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Abstract: Tetrodotoxin (TTX) is a potent neurotoxin that blocks voltage-gated sodium 
channels (VGSCs). VGSCs play a critical role in neuronal function under both 
physiological and pathological conditions. TTX has been extensively used to functionally 
characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels 
according to their sensitivity to this toxin. Alterations in the expression and/or function of 
some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain 
conditions. The administration of TTX at doses below those that interfere with the 
generation and conduction of action potentials in normal (non-injured) nerves has been 
used in humans and experimental animals under different pain conditions. These data 
indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the 
preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, 
the contribution of specific TTX-sensitive VGSCs to pain is reviewed. 
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1. Introduction 

Pain is a perception and, as a part of the sensory system, has the important protective function of 
warning us from harm that should be avoided or treated, and hence prolong survival. In this context, 
behaviors resulting from pain facilitate fundamental biological actions such as the healing of damaged 
tissues. This kind of pain is essential for maintaining bodily integrity and is associated with noxious 
stimuli, and is therefore called nociceptive pain [1]. In general, nociceptive pain is not a clinical 
problem and properly resolves after the healing process has ended. Unfortunately, under certain 
conditions pain loses its protective role and becomes not only purposeless but also highly distressing. 
This pain condition is related to neuropathic pain, which describes pain occurring with an abnormally 
functioning somatosensory nervous system to contrast with the normal function seen in nociceptive 
pain [1]. 

Pain is an enormous global health problem. It has been estimated that 20% of adults suffer from 
pain globally and 10% are newly diagnosed with chronic pain each year [2]. In particular, chronic and 
neuropathic pain affects millions of people worldwide including causes such as cancer, osteo- and 
rheumatoid arthritis, operations and injuries, and spinal problems [2]. Therefore, there is an obvious 
need to identify and develop new analgesics in order to better treat these unrelieved pain conditions. 

Tetrodotoxin (TTX) is a neurotoxin found in puffer fish and other marine and terrestrial animals and 
it has been extensively used to elucidate the role of specific voltage-gated sodium channels (VGSCs) 
subtypes in a wide range of physiological and pathophysiological processes in the nervous system [3]. 
VGSCs play a key role in pain and TTX-sensitive subtypes have received much attention over the past 
few years because these channels have been strongly implicated in normal and pathological pain [4]. 
Since TTX blocks this subset of VGSCs in a highly selective manner, this agent may have a potential 
role in relieving pain. In this review, we will examine the roles of TTX-sensitive VGSCs in pain and 
subsequently, we will highlight the evidences obtained in preclinical animal studies and those studies 
performed in humans supporting TTX as a potential analgesic compound. 

2. Voltaged-Gated Sodium Channels and TTX 

VGSCs are members of the ion channel protein superfamily and play an essential role in neuronal 
and non-neuronal function, being responsible for the initiation and propagation of action potentials in 
excitable cells by allowing the influx of sodium ions. The VGSCs are large integral membrane proteins 
composed of a 260 kDa α-subunit and one or more auxiliary β-subunits. The α-subunit is sufficient for 
functional expression, forming the pore, determining the biophysical properties of the channel, and 
containing the ion selectivity filter [5,6]. β-Subunits can modify the kinetic and voltage dependence 
properties of the channel and are involved in channel localization and interaction with cell adhesion 
molecules, extracellular matrix, and intracellular cytoskeleton [7].  

Nine mammalian α-subunit isoforms have been identified and functionally expressed, encoded by 
different genes that give rise to nine VGSC subtypes (Nav1.1–Nav1.9). A tenth isoform (NaX) has been 
recognized as a related protein that does not encode a VGSC [8]. Figure 1 depicts a schematic 
representation of α-subunits, which are large polypeptides that all share the following overall structure 
in common: four homologous domains (DI-DIV), each containing six transmembrane α-helical 



Mar. Drugs 2012, 10             
 

 

283 

segments (S1–S6), which are connected by extracellular and intracellular loops. Specific amino acid 
sequences of the α-subunit form the pore wall of the ion channel, the voltage sensor, the inactivation 
gate, and the protein phosphorylation sites [9]. The α-subunit also contains the binding site for local 
anesthetic, anti-arrhythmic, and anti-epileptic drugs [10] and for several groups of neurotoxins that can 
markedly alter channel functions [11]. For a comprehensive review of VGSCs, the reader is referred to 
specific review articles [5,6,8,9]. 

Figure 1. Schematic representation of voltage-gated sodium channel α-subunits and 
Tetrodotoxin (TTX) binding site. Voltage-gated sodium channel α-subunits are formed by 
four homologous domains (DI-IV), each consisting of 6 α-helical transmembrane segments 
(1–6). Segment 4 (dark red) corresponds to the voltage sensors. Sites of phosphorylation by 
protein kinase A (PKA) and protein kinase C (PKC) are represented by yellow circles and 
brown squares, respectively. The fast inactivation gate (IFM motif) is located in the 
intracellular loop between domains 3 and 4 and is represented by h (in pink oval); pink 
circles show the sites involved in forming the inactivation gate receptor. P-loops are 
located between helices 5 and 6 (in blue), which are the pore-lining segments (as shown in 
the lower figure). Outer (EEDD motif) and inner (DEKA motif) rings, represented by a 
green and purple band, respectively (in both the upper and lower figures), are formed by 
the amino acids indicated by circles of the same color. The TTX molecule interacts with 
the amino acid residues of these two rings in the pore of the channel, as detailed in the 
lower figure. 
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TTX binds to neurotoxin receptor site 1 on the α-subunit within the outer vestibule of the VGSC 
and blocks the influx of sodium ions by occluding the outer pore of the channel [12]. This binding 
inhibits the propagation of action potentials, thereby paralyzing nerve and muscle function [13]. The nine 
mammalian VGSC subtypes that have been identified have distinct kinetics and voltage-dependent 
properties and differ in their tissue localization and sensitivity to TTX [8]. Nanomolar concentrations 
of TTX block Nav1.1, Nav1.2, Nav1.3, Nav1.4, Nav1.6, and Nav1.7 subtypes (TTX-sensitive VGSCs), 
whereas significantly higher (micromolar) concentrations are needed to block Nav1.5, Nav1.8 and 
Nav1.9 subtypes (TTX-resistant VGSCs) [8]. Therefore, in mammals, the physiological effects of TTX 
differ among various excitable tissues depending on the VGSC isoforms expressed in their cells [14].  

The functional roles of VGSCs expressed by neurons are well-established (the generation and 
transmission of action potentials). VGSCs are also present in many non-neuronal cells within the nervous 
system and outside the nervous system, although their contributions to cellular functions of these cells 
are not fully understood [15,16]. In particular, TTX-sensitive (as well as TTX-resistant) VGSCs are 
expressed in some cell types within the central nervous system, such as astrocytes [17]. These kind of 
glial cells are not classically considered excitable, although they express VGSCs at levels that could 
support generation of action potential-like responses if resting inactivation is removed [18]. In addition, 
VGSCs appear to play significant roles in the function and viability of these cells [19]. Thus, clinical 
studies in which TTX or TTX-like agents are introduced into the central nervous system should carefully 
monitor for changes in neurological function. 

VGSCs have received considerable attention for their therapeutic potential. Mutations in the genes 
encoding VGSCs (called “channelopathies”) have been identified as the cause of numerous hereditary 
diseases in heart, skeletal muscle, brain and peripheral nerves [20–23]. In addition, changes in the 
expression of non-mutated VGSC genes have been implicated in a number of disorders, including pain 
and multiple sclerosis [24]. In this review, we focus on VGSC research contributing evidence on the 
potential analgesic role of TTX. 

3. TTX-Sensitive Voltage-Gated Sodium Channels and Pain 

VGSCs play a key role in nociception, being one of the primary classes of ion channels responsible 
for driving noxious information to the central nervous system. Dysfunctional VGSCs have been related 
to several pain states, and data from human genetic studies and transgenic mouse models point to the 
implication of specific VGSC isoforms in particular types of pain [4,25]. The development of drugs 
that selectively block a single channel or selected channels is therefore of therapeutic interest and 
could reduce the adverse effects associated with non-selective sodium channel blockade [26,27]. 

As noted above, TTX is a highly selective blocker of a subset of VGSCs. Some of these  
TTX-sensitive VGSCs (e.g., Nav1.7) are preferentially expressed in adult sensory neurons and have 
been implicated in normal and pathological pain. It has also been reported that nerve injury is followed 
by upregulation of the expression of TTX-sensitive VGSCs (especially Nav1.3) in parallel with an 
increase in TTX-sensitive VGSC currents and a downregulation of TTX-resistant VGSC expression 
and currents [28–32]. This upregulation of TTX-sensitive VGSCs in adult sensory neurons leads to 
electrophysiological changes that may contribute to neuropathic pain states [33–35]. In particular,  
re-expression of the Nav1.3 α-subunit has been linked to the hyperexcitability and ectopic firing 



Mar. Drugs 2012, 10             
 

 

285 

observed in spinal sensory neurons after injury [36]. Given the therapeutic potential of a drug that 
selectively blocks these VGSC subtypes, the possible role of TTX in pain treatment has been 
investigated in humans and animals, as is discussed in detail below (see Section 4 and Table 2).  
TTX-resistant VGSCs have also been proposed to participate in several pain states [4,25], but this 
review only reports evidence on the contribution of the TTX-sensitive subset of VGSCs.  

The TTX-sensitive VGSC subtype Nav1.4 is almost exclusively expressed in skeletal muscle [37], 
making its involvement in pain states highly unlikely. The other TTX-sensitive VGSCs (Nav1.1, 
Nav1.2, Nav1.3, Nav1.6 and Nav1.7) are well distributed throughout the central and/or peripheral 
nervous system (see Table 1), and their expression in neurons of the adult dorsal root ganglion (DRG) 
is especially well documented [38]. The contributions of these ion channels to different types of pain 
have been studied to a varying extent, as summarized in Table 1 and reviewed below. 

Table 1. Summary of the potential implication of TTX-sensitive voltage-gated sodium 
channels in pain states. 

Channel Normal localization 
Changes of expression  

in pain states 
Knockdown/ 

Knockout 

Mutations 
related to  
pain states 

Nav1.1 
-CNS, PNS (in DRG mainly in 
A-fiber neurons) 
-Microglia 

Animal 
-Unclear after PNI in NP 

― 
-Inherited 
hemiplegic 
migraine 

Nav1.2 
-Mainly CNS, very low 
expression in PNS 
-In SC in lamina I/II 

Animal 
-Unclear after PNI in NP 

― ― 

Nav1.3 
-Embryonic sodium channel 
-In adult neurons, in lamina 
I/II of SC, negligible in DRG 

Human 
-↑ in human neuromas 
-↑ in human nerves after PNI 
-↑ in human trigeminal neuralgia 
Animal 
-↑ in DRG in inflammatory pain 
-↑ in DRG after PNI in NP 
-↑ in trigeminal ganglion after 
PNI in NP 
-↑ in SC dorsal horn after PNI in 
NP 
-↑ in rat neuromas 
-↓ in ferret trigeminal neuralgia 

-Contradictory data 
with i.t. antisense 
ODNs 
-Knockout mice 
developed normally 
acute, inflammatory 
and neuropathic 
pain 

― 

Nav1.4 - In skeletal muscle ― ― ― 

Nav1.6 

-Mainly in Nodes of Ranvier 
-In SC and PNS (in DRG 
mainly in A-fiber neurons) 
-In epidermal free nerve 
terminals and keratinocytes 
-Main sodium channel in 
microglia 

Human 
-↑ in skin of patients with 
complex regional pain syndrome 
and post-herpetic neuralgia 
Animal 
-Unclear in diabetic neuropathy 
-↑ in nerve after infraorbital 
nerve injury 
-↓ in DRG after PNI in NP 

― 
 

― 
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Table 1. Cont. 

Channel Normal localization 
Changes of expression  

in pain states 
Knockdown/ 

Knockout 

Mutations 
related to  
pain states 

Nav1.7 

-Mainly in PNS in all types of 
DRG neurons 
-In SC and PNS (in DRG, 
mainly in A-fiber neurons) 
-In epidermal free nerve 
terminals 

Human 
-↑ in human neuromas 
-↑ in skin of patients with 
complex regional pain syndrome 
and post-herpetic neuralgia 
-↑ painful human dental pulp 
-↑ in idiopathic rectal 
hypersensitivity and fecal 
urgency 
-↓ in human DRG after PNI 
-↓ in human trigeminal neuralgia 
Animal 
-↑ in DRG in inflammatory pain 
-↑ in rat neuromas 
-Unclear in diabetic neuropathy 
-↓ in DRG after PNI in NP 
-↓ in sciatic nerve after PNI in 
NP 
-↓ in ferret trigeminal neuralgia 

-Knockdown of 
Nav1.7 ↓ 
inflammatory pain 
and Nav1.7 
expression in 
primary afferents in 
mice 
-Knockout mice 
showed ↑ 
mechanical and 
thermal pain 
thresholds and ↓ 
inflammatory pain 
- Knockout mice 
developed normally 
neuropathic pain 
 

-Inherited 
erythermalgia 
-Paroxysmal 
extreme pain 
disorder 
-Congenital 
insensitivity to 
pain 

CNS: central nervous system; DRG: dorsal root ganglia; i.t.: intrathecal; NP: neuropathic pain; ODN: 
Oligodeoxynucleotide; PNI: peripheral nerve injury; PNS: peripheral nervous system; SC: spinal cord. 

3.1. Nav1.1 

VGSC isoform Nav1.1 is extensively expressed in both the central and peripheral nervous  
system [8]. In the DRG, this sodium channel is expressed predominantly in large myelinated A-fiber 
neurons and only weakly in nociceptive neurons [39]. Nav1.1 is one of the TTX-sensitive sodium 
channel isoforms present in microglia [16], which play a role in pathologic pain [40]. Some mutations 
of the gene encoding for this channel (SCN1A) have been related to a type of inherited hemiplegic 
migraine [41]. Nav1.1 protein expression in neuroma tissue from patients with well-documented pain 
was similar to that of control patients [42], and Nav1.1 protein and mRNA expression in DRG neurons 
was unchanged in an animal model of carrageenan-induced inflammatory pain [43]. However, 
experimental models of neuropathic pain have yielded contradictory results. Thus, peripheral nerve 
injury was associated with no change in Nav1.1 expression of the ventral posterolateral nucleus of the 
thalamus [44], and with a decrease [32,45] in Nav1.1 mRNA expression or an increase [46] in its 
protein expression at DRG level. Further research is therefore required to clarify the role of this 
subunit in pathologic pain. 

3.2. Nav1.2 

Isoform Nav1.2 is one of the main VGSCs in the central nervous system [47]. The expression of its 
mRNA was unchanged in neurons of the ventral posterolateral nucleus of the thalamus after peripheral 
nerve injury in rat [44]. In DRG neurons, Nav1.2 expression was unchanged in a model of inflammatory 
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pain [43] and either unaffected [45] or decreased [32] after peripheral nerve injury. No change in its 
expression was observed in painful human neuromas [42]. In addition, studies of the peripheral 
nervous system have generally reported very low signals of Nav1.2 at this level [32,38,39,42,43,45]. 
Hence, this subtype appears not to be involved in pain, and it has received little research attention in 
this setting. Nevertheless, Nav1.2 was very recently identified as one of the sodium channel isoforms 
that mediate action potential firing in lamina I/II spinal cord neurons, which are primarily composed of 
Nav1.2 and Nav1.3 isoforms [48]. 

3.3. Nav1.3 

Isoform Nav1.3 is the main sodium channel in embryonic neurons [8] and is also expressed in the 
adult central nervous system, especially in humans [47]. In the adult rat, its expression is particularly 
concentrated in neurons of the superficial layers of the spinal cord dorsal horn [49,50], and the sodium 
channel currents of neurons in these layers (lamina I/II) are largely mediated by Nav1.3 along with 
Nav1.2 [48]. Based on this evidence of the functional expression of Nav1.3 in lamina I/II neurons of 
naïve rats, the latter group suggested that this isoform may play important roles in both acute and 
chronic pain signaling mechanisms. 

As noted above, Nav1.3 is an embryonic sodium channel. However, its reexpression after nervous 
system injury has been demonstrated in numerous reports. Thus, authors have reported Nav1.3 
upregulation (re-expression) in nerves from patients with peripheral axotomy versus control nerves [51], 
increased Nav1.3 mRNA expression in the gingival tissue of patients with trigeminal neuralgia [52], 
and increased Nav1.3 protein expression in painful human neuromas [42]. Nav1.3 expression was 
upregulated in DRG neurons in a rodent model of inflammatory pain [43], and in DRG sensory 
neurons [28,29,31,32,35,39,45,53–64], trigeminal ganglion [65], spinal cord dorsal horn [66,67], and 
thalamic nucleus [44,68], in a large number of experimental neuropathic pain models. In most of these 
studies, Nav1.3 upregulation was paralleled by an increase in pain behavior and/or electrophysiological 
changes, such as neuronal hyperresponsiveness or spontaneous firing activity. Interestingly, a rat study 
of several thousand of selected genes in the cell bodies of DRG sensory neurons after peripheral 
axotomy found changes in the expression of only 122 genes, including a 2-5 fold increase in expression 
of the gene for Nav1.3 and a decrease in expression of the gene for the TTX-resistant VGSC Nav1.8 [69]. 

Nav1.3 has several biophysical properties that contribute to neuronal hyperresponsiveness, and its 
increased expression in sensory/nociceptive neurons under pain conditions may be functionally 
significant [34,70]. In fact, Nav1.3 upregulation has been linked to an increase in persistent  
fast-activating and fast-inactivating TTX-sensitive sodium currents in DRG and spinal dorsal horn 
neurons, which likely contributes to the neuronal hyperresponsiveness responsible for allodynia and 
hyperalgesia after nerve injury [34,71]. 

Taken together, these findings suggest that re-expression of Nav1.3 in first-, second-, and third-order 
neurons along the pain axis might be involved in pathologic pain. However, contradictory reports have 
been published by other authors. For example, although the immunoreactive expression of Nav1.3 was 
found to be upregulated in neuromas from humans [42] and rats [35], little change was observed in 
neuromas from mice [72]. Moreover, rat studies found no significant change in Nav1.3 mRNA levels 
after unilateral sciatic nerve entrapment injury [73] or gradual elongation of sciatic nerve [74]. 
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Downregulation of Nav1.3 was even reported in the trigeminal ganglia in a ferret model of trigeminal 
neuropathic pain [75]. The intrathecal administration of antisense oligodeoxynucleotides targeting 
Nav1.3 was reported to decrease Nav1.3 mRNA and protein expression, reducing hyperexcitability of 
dorsal horn neurons and attenuating neuropathic pain behavior after sciatic nerve and spinal cord 
injury [66,67]. However, other authors found no improvement in peripheral nerve injury-induced 
neuropathic pain after intrathecal administration of different antisense oligodeoxynucleotides selective 
for Nav1.3 [59]. In addition, a study in Dr. Wood’s laboratory [76] reported the normal development of 
acute and inflammatory pain in global Nav1.3 knockout mice and, more surprisingly, no modification 
of nerve injury-induced neuropathic pain behavior in global and nociceptive-specific Nav1.3 knockout 
mice. Therefore, despite the considerable evidence of an upregulation of Nav1.3 along the pain axis, it 
is likely that other VGSCs can also contribute to pathologic pain. 

3.4. Nav1.6 

Isoform Nav1.6 is mainly localized in nodes of Ranvier in the peripheral and central nervous  
system [77,78] and along non-myelinated axons [79], suggesting the importance of this sodium 
channel in nerve conduction. It is also well distributed throughout the spinal cord [50]. Its expression 
in the DRG is predominantly in large myelinated A-fiber neurons [39], as in the case of Nav1.1. 
Expression of Nav1.6 (and Nav1.7, Nav1.8, and Nav1.9) has been reported in axons composing small 
nerve bundles underlying the epidermis and in epidermal free nerve terminals, which include 
nociceptors [80]. Nav1.6 is also expressed in keratinocytes, which may contribute to pain sensation, 
and a significantly increased signal for Nav1.6 was found in human skin biopsies from patients with 
complex regional pain syndrome and post-herpetic neuralgia [81]. These data suggest a major role for 
Nav1.6 in the function and pathophysiology of small-diameter sensory nerve endings. In addition, 
several studies have provided strong evidence that Nav1.6 is the predominant sodium channel isoform 
expressed in microglia and contributes to the response of microglia to multiple activating signals 
[reviewed by 16], and microglia are known to have an important role in pathologic pain [40]. 

Nav1.6 appears not to be involved in inflammatory pain [43], and its expression was unchanged  
in thalamic nucleus [44], DRG neurons, and sciatic nerve [73,78] after peripheral nerve injury in  
rat and in human neuromas [42]. There have also been reports of Nav1.6 downregulation in DRG 
neurons after peripheral nerve injury [45,82–84]. Contradictory results have been obtained using the 
streptozotocin-induced painful diabetic neuropathy model. One group observed a significant 
upregulation in Nav1.6 mRNA and protein expression in DRG neurons [54], whereas a subsequent 
study found a downregulation in its protein expression in these neurons [56]. Another group reported a 
significantly increased Nav1.6 protein expression proximal to the injured site in a rat model of 
infraorbital nerve injury [85]. Additional research is needed to elucidate the involvement of this 
channel in pathologic pain. 

3.5. Nav1.7 

VGSC isoform Nav1.7 is expressed in all types of DRG neurons, sympathetic neurons,  
Schwann cells, and neuroendocrine cells [8,86]. Rat studies demonstrated its expression in virtually all 
small-diameter neurons in the DRG [39] and in most intra-epidermal nerve fibers, where it is  
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co-localized with Nav1.8 [80]. Given the localization and electrophysical properties of Nav1.7 [36], it 
likely acts as a ’threshold’ channel, amplifying generator potentials and hence setting the gain in 
nociceptor neurons [87]. In fact, Nav1.7 is essential for nociception in humans, and gain-of-function 
mutations of its gene (SCN9A) are associated with hyperexcitability and extreme pain, while  
loss-of-function mutations produce insensitivity to pain [21,88–90]. 

The key role of Nav1.7 in nociception has been confirmed by animal research data. Nav1.7 mRNA 
and/or protein expression in DRG was upregulated in models of peripheral inflammatory pain [43,91,92] 
in parallel with an increase in TTX-sensitive sodium currents [43]. Nav1.7 expression was also 
upregulated by administration of nerve growth factor (NGF), an inflammatory mediator [93]. Nav1.7 
knockdown in primary afferents in mice prevented the increased Nav1.7 expression in DRG neurons 
and development of hyperalgesia induced by the inflammatory compound complete Freund’s  
adjuvant [94]. Data from experiments with Nav1.7 nociceptor-specific knockout mice also suggested a 
major role for Nav1.7 in acute and inflammatory pain [95]. 

However, the role of Nav1.7 in neuropathic pain remains uncertain. Thus, peripheral nerve  
injury-induced neuropathic pain developed normally in mice lacking Nav1.7 [96]. In support of this 
finding, the injured DRG and sciatic nerve in this pain model showed reduced Nav1.7 protein and/or 
mRNA expression in rodents [45,73,82–84]. Nav1.7 protein expression was also downregulated in 
trigeminal ganglion of ferrets after trigeminal nerve injury [74]. However, two groups reported a 
significant increase in Nav1.7 protein expression in the DRG neurons of rats with painful diabetic 
neuropathy [56,97], although another study found no change in Nav1.7 mRNA expression [54].  
A recent rat study demonstrated an accumulation of this isoform in experimental neuromas [98]. 

Data on patients are also inconclusive, although there is some degree of agreement with the 
experimental results. Nav1.7 expression was reduced (vs. controls) in cell bodies of injured DRG after 
central axotomy [51] and in the gingival tissue of patients with trigeminal neuralgia [52]. However, 
epidermal labeling for Nav1.7 was more intense in human skin biopsies from patients with complex 
regional pain syndrome and post-herpetic neuralgia than in non-painful skin samples [81]. Nav1.7 was 
accumulated in human painful neuromas, similar to findings in rat [42,99]. An increased axonal 
expression of Nav1.7 in painful human dental pulp was also reported [100], and a marked increase in 
Nav1.7-immunoreactive nerve fibers was found in the mucosal, sub-mucosal, and muscle layers of 
patients with idiopathic rectal hypersensitivity and fecal urgency [101]. Consequently, Nav1.7 appears 
to have a clear role in acute and inflammatory pain, but further studies are required to clarify its 
involvement in neuropathic pain. 

4. Effects of TTX in Pain States  

TTX has been extensively used in numerous laboratories to characterize the role of VGSCs in 
normal physiology and in disease and their involvement in the molecular mechanisms of pain. Its 
effects have been studied in several animal pain models, and it has also been tested for pain relief in 
the clinical setting. The animal and human research results are reviewed in this section. 
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4.1. Preclinical Studies 

4.1.1. Effects of TTX in Acute Pain 

Despite the key role of the TTX-sensitive sodium channel Nav1.7 in nociception (see above), TTX 
appears to be practically unexplored in classical models of acute pain (see Table 2). In fact, most data 
on the effect of TTX on pain perception in non-sensitized animals derive from controls used in studies 
on its effect in sensitized animals. There have also been reports on the properties of TTX as a local 
anesthetic. However, there have been very few specific investigations on the effect of TTX in acute 
pain. Early studies showed that TTX applied to the cornea of rabbit was effective as a long-acting 
topical anesthetic [102,103]. Other authors investigated the effects of nerve blockade with TTX on 
sensory properties. Sciatic nerve blockade with intraneural TTX inhibited thermal and mechanical 
sensitivity in uninjured rats [104] but had no effect or only moderate effects on endothelin-1  
(ET-1)-induced acute pain, in contrast to the effects of blockade with lidocaine [105]. Intraneural TTX 
significantly increased the frequency and duration of nerve blockade from tricyclic antidepressant 
compounds in comparison to its systemic administration [106]. 

Marcil and collaborators [107] tested TTX in the model of formalin test in the rat. Although the 
systemic administration of TTX (at the highest doses used) in rats reduced the pain score in the initial 
acute formalin-induced pain, the difference did not reach significance. On the other hand, TTX had a 
potent effect in the writhing test induced by intraperitoneal injection of acetic acid in mice [107].  
In our laboratory, we showed that systemic TTX had no effect on the response to heat, mechanical,  
or cold stimuli in control animals, at doses effective in neuropathic pain behavior (see Table 2) [108]. 
We have also found that systemic TTX had no effect on mechanical nociceptive pain, whereas 
mexiletine (a nonspecific sodium channel blocker, like lidocaine) induced a marked antinociception, 
increasing the paw withdrawal latency time [109]. In another report, systemic TTX administration had 
no effect on the normal perception of thermal and mechanical stimuli in naïve rats [110]. Finally, in a 
very recent study, intrathecal TTX inhibited thermal sensitivity in intact rats, and its inhibitory potency 
was around 300-fold higher than that of carbamazepine, which is considered to inhibit both  
TTX-sensitive and TTX-resistant sodium channels [111]. These data suggest that the administration of 
TTX might have little impact on acute pain, although to elucidate this issue, further studies using 
different routes of administration are required. 

4.1.2. Effects of TTX in Inflammatory Pain 

As in acute pain, the effects of TTX in inflammatory pain have not been well studied (see Table 2). 
After the initial acute pain phase induced by intraplantar formalin in rodents, this chemical algogen 
produces a second phase involving inflammation [112]. In contradistinction to the absence of effect in 
the first acute phase of formalin-induced pain (see section above), systemic TTX significantly 
prevented pain behavior in the inflammatory phase of the formalin test in rat [107]. In another study, 
contralateral and ipsilateral sciatic nerve blockade with TTX or bupivacaine (nonspecific for sodium 
channels) significantly attenuated mechanical and thermal hyperalgesia in response to carrageenan-
induced inflammation. Systemic administration of either compound at the same dose as used in local 
administration (nanomolar concentration) was ineffective to prevent hyperalgesia [113]. However, a 
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later study found that the preventive administration of systemic TTX (at micromolar concentration) 
slightly but significantly reduced carrageenan-induced mechanical hyperalgesia in rats [114]. 
Intrathecal TTX inhibited thermal hypersensitivity in a model of chronic inflammatory pain induced by 
complete Freund’s adjuvant (CFA). In the same study, the authors found that the relative inhibitory 
potency of TTX in inflamed rats was approximately 150-fold higher than that of intrathecal 
carbamazepine [111]. Interestingly, peri-sciatic administration of TTX has been shown to decrease 
carrageenan-induced edema [113], suggesting that TTX could be useful attenuating the neurogenic 
inflammatory response to an injury. In addition to this action of TTX in neurons, it has been proposed 
that sodium channel blockade with agents such as TTX or phenytoin may have anti-inflammatory 
effects through inhibition of the functions of some immune cells [115]. Taken together, the reports on 
TTX in inflammatory pain, although few in number, are promising, and given the major role in 
inflammatory pain attributed to TTX-sensitive VGSCs, further studies are warranted on the effects of 
TTX in inflammatory pain. 

4.1.3. Effects of TTX in Neuropathic Pain 

TTX appears to have been more widely studied in models of neuropathic pain than in acute or 
inflammatory pain (see Table 2), probably due to the considerable evidence on the key role of TTX-
sensitive VGSCs in neuropathic pain (see Section 3 and Table 1). The first study on its effects in 
neuropathic pain showed that pain behavior in the spinal nerve ligation model was significantly 
attenuated by the topical application to the DRG of TTX at low doses that did not block action 
potential conduction [116]; the authors reported that the most effective dose (25 nM) was also effective 
when applied to the epidural space but not when administered to the intraperitoneal space. A few years 
later, Xie et al., [104] used TTX for sciatic nerve blockade in two different rat models of neuropathic 
pain induced by sciatic nerve injury. They showed that immediate post-injury perfusion of the injured 
nerve with TTX permanently prevented the development of thermal hyperalgesia, mechanical 
allodynia, and the spontaneous afferent activity measured with electrophysiological recordings. In 
contrast, when TTX was applied after a longer post-injury interval, when the neuropathy had already 
developed, it only transiently inhibited mechanical allodynia. These authors obtained similar results 
with bupivacaine. Marcil et al. [107] reported that systemic TTX was most effective in neuropathic 
pain conditions, based on significant reductions of the mechanical allodynia and thermal hyperalgesia 
induced by partial sciatic nerve ligation at lower doses than those required to inhibit pain behaviors 
induced by intraplantar formalin or intraperitoneal acetic acid. In another interesting article,  
Kayser et al. [110] reported that TTX exerted differential anti-neuropathic pain effects in sciatic nerve- 
versus infraorbital nerve-ligated rats, and the authors also contributed information on possible 
mechanisms underlying the anti-neuropathic pain effects of TTX. These authors showed that acute and 
subchronic systemic administration of TTX suppressed thermal and mechanical hyperalgesia and 
tactile allodynia after sciatic nerve injury, whereas acute TTX treatment had only a moderate effect 
after infraorbital nerve injury. They also reported that acute systemic administration of TTX prevented 
the increase of c-Fos expression (as neuronal activity marker) in dorsal horn of lumbar cord and some 
supraspinal areas in response to light mechanical stimulation of the sciatic nerve-injured hindpaw. 
Finally, the same study found that noradrenergic and serotoninergic systems do not appear to be 



Mar. Drugs 2012, 10             
 

 

292 

involved in the anti-neuropathic pain action of TTX, whereas endogenous opioid systems may have a 
role [110]. In another report, the preventive topical administration of TTX to the median nerve 
impeded the development of mechanical hypersensitivity after its chronic constriction injury (CCI); 
TTX also reduced the increased astrocyte activation in the cuneate nucleus induced by this nerve  
injury [117]. 

TTX has been tested in models of chemotherapy-induced neuropathic pain with contradictory 
results. It was reported that the administration of systemic TTX had no effect on the expression of 
mechanical allodynia induced by vincristine in rats [118]. However, our group found that TTX 
inhibited the expression of mechanical and cold allodynia and heat hyperalgesia induced by paclitaxel 
in mice. We also demonstrated that TTX completely prevented the development of both kinds of 
allodynia but not the hyperalgesia [108]. The discrepancy between studies may be attributable to the 
different antitumor mechanisms of paclitaxel and vincristine. Both produce clinically significant 
peripheral neuropathies, whose toxic mechanisms are not fully understood but are known to vary 
between the anti-cancer drugs [119]. In addition, our group reported that TTX inhibited  
capsaicin-induced mechanical hypersensitivity in mice [109], which is considered a surrogate model of 
neuropathic pain [120]. Finally, perfusion of the injury-site DRG with TTX was found to significantly 
reduce the activation of satellite glial cells, increased NGF expression in the DRG, and activation of 
microglia and astrocytes in the spinal cord after peripheral nerve injury [121]. In conclusion, only one 
study using an adequate dose of TTX failed to inhibit neuropathic pain in rodents [118]. Therefore, 
these findings generally support the hypothetical therapeutic usefulness of TTX in neuropathic pain 
and may indicate that TTX-sensitive VGSCs play a key role in neuropathic pain states. Nevertheless, 
they strongly contrast with data obtained in VGSC knockout mice [76,96], although the development 
of compensatory mechanisms in these animals in comparison with animals treated with TTX cannot be 
discarded. Further research is required to elucidate this issue. 

4.1.4. Effects of TTX in the Electrophysiological Abnormalities Associated with Neuropathic Pain 

DRG neurons express sodium currents that contain both rapidly-inactivating TTX-sensitive 
components and slowly-inactivating TTX-resistant components. However, peripheral nerve injuries 
produce a downregulation of Nav1.8 and Nav1.9 (TTX-resistant channels) and an upregulation of 
Nav1.3 in DRG neurons [28–31,34,122], which is accompanied by the appearance of a fast repriming 
TTX-sensitive current [31,34]. This abnormal sodium current was identified as TTX-sensitive after 
experiments demonstrated that it was blocked by the application of TTX [31,33,34]. The emergence of 
this sodium channel current is largely imputable to the re-expression of Nav1.3 and likely contributes 
to the hyperexcitability and ectopic firing that have been observed in DRG neurons after injury (see 
Figure 2). 

An important characteristic of neuropathic pain is spontaneous pain produced by the generation in 
nociceptive pathways of ectopic action potential that does not originate in peripheral terminals in 
response to a stimulus [40]. Topical application of TTX to rat neuromas successfully prevented ectopic 
discharges [123], and intravenous administration of TTX in rats inhibited post-sciatic nerve transection 
ectopic activity in neuromas and in DRG and dorsal horn neurons [124]. Furthermore, recordings of 
primary sensory neurons in excised rat DRG revealed that post-nerve injury oscillations and ectopic 
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spiking were removed by its perfusion with TTX at doses that did not affect axonal spike propagation 
or block TTX-resistant sodium channels [125,126]. Therefore, inhibition by TTX of the atypical rapid 
sodium currents and/or abnormal ectopic discharges observed in the DRG after nerve injury may 
contribute to the effects of TTX against neuropathic pain.  

Figure 2. Proposed mechanism of action of TTX in sensory neurons during neuropathic 
pain. During neuropathy sensory neurons can produce ectopic action potentials, 
purportedly by the re-expression of the voltage-gated sodium channel (VGSC) Nav1.3. The 
action potential is propagated along the axon to activate voltage-gated calcium channels 
(VGCCs), which in turn trigger the release of neurotransmitters by the presynaptic terminal 
to activate their receptors in dorsal horn neurons. TTX by inactivating TTX-sensitive 
sodium channels such as Nav1.3, could prevent neuronal ectopic activity. 

 

Table 2. Summary of the effects of TTX on pain studies in laboratory animals. 

Type of pain 
Administration 

of TTX 
TTX doses 

Effect  
(+, +/- or -) 

Test Reference 

Acute pain 

Sciatic nerve 
blockage 

TTX osmotic 
pump 

+ Thermal and mechanical sensitivity [104] 

Intraneural  
(10 mM/4 µL) 

+/- Pain induced by ET-1 [105] 

Intrathecal 0.2–6 pM/20 µL + (2–6 pM) Thermal hypersensitivity [111] 

Systemic 

0.3–6 µg s.c. - 1º phase of formalin test [107] 
0.3–6 µg s.c. + (3–6 µg) Writhing test [107] 

1–6 µg s.c. - 
Mechanical, cold and heat 
sensitivity 

[108] 

6 µg s.c. - Mechanical nociceptive pain [109] 
Acute and 
subchronic TTX 
(1–6 µg s.c.) 

- Thermal and mechanical sensitivity [110] 
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Table 2. Cont. 

Type of pain 
Administration 

of TTX 
TTX doses 

Effect  
(+, +/- or -) 

Test Reference 

Inflammatory 
pain 

Sciatic nerve 
blockage 

50 µM/0.2 mL + 

Carrageenan-induced paw 
inflammatory edema and 
mechanical and thermal 
hyperalgesia. 

[113] 

Intrathecal 0.2–6 pmM/20 µL + (0.2–6 pM) 
Thermal hypersensitivity induced 
by CFA 

[111] 

Systemic 

0.3–6 µg s.c. + (6 µg) 2° phase of formalin test [107] 

50 µM/0.2 mL s.c. - 

Carrageenan-induced paw 
inflammatory edema and 
mechanical and thermal 
hyperalgesia. 

[113] 

2.5 µg s.c. + (2.5 µg) 
Carrageenan-induced mechanical 
hyperalgesia 

[114] 

Neuropathic 
pain 

Sciatic nerve 
blockage 

TTX osmotic 
pump 

+ 
Thermal and mechanical 
hypersensitivity and spontaneous 
activity induced by SNI and CCI 

[104] 

Topical DRG 12.5–50 nM/5 µL + (12.5–50 µg) 
Mechanical allodynia induced by 
SNL 

[116] 

Epidural 25 nM/5 µL + (25 µg) 
Mechanical allodynia induced by 
SNL 

[116] 

Topical median 
nerve 

Gel pads with 
TTX 

+ 

Mechanical hypersensitivity and 
the increment of astrocyte 
activation in the cuneate nucleus 
after CCI of median nerve 

[117] 

Systemic 

25 nM/5 µL i.p. - 
Mechanical allodynia induced by 
SNL 

[116] 

0.3–6 µg s.c. + (1–6 µg) 
Mechanical allodynia and thermal 
hyperalgesia induced by SNL 

[107] 

Acute and 
subchronic TTX 
(1–6 µg s.c.) 

+ 

Thermal and mechanical 
hypersensitivity and c-fos 
expression induced by CCI of 
sciatic nerve 

[110] 

Acute and 
subchronic TTX 
(1–6 µg s.c.) 

+/- 
Thermal and mechanical 
hypersensitivity induced by CCI of 
infraorbital nerve 

[110] 

8 µg i.p - 
Mechanical allodynia induced by 
vincristine 

[118] 

1–6 µg s.c. + 
Mechanical, cold and heat 
hypersensitivity induced by 
paclitaxel 

[108] 

6 µg s.c. + 
Mechanical hypersensitivity 
induced by intraplantar capsaicin 

[109] 

+: effect; +/-: moderate effects; -: no effect. 
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4.2. Clinical Studies 

We know of three clinical trials on the usefulness of TTX to alleviate pain. In an open-label 
multicentre dose escalation study of TTX in severe cancer-related pain, 24 patients underwent  
31 treatment regimens with intramuscular TTX at doses of 15–90 µg/day administered in divided 
doses over four days. Out of the 31 regimens, 17 yielded clinically significant reductions in pain 
intensity, with the pain relief persisting for up to 2 weeks. The authors concluded that 30 μg twice 
daily for 4 days was a regimen with an acceptable toxicity and analgesic profile [127]. In a multicenter, 
randomized, double-blind, placebo-controlled, parallel-design trial, the subcutaneous administration of 
TTX failed to deliver clinically significant pain relief in cancer patients with moderate to severe pain 
when only pain scores were assessed, although a strong analgesic effect was suggested by further 
analysis of the data [128]. At the end of the latter study, all patients were able to enroll in a multicenter 
open-label extension efficacy and safety trial. In this longitudinal study, 30 μg TTX was administered 
subcutaneously twice daily for 4 days in a heterogeneous cohort of patients with chronic cancer-related 
pain. The recently published results demonstrate that TTX has an acceptable tolerability, even when 
administered over a prolonged time period. The toxicity was typically mild and was primarily sensory 
and transient, with peri-oral numbness or tingling being the predominant experience [129]. Out of the 
41 evaluable patients, the analgesic effect was sustained in 21 patients, whose cancer pain relief 
remained constant over successive treatment cycles up to and beyond 12 months, with no evidence of 
tolerance and an anti-nociceptive effect for an average of 3 weeks; the reason why only 50% of 
patients responded to TTX remains unknown. The authors suggested that further research is warranted 
on the use of TTX for moderate-to-severe cancer pain. 

5. Concluding Remarks 

Altered expression of several TTX-sensitive sodium channels occur during pathologic pain (both 
inflammatory and neuropathic pain). This change in gene regulation leads to electrophysiological 
changes which may play a key role in the pathogenesis of the pain outcome. Therefore, the use of TTX 
seems reasonable as a possible pharmacological tool to block TTX-sensitive VGSCs in pathological 
pain conditions. Although the results obtained in preclinical inflammatory pain models are unclear at 
the moment, the improving effects of TTX on neuropathic pain are better documented. Consistently, 
TTX has been proved to be more effective against neuropathic pain than against acute nociception (in 
which its administration into the nervous tissue is required to show an obvious effect), probably due to 
the altered properties/expression of the TTX-sensitive VGSCs in pathological conditions. Importantly, 
TTX has been tested against cancer pain in patients, yielding promising but not conclusive results. In 
summary, the therapeutic use of TTX as an analgesic agent seems hopeful although further preclinical 
and clinical research is needed to clarify its potential use during painful conditions (see Figure 3). 
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Figure 3. Schematic representation of the main evidences and conclusions obtained in 
preclinical and clinical human studies using TTX as a potential therapeutic agent for pain. 
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