2005–6: Marine compounds with antihelmintic,antibacterial, anticoagulant, antifungal,  
anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting 
the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. 
Biochim. Biophys. Acta 2009, 1790, 283–308. 

105. Kong, D.-X.; Jiang, Y.-Y.; Zhang, H.-Y. Marine natural products as sources of novel scaffolds: 
Achievement and concern. Drug Discov. Today 2010, 15, 884–886. 

106. Albericio, F.; Álvarez, M.; Cuevas, C.; Francesch, A.; Pla, D.; Tulla-Puche, J. The Sea as a 
Source of New Drugs. In Molecular Imaging for Integrated Medical Therapy and Drug 
Development. Part IV; Tanaki, N., Kuge, Y., Eds.; Springer: New York, NY, USA, 2010;  
pp. 237–249. 

107. Hill, R.T.; Fenical, W. Pharmaceuticals from marine natural products: Surge or ebb? Curr. Opin. 
Biotechnol. 2010, 21, 777–779. 

http://www.sciencedirect.com/science/article/pii/S0040402099010935?_alid=1845500130&_rdoc=11&_fmt=high&_origin=search&_docanchor=&_ct=106770&_zone=rslt_list_item&md5=c9fd33839f7ef75f7e8a6c7d5a5d0a35
http://www.sciencedirect.com/science/article/pii/S0040402099010935?_alid=1845500130&_rdoc=11&_fmt=high&_origin=search&_docanchor=&_ct=106770&_zone=rslt_list_item&md5=c9fd33839f7ef75f7e8a6c7d5a5d0a35
http://www.sciencedirect.com/science/article/pii/S0928098711002284?_alid=1845500130&_rdoc=302&_fmt=high&_origin=search&_docanchor=&_ct=106772&_zone=rslt_list_item&md5=b9bbf85f798c7a9c5f807aecae73b053
http://www.sciencedirect.com/science/article/pii/S0928098711002284?_alid=1845500130&_rdoc=302&_fmt=high&_origin=search&_docanchor=&_ct=106772&_zone=rslt_list_item&md5=b9bbf85f798c7a9c5f807aecae73b053
http://www.sciencedirect.com/science/article/pii/S1572599508800051?_alid=1845635074&_rdoc=42&_fmt=high&_origin=search&_docanchor=&_ct=106772&_zone=rslt_list_item&md5=d53ab584f28138e78a9aea9bbc699ddc
http://www.sciencedirect.com/science/article/pii/095816699390095E?_alid=1845635074&_rdoc=46&_fmt=high&_origin=search&_docanchor=&_ct=106772&_zone=rslt_list_item&md5=5af898d43260d5d2715f15c2d6ad02a2
http://www.springerlink.com/content/?Author=Mercedes+%c3%81lvarez
http://www.springerlink.com/content/?Author=Andres+Francesch
https://springerlink3.metapress.com/content/?Author=Judit+Tulla-Puche


Mar. Drugs 2012, 10         
 

393 

108. Ausubel, J.H.; Crist, D.T.; Waggoner, P.E. Highlights of a Decade of Discovery. Census of 
Marine Life; 2010. Available online: http://www.coml.org/Highlights-2010 (accessed on  
1 September 2011). 

109. Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; 
Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current 
pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. 

110. Fusetani, N. Biotechnological potentials of marine natural products. J. Biotechnol. 2008, 136, 
17–26. 

111. Rana, M.; Hendrik, L. Marine natural products: A new wave of drugs? Future Med. Chem. 2011, 
3, 1475–1489. 

112. Fusetani, N. Antifouling marine natural products. Nat. Prod. Rep. 2011, 28, 400–410. 
113. Lane, A.L.; Moore, B.S. A sea of biosynthesis: Marine natural products meet the molecular age.  

Nat. Prod. Rep. 2011, 28, 411–428. 
114. Proksch, P.; Putz, A.; Ortlepp, S.; Kjer, J.; Baye, M. Bioactive natural products from marine 

sponges and fungal endophytes. Phytochem. Rev. 2010, 9, 475–489. 
115. Yoshikazu, S. Natural products from marine derived microorganisms. J. Synt. Org. Chem. Jpn. 

2010, 68, 534–542. 
116. Chakraborty, C.; Hsu, C.-H.; Wen, Z.-H.; Lin, C.-S. Anticancer drugs discovery and development 

from marine organisms. Curr. Top. Med. Chem. 2010, 9, 1536–1545. 
117. Jensen, P.R.; Fenical, W. Marine Microorganisms and Drug Discovery: Current Status and 

Future Potential. In Drugs from the Sea; Fusetani, N., Ed.; Karger: New York, NY, USA, 2000; 
pp. 6–29. 

118. Schwartsmann, G.; Brondani, A.; Berlinck, R.G.S.; Jimeno, J. Marine organisms and other novel 
natural sources of new cancer drugs. Lancet Oncol. 2001, 2, 221–225. 

119. Simmons, T.L.; Andrianasolo, T.L.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural 
products as anticancer drugs. Mol. Cancer Ther. 2005, 4, 333–342.  

120. Nuijen, B.; Bouma, M.; Manada, C.; Jimeno, J.M.; Schellens, J.M.M.; Bult, A.; Beijnen, J.H. 
Pharmaceutical development of anticancer agents derived from marine sources. Anticancer 
Drugs 2000, 11, 793–811. 

121. Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural 
products. Biotechnol. Adv. 2011, 29, 468–482. 

122. Hester, R.E.; Harrison, R.M.; Andersen, R.J.; Williams, D.E. Pharmaceuticals from the sea. 
Chem. Mar. Environ. 2000, 13, 55–80. 

123. Galeano, E.; Rojas, J.J.; Martínez, A. Pharmacological developments obtained from marine 
natural products and current pipeline perspective. Nat. Prod. Commun. 2011, 6, 287–300. 

124. Fattorusso, E.; Gerwick, W.H.; Taglialatela-Scafati, O. Handbook of Marine Natural Products; 
Springer: New York, NY, USA, 2012. 

125. Besse, J.-P.; Latour, J.-F.; Garric, J. Anticancer drugs in surface waters: What can we say about 
the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy 
drugs? Environ. Int. 2012, 39, 73–86. 

http://sauwok5.fecyt.es/apps/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=P2kfkdPkfl5ppJeP@F9&page=1&doc=4
http://www.ncbi.nlm.nih.gov/pubmed/21425696##


Mar. Drugs 2012, 10         
 

394 

126. Radjasa, O.K.; Vaske, Y.M.; Navarro, G.; Vervoort, H.C.; Tenney, K.; Linington, R.G.; Crews, P. 
Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and 
possible production by microbial associants. Bioorg. Med. Chem. 2011, 19, 6658–6674. 

127. Miljanich, G.P. Ziconotide: Neural calcium channel blocker for treating severe chronic pain. 
Curr. Med. Chem. 2004, 11, 3029–3040. 

128. Alicino, I.; Giglio, M.; Manca, F.; Bruno, F.; Puntillo, F. Intrathecal combination of ziconotide 
and morphine for refractory cancer pain: A rapidly acting and effective choice. Pain 2011, 152, 
245–249. 

129. Cuevas, C.; Francesch, A. Development of Yondelis® (trabectedin, ET-743). A semisynthetic 
process solves the supply problem. Nat. Prod. Rep. 2009, 26, 322–333. 

130. Sanfilippo, R.; Grosso, F.; Jones, R.L.; Banerjee, S.; Pilotti, S.; D’Incalci, M.; Dei Tos, A.P.; 
Raspagliesi, F.; Judson, I.; Casal, P.G. Trabectedin in advanced uterine leiomyosarcomas: A 
retrospective case series analysis from two reference centers. Gynecol. Oncol. 2011, 123,  
553–556. 

131. Monneret, C. Impact actuel des produits naturels sur la découverte de nouveaux médicaments 
anticancéreux. Ann. Pharm. Fr. 2010, 68, 218–232. 

132. Burge, R.A. Advances in ovarian cancer disease control. Gynecol. Oncol. 2012, 124, 5–9. 
133. Meoni, G.; Cecere, F.L.; Chaib, I.; Giommoni, E.; di Costanzo, F. Prolonged response to 

trabectedin in a heavily pretreated patient with metastatic endometrial carcinoma: A case report 
and literature review. Gynecol. Oncol. Case Rep. 2011, 1, 23–25. 

134. Alday, P.H.; Correia, J.J. Macromolecular interaction of halichondrin B analogues eribulin 
(E7389) and E-076349 with tubulin by analitical ultacentrifugation. Biochemistry 2009, 48, 
7927–7938. 

135. Smith, J.A.; Wilson, L.; Azarenko, O.; Zhu, X.; Lewis, B.M.; Littlefield, B.A.; Jordan, M.A. 
Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. 
Biochemistry 2010, 49, 1331–1337. 

136. Mak, R.G. Eribulin in soft-tissue sarcomas. Lancet Oncol. 2012, 12, 988–989. 
137. Mak, R.G.; Yeung, B.K.S. Natural product drug discovery: The successful optimization of ISP-1 

and halichondrin. Curr. Opin. Chem. Biol. 2011, 15, 523–528. 
138. Swami, U.; Chaudhary, I.; Ghalib, M.H.; Goel, S. Eribulin—Review of preclinical and clinical 

studies. Rev. Oncol. Hem. 2011, in press. 
139. Gordaliza, M. Terpeny-purines from the sea. Mar. Drugs 2009, 7, 833–847. 
140. Gordaliza, M. Cytotoxic terpene quinones from marine sponges. Mar. Drugs 2010, 8, 2849–2870. 
141. Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2011, 28, 1580–1610. 
142. Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2008, 25, 1180–1209. 
143. Marcos, I.S.; Conde, A.; Moro, R.F.; Basabe, P.; Díez, D.; Urones, J. Quinone/hydroquinone 

sesquiterpenes. Mini Rev. Org. Chem. 2010, 7, 230–254. 
144. Bozic, T.; Novakovic, I.; Gasic, M.J.; Juranic, Z.; Stanojkovic, T.; Tufegdzic, S.; Kljajic, Z.; 

Sladic, D. Synthesis and biological activity of derivatives of the marine quinone avarone. Eur. J. 
Med. Chem. 2010, 45, 923–929.  



Mar. Drugs 2012, 10         
 

395 

145. Benites, J.; Valderrama, J.A.; Rivera, F.; Rojo, L.; Campos, N.; Pedro, M.; Nascimento, M.S.J. 
Studies on quinones. Part 42: Synthesis of furylquinone and hydroquinones with antiproliferative 
activity against human tumor cell lines. Bioorg. Med. Chem. 2008, 16, 862–868 and all previous 
parts. 

146. Sladic, D.; Gasic, M.J. Reactivity and biological activity of marine sesquiterpene hydroquinones 
avarol and related compound from sponges of Order Dictyoceratida. Molecules 2006, 11, 1–33. 

147. Motti, C.A.; Bourguet-Kondracki, M.-L.; Longeon, A.; Doyle, J.R.; Llewellyn, L.E.;  
Tapiolas, D.M.; Yin, P. Comparison of biological properties of several marine sponge-derived 
sesquiterpenoid quinOnes. Molecules 2007, 12, 1376–1388. 

148. De Rosa, S. Marine Natural Products: Analysis, Structure Elucidation, Bio-Activity and Potential 
Use as Drug. In Natural Products in the New Millenium: Prospects and Industrial Applications; 
Rauter, A.P., Palma, F.B., Justino, J., Araújo, M.E., Dos Santos, S.P., Eds.; Kluwer: Dordrecht, 
The Netherlands, 2002; pp. 441–461. 

149. Gordaliza, M.; Miguel del Corral, J.M.; Mahiques, M.M.; San Feliciano, A.; García-Grávalos, M.D. 
Terpenequinone with antitumor activity. PCT Int. Appl. WO 9604230 A1, 15 February 1996. 

150. Miguel del Corral, J.M.; Gordaliza, M.; Castro, M.A.; Mahiques, M.M.; Chamorro, P.;  
Molinari, A.; García-Grávalos, M.D.; Broughton, H.B.; San Feliciano, A. New selective 
cytotoxic diterpenylquinones and diterpeniylhydroquinones. J. Med. Chem. 2001, 44, 1257–1267. 

151. Amigo, M.; Terencio, M.; Paya, M.; Iodice, C.; de Rosa, S. Synthesis and evaluation of diverse 
thio avarol derivatives as potential UVB photoprotective candidates. Bioorg. Med. Chem. Lett. 
2007, 17, 2561–2565. 

152. Schatton, W.; Schatton, M.; Pietschmamm, R. Method for the preparation of compositions with 
high avarol content from sponge and use for the prevention and treatment of psoriasis and 
tumors. Eur. Pat. Appl. EP 1391197 A1, 25 February 2004. 

153. Quideau, S.; Lebon, M.; Lamidey, A.-M. Enantiospecific synthesis of the antituberculosis marine 
sponge metabolite (+)-puupehenone. The arenol oxidative activation route. Org. Lett. 2002, 4, 
3975–3978.  

154. Ciavatta, M.L.; Lopez-Gresa, M.P.; Gavagnin, M.; Melck, D.; Mauzo, E.; Guo, Y.-W.;  
van Soest, R.; Cimio, G. Studies on puupehenone-metabolites of Dysideas sp.: Structure and 
biological activity. Tetrahedron 2007, 63, 1380–1384. 

155. Nakamura, H.; Kobayashi, J.; Kobayashi, M.; Ohizumi, Y.; Hirata, I. Xestoquinone. A novel 
cardiotonic marine natural product isolated from the okinawan sea sponge Xestospongia sapra. 
Chem. Lett. 1985, 6, 713–716. 

156. Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe, A.; Furet, P.; Giannis, A.; Waldmann, H.  
Total synthesis and biological evaluation of the nakijiquinones. J. Am. Chem. Soc. 2001, 123, 
11586–11593. 

157. Hu, J.-F.; Schetz, J.A.; Kelly, M.; Peng, J.-N.; Ang, K.K.H.; Flotow, H.; Leong, C.Y.; Ng, S.B.; 
Buss, A.D.; Wilkins, S.P.; et al. New antiinfective and human 5-HT2 receptor binding natural 
and semisynthetic compounds from the jamaican sponge Smenospongia aurea. J. Nat. Prod. 
2002, 65, 476–480. 

http://www.sciencedirect.com/science/article/pii/S096808960700898X?_alid=1770589578&_rdoc=20&_fmt=high&_origin=search&_docanchor=&_ct=660&_zone=rslt_list_item&md5=4f040e06d74cab21efe9aebbcef3d2fc
http://www.sciencedirect.com/science/article/pii/S096808960700898X?_alid=1770589578&_rdoc=20&_fmt=high&_origin=search&_docanchor=&_ct=660&_zone=rslt_list_item&md5=4f040e06d74cab21efe9aebbcef3d2fc


Mar. Drugs 2012, 10         
 

396 

158. Winder, P.L.; Baker, H.L.; Linley, P.; Guzmán, E.A.; Pomponi, S.A.; Diaz, M.C.; Reed, J.K.; 
Wright, A.E. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the  
deep-water sponge Neopetrosia cf. próxima. Bioorg. Med. Chem. 2011, 19, 6599–6603. 

159. Schirmer, R.H.; Müller, J.G.; Krauth-Siegel, R.L. Disulfide-reductase inhibitors as 
chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria. Angew. Chem. 
Int. Ed. Engl. 1995, 34, 141–154. 

160. Monks, T.J.; Hanzlik, R.P.; Cohen, G.M.; Ross, D.; Graham, D.G. Quinone chemistry and toxicity. 
Toxicol. Appl. Pharmacol. 1992, 112, 2–16. 

161. O’Brien, P.J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 1991, 80,  
1–41. 

162. Alegría, A.; Sánchez, S.; Sánchez-Muñoz, P.; Nieves, I.; Cruz, N.G.; Gordaliza, M.;  
Martín-Martín, M.L. Terpenylnaphthoquinones are reductively activated by NADH/NADH 
dehydrogenase. Toxicol. Environ. Chem. 2005, 87, 237–245. 

163. Alegría, A.; Cordones, E.; Marcano, Y.; Sanchez, S.; Gordaliza, M.; Martín-Martín, M.L. 
Reductive activation of terpenylnaphtoquinones. Toxicology 2002, 175, 167–175. 

164. Schröder, H.C.; Wenger, R.; Gerner, H.; Reuter, P.; Kuchino, Y.; Müller, W.E.G. Suppression of 
the modulatory effects of the antileukemic and anti-human immunodeficiency virus compound 
avarol on gene expression by tryptophan. Cancer Res. 1989, 49, 2069–2076. 

165. Sladić, D.; Gašić, M.J. Effects of iron(II) compounds on the amount of DNA damage in friend 
erythroleukemia cells induced by avarol. Role of hydroxyl radicals. J. Serb. Chem. Soc. 1994, 59, 
915–920. 

166. Novaković, I.; Vujčić, Z.; Božić, T.; Božić, N.; Milosavić, N.; Sladić, D. Chemical modification 
of β-lactoglobulin by quinones. J. Serb. Chem. Soc. 2003, 68, 243–248. 

167. Sladić, D.; Novaković, I.; Vujčić, Z.; Božić, T.; Božić, N.; Milić, D.; Šolaja, B.; Gašić, M.J. 
Protein covalent modification by biologically active quinones. J. Serb. Chem. Soc. 2004, 69, 
901–907. 

168. Sunazuka, T. Total synthesis of natural products for finding pharmaceutical leads. Shinki Sozai 
Tansaku 2008, 146–153. 

169. Suyama, T.L.; Gerwick, W.H.; McPhail, K.L. Survey of marine marine product structure 
revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 2011, 19, 
6675–6701. 

170. Baran, P.S.; Maimone, T.J.; Richter, J.M. Total synthesis of marine natural products without 
using protecting groups. Nature 2007, 446, 404–408. 

171. Hanessian, S. Structure-based synthesis: From natural products to drug prototypes. Pure Appl. 
Chem. 2009, 81, 1085–1091. 

172. Hashimoto, S. Natural product chemistry for drug discovery. J. Antibiot. 2011, 64, 697–701. 
173. Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural 

complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 1999, 38, 
643–647. 

174. Feher, M.; Schmidt, J.M. Property distributions: Differences between drugs, natural products, 
and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227. 



Mar. Drugs 2012, 10         
 

397 

175. Morris, J.C.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2011, 28, 
269–289.  

176. Morris, J.C.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2010, 27, 
1186–1203. 

177. Morris, J.C.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2009, 26, 
245–265. 

178. Morris, J.C.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2008, 25, 
95–117. 

179. Morris, J.C.; Nicholas, G.M.; Phillips, A.J. Marine natural products: Synthetic aspects.  
Nat. Prod. Rep. 2007, 24, 87–108. 

180. Nicholas, G.M.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2006, 
23, 79–99. 

181. Nicholas, G.M.; Phillips, A.J. Marine natural products: Synthetic aspects. Nat. Prod. Rep. 2005, 
22, 144–161. 

182. Capon, R.J. Marine natural products chemistry: Past, present, and future. Aust. J. Chem. 2010, 
63, 851–854. 

183. ApSimon, J.; Thomson, R.H. The Total Synthesis of Naturally Occurring Quinones in Total 
Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley & Sons, Inc.: New York, NY, 
USA, 2007; Volume 8.  

184. Fujimoto, H.; Nakamura, E.; Kim, Y.P.; Okuyama, E.; Ishibashi, M.; Sassa, T. 
Immunomodulatoy constituents from an ascomycete, Eupenicillium crustaceum, and revised 
bsolute structure of macrophorin D. J. Nat. Prod. 2001, 64, 1234–1237. 

185. Juhl, M.; Tanner, D. Recent applications of intramolecular Diels-Alder reaction to natural 
product synthesis. Chem. Soc. Rev. 2009, 38, 2983–2992. 

186. Swersey, J.C.; Barrows, L.R.; Ireland, C.M. Mamanuthaquinone: An antimicrobial and cytotoxic 
metabolite of Fasciospongia sp. Tetrahedron Lett. 1991, 32, 6687–6690. 

187. Yoon, T.; Danishefsky, S.J.; de Gala, S. A concise total synthesis of (±)-mamanuthaquinone by 
using an exo-Diels-Alder reaction. Angew. Chem. Int. Ed. Engl. 1994, 33, 853–855. 

188. Gordaliza, M.; Miguel del Corral, J.M.; Castro, M.A.; Mahiques, M.M.; García-Grávalos, M.D.; 
San Feliciano, A. Synthesis and bioactivity of new antineoplastic terpenylquinones. Bioorg. Med. 
Chem. Lett. 1996, 6, 1859–1864. 

189. Hamann, M.T.; Scheuer, P.J.; Kelly-Borges, M. Biogenetically diverse, bioactive constituents of 
a sponge, order Verongida: Bromotyramines and sesquiterpene-shikimate derived metabolites.  
J. Org. Chem. 1993, 58, 6565–6569. 

190. Kohmoto, S.; McConnell, O.J.; Wright, A.; Koehn, F.; Thompson, W.; Lui, M.; Snader, K.M. 
Puupehenone, a cytotoxic metabolite from a deep water marine sponge, Stronglyophora 
hartmani. J. Nat. Prod. 1987, 50, doi:10.1021/np50050a064. 

191. Nasu, S.S.; Yeung, B.K.S.; Hamann, T.; Scheuer, P.J.; Kelly-Borges, M.; Goins, K. 
Puupehenone-related metabolites from two Hawaiian sponges, Hyrtios sp. J. Org. Chem. 1995, 
60, 7290–7292. 

192. Pina, I.; Sanders, M.L.; Crews, P. Puupehenones congeners from an Indo-pacific Hyrtios sponge. 
J. Nat. Prod. 2003, 66, 2–6. 



Mar. Drugs 2012, 10         
 

398 

193. Castro, M.E.; Gonzales-Iriarte, M.; Barrero, A.F.; Salvador-Tormo, N.; Muñoz-Chapuli, R.; 
Medina, M.A.; Quesada, A.R. Study of puupehenone and related compounds as inhibitors of 
angiogenesis. Int. J. Cancer 2004, 110, 31–38. 

194. Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.; Haidour, A.; Ramos, J.M.; 
Alvarez-Manzaneda, R.; Hmamouchi, M.; Bouanou, H. Diels-Alder cycloaddition approach to 
puupehenone-related metabolites: Synthesis of the potent angiogenesis inhibitor 8-epipuupedione. 
J. Org. Chem. 2007, 72, 3332–3339. 

195. Alvarez-Manzaneda, E.; Chahboun, R. Method for the preparation of mero sesquiterpenes from 
labdane diterpenes. WO 2009112622 A1, 17 September 2009. 

196. Barrero, A.F.; Alvarez-Manzaneda, E.J.; Herrador, M.; Chahboun, R.; Galera, P. Synthesis and 
antitumoral activities of marine ent-chromazonarol and related compounds. Bioorg. Med. Chem. 
Lett. 1999, 9, 2325–2328. 

197. Barrero, A.F.; Alvarez-Manzaneda, E.J.; Chahboun, R.; Cortes, M.; Armstrong, V. Synthesis and 
antitumoral activities of puupehedione and related compounds. Tetrahedron 1999, 55,  
15181–15208. 

198. Kamble, R.M.; Ramana, M.M.V. Microwave-assisted Diels-Alder reaction of 1,3,3-trimethyl-2-
vinyl-1-cyclohexene with chromones-an expeditious approach to analogues of the puupehenone 
group of marine diterpenoids. Can. J. Chem. 2010, 88, 1233–1239. 

199. Kurata, K.; Taniguchi, K.; Suzuki, M. Cyclozonarone, a sesquiterpene-substituted benzoquinone 
derivative from the brown alga Dictyopteris undulata. Phytochemistry 1996, 41, 749–752. 

200. Schroder, J.; Matthes, B.; Seifert, K. Total synthesis of the marine sesquiterpene quinone  
(−)-cyclozonarone. Tetrahedron Lett. 2001, 42, 8151–8152. 

201. Cuellar, M.A.; Salas, C.; Cortés, M.J.; Morillo, A.; Maya, J.D.; Preite, M.D. Synthesis and  
in vitro trypanocide activity of several polycyclic drimane-quinone derivatives. Bioorg. Med. 
Chem. 2003, 11, 2489–2497. 

202. Roll, D.M.; Scheuer, P.J.; Matsutsumoto, G.K.; Clardy, J. Halenaquinone, a pentacyclic 
polihetide from a marine sponge. J. Am. Chem. Soc. 1983, 105, 6177–6178. 

203. Kienzler, M.A.; Suseno, S.; Trauner, D. Vinyl Quiñónez as Diles-Alder dienes: Concise sinthesis 
of (−)-halenaquinone. J. Am. Chem. Soc. 2008, 130, 8604–8605.  

204. Sutherland, H.S.; Souza, F.E.S.; Rodrigo, R.G.A. A Short synthesis of (±)-halenaquinone.  
J. Org. Chem. 2001, 66, 3639–3641. 

205. Schröder, J.; Magg, C.; Seiferd, K. Total synthesis of the marine sesquiterpene hydroquinone 
zonarol and isozonarol and the sequiterpene uinine zonarone e isozonarone. Tetrahedron Lett. 
2000, 41, 5469–5473. 

206. Laube, T.; Schröder, J.; Magg, C.; Strhle, R.; Seiferd, K. Total synthesis of yahazunol, zonarone 
and isozonarone. Tetrahedron 2002, 58, 4299–4309. 

207. Fenical, W.; Sims, J.J.; Squatrito, D.; Wing, R.M.; Radlick, P. Marine natural products VII. 
Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris 
zonarioides. J. Org. Chem. 1973, 38, 2383–2386. 

208. Laube, T.; Bernet, A.; Dahne, H.; Jacobsen, I.D.; Seifert, K. Synthesis and pharmacological 
activities of some sequiterpene quinones and hydroquinones. Bioorg. Med. Chem. 2009, 17, 
1422–1427. 



Mar. Drugs 2012, 10         
 

399 

209. Herlem, D.; Kerragoret, J.; Yu, D.; Khuong-Huu, F.; Kende, A.S. Studies toward the total 
synthesis of polyoxygenated labdanes: Preliminary approaches. Tetrahedron 1993, 49, 607–618. 

210. Bernet, A.; Schroeder, J.; Seifert, K. Synthesis of the marine sesquiterpene quinones 
hyatellaquinone and spongiaquinone. Helv. Chim. Acta 2003, 86, 2009–2020. 

211. Capon, R.J.; Groves, D.R.; Urban, S.; Watson, R.G. Spongiaquinone Revisited: Structural and 
Stereochemical studies on marine sesquiterpene/quinones from a Southern Australian marine 
sponge, Spongia sp. Aust. J. Chem. 1993, 46, 1245–1253. 

212. Talpir, R.; Rudi, A.; Kashman, Y.; Loya, Y.; Hizi, A. Three new sesquiterpene hydroquinones 
from marine origin. Tetrahedron 1994, 50, 4179–4184. 

213. Kazlauskas, R.; Murphy, P.T.; Warren, R.G.; Wells, R.J.; Blount, J.F. New quinones from a 
dictyoceratid sponge. Aust. J. Chem. 1978, 31, 2685–2697. 

214. Sullivan, B.; Djura, P.; McIntyre, E.; Faulker, J. Antimicrobial constituents of the sponge 
Siphonodictyon coralliphagum. Tetrahedron 1981, 37, 979–982. 

215. Sullivan, B.W.; Faulker, D.J.; Matsumoto, G.K.; Cun-Heng, H.; Cloardy, J. Metabolites of the 
burrowing sponge Siphonodictyon coralliphagu. J. Org. Chem. 1986, 51, 4568–4573. 

216. Nakamura, M.; Suzuki, A.; Nakatani, M.; Fuchikami, T.; Inoue, M.; Katoh, T. A efficient 
synthesis of (+)-aureol via boron trifluoride etherate-promoted rearrangement of (+)-arenarol. 
Tetrahedron Lett. 2002, 43, 6929–6932. 

217. Nakatami, N.; Nakamura, M.; Suzuki, A.; Fuchikami, T.; Inoue, M.; Katoh, T. Enantioselective 
total synthesis of (+)-aureol via a BF3·Et2O-promoted rearrangement/cyclization reaction of  
(+)-arenarol. Arkivoc 2003, 8, 45–57. 

218. Djura, P.; Stierle, D.B.; Sulliva, B.; Faulkner, D.J.; Arnold, E.; Clardy, J. Some metabolites of 
the marine sponges Smenospongia aurea and Smenospongia (.ident.Polyfibrospongia) echina.  
J. Org. Chem. 1980, 45, 1435–1441. 

219. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of verongida 
sponges. 10. Secondary metabolite composition of the caribbean sponge Verongula gigantean.  
J. Nat. Prod. 2000, 63, 263–266.  

220. Wright, A.E.; Cross, S.S.; Burres, N.S.; Koehn, F. Antiviral and antitumor terpene hydroquinones 
from marine sponge and methods of use, USA. PCT WO 9112250 A1, 22 August 1991. 

221. Katoh, T.; Nakatani, M.; Shikita, S.; Sampe, R.; Ishiwata, A.; Ohmori, O.; Nakamura, M.; 
Terashima, S. Studies toward the total synthesis of popolohuanone E: Enantioselective synthesis 
of 8-O-methylpopolohuanone E. Org. Lett. 2001, 3, 2701–2704. 

222. Kawano, H.; Itoh, M.; Katoh, T.; Terashima, S. Studies toward the synthesis of popolohuanone E: 
Synthesis of natural (+)-arenarol related to the proposed biogenetic precursor of popolohuanone E. 
Tetrahedron Lett. 1997, 38, 7769–7772. 

223. Banerjee, A.K.; Laya-Mimo, M. Synthesis of bioactive terpenes from Wieland-Miescher ketone 
and its methyl analog. Stud. Nat. Prod. Chem. 2000, 24, 175–213. 

224. Kondracki, M.L.; Guyot, M. Biologically active quinine and hydroquinones sesquiterpenoids 
from the sponge Smenospongia sp. Tetrahedron 1989, 45, 1995–2004. 

225. Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Wittig-type reaction of dimetallated carbodianion 
species as produced by zinc reduction of gem-polyhalogen compounds in the presence of Lewis 
acids. Bull. Chem. Soc. Jpn. 1980, 53, 1698–1702. 



Mar. Drugs 2012, 10         
 

400 

226. Moulines, J.; Lamidey, A.-M.; Desvergnes-Beuil, V. A practical synthesis of Ambrox® from 
sclareol using no metallic oxidant. Synth. Commun. 2001, 31, 749–758. 

227. Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine 
compounds. Chem. Rev. 2002, 102, 2523–2584. 

228. Quideau, S.; Pouységu, L.; Oxoby, M.; Looney, M.A. 2-Alkoxyarenol-derived orthoquinols in 
carbon-oxygen, carbon-nitrogen and carbon-carbon bond-forming reactions. Tetrahedron 2001, 
57, 319–329. 

229. Synder, S.A.; Teitler, D.S.; Brucks, A.P. Simple reagents for direct halonium-induced polyene 
cyclizations. J. Am. Chem. Soc. 2010, 132, 14303–14314. 

230. Loya, S.; Bakhanaskvili, M.; Kashman, Y.; Hizi, A. Peyssonols A and B, two novel inhibitors of 
the reverse transcriptases of human immunodeficiency virus types 1 and 2. Arch. Biochem. 
Biophys. 1995, 316, 789–796. 

231. Ling, T.; Poupon, E.; Rueden, E.J.; Kim, S.H.; Theodorakis, E.A. Unified synthesis of quinone 
sesquiterpenes based on a radical decarboxylation and quinone addition reaction. J. Am. Chem. 
Soc. 2002, 124, 12261–12267. 

232. Minale, L.; Riccio, R.; Sodano, G. Avarol, a novel sesquiterpenoid hydroquinone with a 
rearranged drimane skeleton from the sponge Dysidea avara. Tetrahedron Lett. 1974, 3401–3404. 

233. De Rosa, S.; Minale, L.; Riccio, R.; Sodano, G. The absolute configuration of avarol, a 
rearranged sesquiterpenoid hydroquinone from a marine sponge. J. Chem. Soc. Perkin Trans. 1 
1976, 13, 1408–1414. 

234. Cozzolino, R.; de Giulio, A.; de Rosa, S.; Strazzullo, G.; Gašič, M.J.; Sladić, D.; Zlatović, M. 
Biological activities of avarol derivatives, 1. Amino derivatives. J. Nat. Prod. 1990, 53,  
699–702. 

235. Müller, W.E.G.; Maidhof, A.; Zahn, R.K.; Schröder, H.C.M.; Gasic, M.J.; Heidemann, D.; 
Bernd, A.; Kurelec, B.; Eich, E.; Seibert, G. Potent antileukemic activity of the novel cytostatic 
agent avarone and its analogues in vitro and in vivo. Cancer Res. 1985, 45, 4822–4826. 

236. Müller, W.E.G.; Sobel, C.; Sachsse, W.; Diehl-Seifert, B.; Zahn, R.K.; Eich, E.; Kljajić, Z.; 
Schröder, H.C. Biphasic and differential effects of the cytostatic agents avarone and avarol on 
DNA metabolism of human and murine T and B lymphocytes. Eur. J. Cancer Clin. Onc. 1986, 
22, 473–476. 

237. Müller, W.E.G.; Sobel, C.; Diehl-Seifert, B.; Maidhof, A.; Schöder, H.C. Influence of the 
antileukemic and anti-human immunodeficiency virus agent avarol on selected immune 
responses in vitro and in vivo. Biochem. Pharmacol. 1987, 36, 1489–1494. 

238. Sarin, P.S.; Sun, D.; Thornton, A.; Müller, W.E.G. Inhibition of replication of the etiologic agent 
of acquired immune deficiency syndrome (human T-lymphotropic retrovirus/lymphadenopathy-
associated virus) by avarol and avarone. J. Natl. Cancer Inst. 1987, 78, 663–666. 

239. Hagiwara, H.; Uda, H. Optically pure (4aS)-(+)- or (4aR)-(−)-1,4a-dimethyl-4,4a,7,8-
tetrahydronaphthalene-2,5(3H,6H)-dione and its use in the synthesis of an inhibitor of steroid 
biosynthesis. J. Org. Chem. 1988, 53, 2308–2311. 

240. Dess, D.B.; Martin, J.C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for 
the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species.  
J. Am. Chem. Soc. 1991, 113, 7277–7287. 



Mar. Drugs 2012, 10         
 

401 

241. Ling, T.; Poupon, E.; Rueden, E.J.; Theodorakis, E.A. Synthesis of (−)-Ilimaquinone via a 
radical decarboxylation and quinone addition reaction. Org. Lett. 2002, 4, 819–822. 

242. Liu, H.; Wang, G.; Namikoshi, M.; Kobayashi, H.; Yao, X.; Cai, G. Sesquiterpene quinones 
from a marine sponge Hippospongia sp. that inhibit maturation of starfish oocytes and induce 
cell cycle arrest with HepG2 cells. Pharm. Biol. 2006, 44, 522–527. 

243. Kondracki, M.L.; Guyot, M. Smenospongine: A cytotoxic and antimicrobial aminoquinone 
isolated from Smenospongia sp. Tetrahedron Lett. 1987, 28, 5815–5818. 

244. Marcos, I.S.; Conde, A.; Moro, R.F.; Basabe, P.; Díez, D.; Urones, J. Synthesis of 
quinone/hydroquinone sesquiterpenes. Tetrahedron 2010, 66, 8280–8290. 

245. Laube, T.; Beil, W.; Seifert, K. Total synthesis of two 12-nordrimanes and the pharmacological 
active sesquiteerpene hydroquinone yahazunol. Tetrahedron 2005, 61, 1141–1148. 

246. Furuichi, N.; Hata, T.; Soetjipto, H.; Kato, M.; Katsumura, S. Common synthetic strategy for 
optically active cyclic terpenoids having a 1,1,5-trimethyl-trans-decalin nucleus: Syntheses of 
(+)-acuminolide, (−)-spongianolide A, and (+)-scalarenedial. Tetrahedron 2001, 57, 8425–8442. 

247. Sakurai, J.; Oguchi, T.; Watanabe, K.; Abe, H.; Kanno, S.; Ishikawa, M.; Katoh, T.  
Highly efficient total synthesis of the marine natural products (+)-avarone, (+)-avarol,  
(−)-neoavarone, (−)-neovarol and (+)-aureol. Chem. Eur. J. 2008, 14, 829–837. 

248. Kelly, J.L.; Linn, J.A.; Selway, J.W.T. Synthesis and antirhinovirus activity of  
6-(dimethylamino)-2-(trifluoromethyl)-9-(substituted benzyl)-9H-purines. J. Med. Chem. 1989, 
32, 1757–1763.  

249. Stork, G.; rosen, P.; Goldman, N.; Coombs, R.V.; Tsuji, J. Alkylation and carbonation of ketones 
by trapping the enolates from the reduction of α,β-unsaturated ketones. J. Am. Chem. Soc. 1965, 
87, 275–286. 

250. Bruner, S.D.; Radeke, H.S.; Tallarico, J.A.; Snapper, M.L. Total synthesis of (−)-ilimaquinone.  
J. Org. Chem. 1995, 60, 1114–1115. 

251. Poigny, S.; Guyot, M.; Samadi, M. Efficient total synthesis of (−)-ilimaquinone. J. Org. Chem. 
1998, 63, 5890–5894. 

252. Stalh, P.; Waldmann, H. Asymmetric synthesis of the nakijiquinones-selective inhibitors of the 
her-2/Neu protooncogene. Angew. Chem. Int. Ed. 1999, 38, 3710–3713. 

253. Shigemori, H.; Madono, T.I.; Sasaki, T.; Mikami, Y.; Kobayashi, J. Nakijiquinones A and B, 
new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine 
sponge. Tetrahedron 1994, 50, 8347–8354. 

254. Kobayashi, J.; Madono, T.; Shigemori, H. Nakijiquinones C and D, new sesquiterpenoid 
quinones with a hydroxy amino acid residue from a marine sponge inhibiting c-erbB-2 kinase. 
Tetrahedron 1995, 51, 10867–10874. 

255. Takahashi, Y.; Kubota, T.; Kobayashi, J. Nakijiquinones E and F, new dimeric sesquiterpenoid 
quinones from marine sponge. Bioorg. Med. Chem. 2009, 17, 2185–2188. 

256. Takahashi, Y.; Kubota, T.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. Nakijiquinones G–I, 
new sesquiterpenoid quinones from marine sponge. Bioorg. Med. Chem. 2008, 16, 7561–7564. 

257. Takahashi, Y.; Ushio, M.; Kubota, T.; Yamamoto, S.; Fromont, J.; Kobayashi, J. Nakijiquinones 
J–R, Sesquiterpenoid quinones with an qmine residue from Okinawan marine sponges. J. Nat. 
Prod. 2010, 73, 467–471. 



Mar. Drugs 2012, 10         
 

402 

258. Watson, A.T.; Park, K.; Wiener, D.F. Application of the nickel-mediated neopentyl coupling in 
the total synthesis of the marine natural product arenarol. J. Org. Chem. 1995, 60, 5102–5106. 

259. Schmitz, F.J.; Lakshmi, V.; Powell, D.R.; van der Helm, D. Arenarol and arenarona: 
Sesquiterpenoids with rearranged drimane skeletons from marine sponge Dysidea arenaria.  
J. Org. Chem. 1984, 49, 241–244. 

260. Utkina, N.K.; Denisenko, V.A.; Krasokhin, V.B. Sesquiterpenoidd aminoquinones from marine 
sponge Dysidea sp. J. Nat. Prod. 2010, 73, 788–791. 

261. Valderrama, J.A.; Benites, J.; Cortés, M.; Pessoa-Mahana, H.; Prina, E.; Fournest, A. Studies on 
quinones. Part. 38: Synthesis and Leishmanicidal activity of sesquiterpene 1,4-quinones. Bioorg. 
Med. Chem. 2003, 11, 4713–4718. 

262. Valderrama, J.A.; Benites, J.; Cortés, M.; Pessoa-Mahana, H.; Prina, E.; Fournest, A. Studies on 
quinones. Part. 35: Studies on quinones. Part 35: Access to antiprotozoal active 
euryfurylquinones and hydroquinones. Tetrahedron 2002, 58, 881–886. 

263. Mehta, G.; Likhite, N.S.; Kumar, C.S.A. A concise synthesis of the bioactive meroterpenoid 
natural product (±)-liphagal, a potent PI3K inhibitor. Tetrahedron Lett. 2009, 50, 5260–5262. 

264. Marion, F.; Williams, D.E.; Patrick, D.O.; Hollander, I.; Mallon, R.; Kim, S.C.; Roll, D.M.; 
Feldberg, L.; Soest, R.V.; Andersen, R.J. Liphagal, a selective inhibitor of PI3 kinase α isolated 
from the sponge Aka coralliphaga: Structure elucidation and biomimetic synthesis. Org. Lett. 
2006, 8, 321–324. 

265. Sundstrom, T.J.; Anderson, A.C.; Wright, D.L. Inhibitors of phosphoinositide-3-kinase: A 
structure-based approach to understanding potency and selectivity. Org. Biomol. Chem. 2009, 7, 
840–850.  

266. Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway 
for cancer drug discovery. Nat. Rev. Drug Discov. 2005, 4, 988–1004. 

267. Schröder, H.C.; Brümmer, F.; Fattorusso, E.; Aiello, A.; Menna, M.; de Rosa, S.; Batel, R.; 
Müller, W.E. Sustainable production of bioactive compounds from sponges: Primmorphs as 
bioreactors. Prog. Mol. Subcell Biol. 2003, 37, 163–197. 

268. Müller, W.E.; Böhm, M.; Batel, R.; de Rosa, S.; Tommonaro, G.; Müller, I.M.; Schröder, H.C. 
Application of cell culture for the production of bioactive compounds from sponges: Synthesis of 
avarol by primmorphs from Dysidea avara. J. Nat. Prod. 2000, 63, 1077–1081. 

269. De Caralt, S.; Sánchez-Fontenla, J.; Uriz, M.J.; Wijffels, R.H. In situ aquaculture methods for 
Dysidea avara (demospongiae, porifera) in the northwestern mediterranean. Mar. Drugs 2010, 8, 
1731–1742. 

270. Müller, W.E.; Grebenjuk, V.A.; Le Pennec, G.; Schröder, H.; Brümmer, F.; Hentschel, U.; 
Müller, I.M.; Breter, H. Sustainable production of bioactive compounds by sponges—Cell 
culture and gene cluster approach: A review. Mar. Biotechnol. 2004, 6, 105–117.  

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 

http://www.ncbi.nlm.nih.gov/pubmed/10978201##

	Scheme 2. Diels-Alder cycloaddition between myrceocummunic acid and  p-benzoquinone/naphthoquinone.
	Puupehenones belong to an important class of marine terpenequinone metabolites from Hyrtios sp. and other marine sponges [189–192], which are constructed from drimane and polyphenolic moieties. Puupehenones exhibit a wide variety of biological activit...

