



Re-3-5-55 in CDC13 SW Probe mkh031810.1





Re-3-5-55 in CDC13 SW Probe mkc031810.1

Pulse Sequence: s2pul



111

ppm



\_\_\_146.071 -144.586

Re-3-5-55 in CDCl3 SW Probe mkc031810.1











Re-3-5-55 NOESY all peaks d1=1 mix=1 sec in CDCl3 SW Probe mknoesy031810.1 Pulse Sequence: NOESY Solvent: CDCl3 Temp. 23.0 C / 296.1 K INOVA-500 "inova500a" MM Relax. delay 3.000 sec Mixing 1.000 sec Acq. time 0.745 sec Width 5497.5 Hz 2D Width 5497.5 Hz 32 repetitions 2 y 256 increments m F2 8 (ppm) 2 x 256 increments OBSERVE H1, 499.7081714 MHz DATA PROCESSING Gauss apodization 0.086 sec F1 DATA PROCESSING 1 Gauss apodization 0.034 sec FT size 8192 x 8192 Total time 21 hr, 48 min, 20 sec 0 6 . . 2--200 . 3-4-0 Ð 5--6 1 7- $\nabla$ 8-8 7 3 2 6 5 4 1 0 F1 (ppm)

Re-3-5-55 NOESY all peaks d1=1 mix=1 sec in CDCl3 SW Probe mknoesy031810.1 Pulse Sequence: NOESY Solvent: CDCl3 Temp. 23.0 C / 296.1 K INOVA-500 "inova500a" MM Relax. delay 3.000 sec Mixing 1.000 sec Acq. time 0.745 sec Width 5497.5 Hz 2D Width 5497.5 Hz 32 repetitions 2 y 256 increments m F2 8 (ppm) 2 x 256 increments OBSERVE H1, 499.7081714 MHz DATA PROCESSING Gauss apodization 0.086 sec F1 DATA PROCESSING 1 Gauss apodization 0.034 sec FT size 8192 x 8192 Total time 21 hr, 48 min, 20 sec 0 6 . . 2--200 . 3-4-0 Ð 5--6 1 7- $\nabla$ 8-8 7 3 2 6 5 4 1 0 F1 (ppm)



3-5-55 CDC13 Probe 031810.1



-55-8 DC13 robe 40710.1



1.00



Re-3-55-8 in CDC13 SW Probe mkh040710.1



-3-55-8 CDC13 Probe h040710.1





Re-3-55-8 in CDCl3 SW Probe mkc040710.1



Re-3-55-8 Gradient COSY in CDC13 SW Probe mkgcosy040710.1

Pulse Sequence: gCOSY

Solvent: CDCl3 Temp. 23.0 C / 296.1 K INOVA-500 "inova500a"

Relax. delay 1.000 sec Acq. time 0.818 sec Width 5006.3 Hz 2D Width 5006.3 Hz 2 repetitions 256 increments OBSERVE H1, 499.7081720 MHz DATA PROCESSING Sq. sine bell 0.102 sec F1 DATA PROCESSING Sq. sine bell 0.026 sec FT size 8192 x 8192 Total time 16 min, 19 sec











Re-3-2 in CDC13 SW Probe mkh022310.1

Pulse Sequence: s2pul



1.826 1.823 1.819

D1

-1.841



Re-3-2 in CDC13 SW Probe mkc022310.1



Re-3-2 in CDC13 SW Probe mkc022310.1



e-3-2 n CDC13 W Probe kc022310.1

ulse Sequence: s2pul

13 6.01" 36.051 19 8 32.370 -26.470 -26.150 5 -32.856 46.658 37.911 29.697 29.357 31.920 half for an an international and an and lander of the second and t 1. Ashary W Whent with the entra the production of the set 11 1 1 1 1 48 46 44 42 40 38 36 34 32 30 28 ppm

Re-3-2 Gradient COSY in CDC13 SW Probe mkgcosy022310.1

Pulse Sequence: gCOSY

Solvent: CDCl3 Temp. 23.0 C / 296.1 K INOVA-500 "inova500a"

Relax. delay 1.000 sec Acq. time 0.818 sec Width 5006.3 Hz 2D Width 5006.3 Hz 4 repetitions 256 increments OBSERVE H1, 499.7081717 MHz DATA PROCESSING Sq. sine bell 0.102 sec F1 DATA PROCESSING Sq. sine bell 0.026 sec FT size 8192 x 8192 Total time 32 min, 10 sec







![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

Re-3-2 NOESY positive peaks only d1=3 mix=1 nt=24 in CDC13 SW Probe mknoesy022310.1

Pulse Sequence: NOESY Solvent: CDCl3 Temp. 23.0 C / 296.1 K INOVA-500 "inova500a"

Relax. delay 3.000 sec Mixing 1.000 sec Acq. time 0.818 sec Width 5006.3 Hz 2D Width 5006.3 Hz 24 repetitions 2 x 256 increments OBSERVE H1, 499.7081754 MHz DATA PROCESSING Gauss apodization 0.094 sec F1 DATA PROCESSING Gauss apodization 0.037 sec FT size 8192 x 8192 Total time 16 hr, 37 min, 22 sec

![](_page_35_Figure_3.jpeg)

data\_2010031601brwpare3555\_0m

```
_audit_creation_method
                                   SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common
                                   ?
_chemical_melting_point
                                   ?
_chemical_formula_moiety
                                   ?
_chemical_formula_sum
 'C20 H28 O5'
_chemical_formula_weight
                                  348.42
loop
 _atom_type_symbol
 _atom_type_description
_atom_type_scat_dispersion_real
 _atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C'
            0.0033
                     0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                     0.0000
 'Η'
     'Η'
            0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                     0.0060
 '0' '0'
            0.0106
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                   ?
                                  P 1 2(1) 1
_symmetry_space_group_name_H-M
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
'-x, y+1/2, -z'
_cell_length_a
                                   10.0622(18)
_cell_length_b
                                   5.5509(10)
_cell_length_c
                                   16.834(3)
_cell_angle_alpha
                                   90.00
_cell_angle_beta
                                   95.538(2)
_cell_angle_gamma
                                   90.00
_cell_volume
                                   935.9(3)
_cell_formula_units_Z
                                   2
_cell_measurement_temperature
                                   150(2)
_cell_measurement_reflns_used
                                   56
_cell_measurement_theta_min
                                   3.36
_cell_measurement_theta_max
                                   11.74
                                   flat needle
_exptl_crystal_description
                                   colourless
_exptl_crystal_colour
_exptl_crystal_size_max
                                   0.87
_exptl_crystal_size_mid
                                   0.15
_exptl_crystal_size_min
                                   0.02
```

\_exptl\_crystal\_density\_meas ? \_exptl\_crystal\_density\_diffrn 1.236 \_exptl\_crystal\_density\_method 'not measured' \_exptl\_crystal\_F\_000 376 \_exptl\_absorpt\_coefficient\_mu 0.088 \_exptl\_absorpt\_correction\_type empirical \_exptl\_absorpt\_correction\_T\_min 0.9274 0.9982 \_exptl\_absorpt\_correction\_T\_max \_exptl\_absorpt\_process\_details ? \_exptl\_special\_details ; ? ; \_diffrn\_ambient\_temperature 150(2)\_diffrn\_radiation\_wavelength 0.71073 \_diffrn\_radiation\_type MoK∖a \_diffrn\_radiation\_source 'fine-focus sealed tube' \_diffrn\_radiation\_monochromator graphite \_diffrn\_measurement\_device\_type Bruker Smart Apex II \_diffrn\_measurement\_method ? \_diffrn\_detector\_area\_resol\_mean ? \_diffrn\_reflns\_number 4644 \_diffrn\_reflns\_av\_R\_equivalents 0.0357 \_diffrn\_reflns\_av\_sigmaI/netI 0.0355 \_diffrn\_reflns\_limit\_h\_min -8 \_diffrn\_reflns\_limit\_h\_max 8 \_diffrn\_reflns\_limit\_k\_min -4 \_diffrn\_reflns\_limit\_k\_max 4 \_diffrn\_reflns\_limit\_l\_min -14 \_diffrn\_reflns\_limit\_l\_max 14 \_diffrn\_reflns\_theta\_min 1.22 \_diffrn\_reflns\_theta\_max 18.45 \_reflns\_number\_total 1364 \_reflns\_number\_gt 1257 \_reflns\_threshold\_expression >2sigma(I) ? \_computing\_data\_collection \_computing\_cell\_refinement ? \_computing\_data\_reduction ? \_computing\_structure\_solution 'SHELXS-97 (Sheldrick, 2008)' 'SHELXL-97 (Sheldrick, 2008)' \_computing\_structure\_refinement \_computing\_molecular\_graphics ? \_computing\_publication\_material ? \_refine\_special\_details ; Refinement of F^2<sup>^</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative  $F^{2^{-1}}$ . The threshold expression of  $F^2$  > 2sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and

```
is
```

not relevant to the choice of reflections for refinement. R-factors based on  $F^{2}$  are statistically about twice as large as those based on F, and R – factors based on ALL data will be even larger. ; refine ls structure factor coef Fsqd \_refine\_ls\_matrix\_type full \_refine\_ls\_weighting\_scheme calc \_refine\_ls\_weighting\_details 'calc w=1/[\s^2^(Fo^2^)+(0.0209P)^2^+0.1056P] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary direct \_atom\_sites\_solution\_secondary difmap \_atom\_sites\_solution\_hydrogens geom refine ls hydrogen treatment mixed \_refine\_ls\_extinction\_method SHELXL \_refine\_ls\_extinction\_coef 0.015(2)\_refine\_ls\_extinction\_expression 'Fc^\*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' \_refine\_ls\_abs\_structure\_details 'Flack H D (1983), Acta Cryst. A39, 876-881' \_refine\_ls\_abs\_structure\_Flack -0.4(15)\_refine\_ls\_number\_reflns 1364 \_refine\_ls\_number\_parameters 339 \_refine\_ls\_number\_restraints 1 0.0307 \_refine\_ls\_R\_factor\_all \_refine\_ls\_R\_factor\_gt 0.0254 \_refine\_ls\_wR\_factor\_ref 0.0513 \_refine\_ls\_wR\_factor\_gt 0.0492 \_refine\_ls\_goodness\_of\_fit\_ref 1.075 \_refine\_ls\_restrained\_S\_all 1.075 \_refine\_ls\_shift/su\_max 0.011 \_refine\_ls\_shift/su\_mean 0.001 loop\_ \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_site\_disorder\_assembly \_atom\_site\_disorder\_group 01 0 0.3619(2) 0.2048(6) 0.77785(14) 0.0326(8) Uani 1 1 d . . . 02 0 0.4353(2) 0.5048(5) 0.70604(15) 0.0293(8) Uani 1 1 d . . . O3 O 0.9426(2) 1.4265(5) 0.63634(13) 0.0368(8) Uani 1 1 d . . . 04 0 1.1459(3) 1.0112(5) 0.91293(13) 0.0338(8) Uani 1 1 d . . O5 O 1.2766(3) 0.9113(6) 0.89952(17) 0.0447(9) Uani 1 1 d . . .

| C1 C 0.5647(4) 0.6974(8) 0.8095(2) 0.0224(10) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C2 C 0.5196(4) 0.7197(8) 0.7220(2) 0.0240(11) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| C3 C 0.6244(4) 0.7328(9) 0.6655(2) 0.0238(11) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| C4 C 0.6235(3) 0.8784(7) 0.6035(2) 0.0230(10) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| C5 C 0.7380(5) 0.8887(9) 0.5521(3) 0.0283(12) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| C6 C = 0.8047(5) = 1.1359(8) = 0.5486(3) = 0.0302(12)  Hani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| C7 C = 0.8606(4) = 1.2139(8) = 0.6295(3) = 0.0243(11) = 1.4 C = 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| C8 C = 0.0004(4) = 1.2255(6) = 0.0255(5) = 0.0215(11) = 0.011 = 1 = 0.00000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| C9 C = 1.0001(1) = 1.1001(0) = 0.0020(2) = 0.0275(11) = 0.001 = 1 = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1) = 0.0001(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $C_{10} \subset 1.0525(5) = 1.1752(5) = 0.7564(2) = 0.0205(15) = 0.011 = 1 = 0.00000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| C10 C 1.0550(5) 0.9115(9) 0.7704(2) 0.0202(12) 0.011 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CII C I.0477(4) 0.0000(9) 0.0000(2) 0.0249(11) 0.011 I I C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C12 C 0.9130(4) 0.9333(6) 0.0910(2) 0.0230(10) 0.011 1 1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C13 C 0.8043(4) 0.7618(9) 0.8611(3) 0.0330(12) 0ant 1 1 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| C14 C 0.6638(4) 0.8691(9) 0.8506(3) 0.0294(12) 0ant 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| C15 C 0.5051(4) 0.5130(8) 0.8404(2) 0.0222(10) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Cl6 C 0.4266(4) 0.3896(9) 0.7766(2) 0.0239(11) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| C17 C 0.5048(6) 0.4316(10) 0.9248(3) 0.0332(12) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C18 C 0.5107(5) 1.0471(10) 0.5781(3) 0.0342(12) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C19 C 1.1051(5) 1.1029(13) 0.6126(3) 0.0486(17) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C20 C 0.8939(5) 1.1203(9) 0.9381(3) 0.0351(13) Uani 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| H5 H 1.303(6) 1.005(12) 0.865(3) 0.16(3) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| H2A H 0.462(3) 0.853(6) 0.7144(16) 0.006(10) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| H3A H 0.700(3) 0.629(6) 0.6769(16) 0.011(11) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| H5A H 0.702(3) 0.837(5) 0.5002(18) 0.012(10) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| H6A H 0.879(3) 1.132(6) 0.511(2) 0.039(12) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| H7A H 0.797(3) 1.210(5) 0.6702(16) 0.007(9) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H9A H 0.962(3) 1.228(6) 0.7752(15) 0.002(10) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| H10A H 1.151(4) 0.862(7) 0.7657(19) 0.049(13) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| H11A H 1.065(3) 0.686(7) 0.8768(16) 0.015(10) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| H13A H 0.831(3) 0.671(8) 0.811(2) 0.063(14) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H14A H 0.661(3) 1.006(7) 0.8205(17) 0.008(11) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| H17A H 0.578(3) 0.491(6) 0.9578(17) 0.010(10) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| H18A H 0.426(4) 1.013(7) 0.603(2) 0.059(14) Uiso 1.1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H19A H = 1 080(3) = 142(7) = 0.561(2) = 0.043(14) Hiso = 1 d = 0.000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $H_{20A} H = 0.968(3) + 2.22(7) = 0.9563(16) = 0.028(12) H = 0.1 + 0.0000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| H5R + 0.798(3) = 0.778(7) = 0.5719(18) = 0.013(12) = 0.013(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $\begin{array}{c} \text{HSD} \ \text{H} \ 0.750(3) \ 0.770(7) \ 0.5715(10) \ 0.015(12) \ 0.501 \ 1 \ \text{d} \\ \text{HSD} \ \text{H} \ 0.740(3) \ 1.243(7) \ 0.5205(18) \ 0.023(13) \ \text{Higgs} \ 1.1 \ \text{d} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $\begin{array}{c} 1105 & 110.740(3) & 1.243(7) & 0.3233(10) & 0.023(13) & 0150 & 1 & 0 \\ 1098 & 1 & 106(3) & 1 & 274(6) & 0 & 7667(17) & 0 & 022(13) & 0150 & 1 & 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $\begin{array}{c} \text{II} \text{II}$ |  |
| $\begin{array}{c} \text{HIOB} \ \text{H} \ 0.992(5) \ 0.021(6) \ 0.7476(19) \ 0.054(14) \ \text{OISO} \ 1 \ 1 \ \text{d} \ . \ . \ . \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| HI3B H $0.805(3)$ $0.011(8)$ $0.897(2)$ $0.045(13)$ $0180$ I I d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| HI4B H $0.636(3)$ $0.902(7)$ $0.904(2)$ $0.037(11)$ $0180$ I I d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| HI/B H U.5U8(4) U.253(1U) U.928(2) U.U68(1/) UISO I I G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HING H $U.49/(3)$ 1.062(6) $U.519(2)$ $U.042(13)$ UISO I I d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| HI9B H $1.192(4)$ $1.188(7)$ $0.6301(19)$ $0.042(12)$ Ulso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| H20B H 0.808(3) 1.158(7) 0.9561(18) 0.037(13) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| HI/C H U.418(4) 0.496(8) 0.949(2) 0.079(15) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H18C H 0.532(4) 1.205(9) 0.600(2) 0.057(16) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| H19C H 1.117(5) 0.935(10) 0.619(3) 0.09(3) Uiso 1 1 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

loop\_

\_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11 \_atom\_site\_aniso\_U\_22 \_atom\_site\_aniso\_U\_33

```
_atom_site_aniso_U_23
 _atom_site_aniso_U_13
 _atom_site_aniso_U_12
01 0.0284(18) 0.0296(19) 0.0406(18) -0.0019(17) 0.0077(13) -0.0077(17)
02 0.0287(16) 0.033(2) 0.0271(18) -0.0013(16) 0.0053(12) -0.0100(15)
03 0.0412(17) 0.028(2) 0.0384(17) 0.0093(15) -0.0092(13) -0.0067(17)
04 0.0254(19) 0.043(2) 0.0321(17) 0.0006(16) -0.0014(14) -0.0036(16)
05 \ 0.022(2) \ 0.059(2) \ 0.053(2) \ 0.015(2) \ -0.0015(14) \ 0.0001(18)
C1 0.017(3) 0.017(3) 0.033(3) -0.007(3) 0.002(2) -0.002(3)
C2 \ 0.024(3) \ 0.014(3) \ 0.033(3) \ -0.003(2) \ 0.000(3) \ 0.005(3)
C3 0.021(3) 0.024(3) 0.027(3) -0.001(3) 0.004(3) 0.002(3)
C4 0.022(3) 0.023(3) 0.025(3) -0.003(3) 0.006(2) -0.006(3)
C5 0.034(3) 0.030(4) 0.020(3) 0.001(3) 0.000(3) 0.005(3)
C6 \ 0.036(3) \ 0.025(4) \ 0.029(3) \ 0.005(3) \ 0.000(3) \ -0.003(3)
C7 \ 0.026(3) \ 0.016(3) \ 0.031(3) \ 0.002(2) \ 0.005(3) \ -0.004(3)
C8 \ 0.028(3) \ 0.028(3) \ 0.027(3) \ 0.008(2) \ 0.004(2) \ -0.005(2)
C9 \ 0.027(4) \ 0.029(4) \ 0.030(4) \ -0.004(3) \ 0.006(3) \ 0.000(3)
\texttt{C10} \ \texttt{0.027(3)} \ \texttt{0.024(4)} \ \texttt{0.033(3)} \ -\texttt{0.005(3)} \ -\texttt{0.001(2)} \ \texttt{0.002(3)}
C11 \ 0.030(3) \ 0.021(3) \ 0.022(3) \ -0.003(3) \ -0.004(2) \ -0.003(3)
C12 \ 0.023(3) \ 0.026(3) \ 0.025(2) \ 0.001(3) \ 0.003(2) \ -0.001(3)
C13 0.020(3) 0.030(3) 0.049(3) -0.001(3) 0.000(2) 0.000(3)
C14 \ 0.037(3) \ 0.027(3) \ 0.025(3) \ 0.007(3) \ 0.009(2) \ 0.001(3)
C15 \ 0.018(2) \ 0.024(3) \ 0.025(3) \ -0.006(3) \ 0.000(2) \ 0.000(2)
C16 0.013(3) 0.024(3) 0.036(3) 0.000(3) 0.008(2) 0.000(3)
C17 \ 0.038(3) \ 0.032(4) \ 0.029(3) \ -0.002(3) \ 0.000(3) \ -0.005(3)
C18 0.033(3) 0.047(4) 0.023(3) 0.003(3) 0.002(3) 0.006(3)
C19 \ 0.035(4) \ 0.088(7) \ 0.024(4) \ 0.004(3) \ 0.006(3) \ 0.002(3)
C20 \ 0.029(4) \ 0.043(4) \ 0.034(3) \ -0.006(3) \ 0.004(3) \ -0.006(3)
_geom_special_details
;
 All esds (except the esd in the dihedral angle between two l.s. planes)
 are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are
only
 used when they are defined by crystal symmetry. An approximate
(isotropic)
 treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
O1 C16 1.216(4) . ?
O2 C16 1.360(4) . ?
O2 C2 1.474(4) . ?
O3 C7 1.439(5) . ?
O3 C8 1.453(5) . ?
O4 C11 1.445(4) . ?
```

04 05 1.465(3) . ? C1 C15 1.318(5) . ? C1 C14 1.499(5) . ? C1 C2 1.504(5) . ? C2 C3 1.488(5) . ? C3 C4 1.320(5) . ? C4 C18 1.502(5) . ? C4 C5 1.508(5) . ? C5 C6 1.531(6) . ? C6 C7 1.487(5) . ? C7 C8 1.462(5) . ? C8 C19 1.497(6) . ? C8 C9 1.498(5) . ? C9 C10 1.530(6) . ? C10 C11 1.528(5) . ? C11 C12 1.502(5) . ? C12 C20 1.325(5) . ? C12 C13 1.509(5) . ? C13 C14 1.529(5) . ? C15 C16 1.444(5) . ? C15 C17 1.492(5) . ? loop\_ \_geom\_angle\_atom\_site\_label\_1 \_geom\_angle\_atom\_site\_label\_2 \_geom\_angle\_atom\_site\_label\_3 \_geom\_angle \_geom\_angle\_site\_symmetry\_1 \_geom\_angle\_site\_symmetry\_3 \_geom\_angle\_publ\_flag C16 O2 C2 107.8(3) . . ? C7 O3 C8 60.8(2) . . ? C11 04 05 106.5(3) . . ? C15 C1 C14 128.2(4) . . ? C15 C1 C2 110.2(3) . . ? C14 C1 C2 121.6(4) . . ? O2 C2 C3 110.7(3) . . ? O2 C2 C1 103.1(3) . . ? C3 C2 C1 117.7(4) . . ? C4 C3 C2 125.7(4) . . ? C3 C4 C18 123.7(4) . . ? C3 C4 C5 122.0(4) . . ? C18 C4 C5 114.3(4) . . ? C4 C5 C6 114.7(4) . . ? C7 C6 C5 110.7(4) . . ? O3 C7 C8 60.1(2) . . ? O3 C7 C6 118.4(3) . . ? C8 C7 C6 126.0(4) . . ? O3 C8 C7 59.1(2) . . ? O3 C8 C19 114.9(4) . . ? C7 C8 C19 121.2(4) . . ? O3 C8 C9 114.3(4) . . ? C7 C8 C9 119.0(4) . . ? C19 C8 C9 115.3(4) . . ?

```
C8 C9 C10 112.2(4) . . ?
C11 C10 C9 114.0(4) . . ?
O4 C11 C12 106.9(3) . . ?
O4 C11 C10 111.0(3) . . ?
C12 C11 C10 112.7(3) . . ?
C20 C12 C11 123.5(4) . . ?
C20 C12 C13 123.3(4) . . ?
C11 C12 C13 113.2(4) . . ?
C12 C13 C14 115.5(4) . . ?
C1 C14 C13 111.8(4) . . ?
C1 C15 C16 108.2(3) . . ?
C1 C15 C17 130.9(4) . . ?
C16 C15 C17 120.9(4) . . ?
01 C16 O2 119.4(4) . . ?
01 C16 C15 130.0(4) . . ?
O2 C16 C15 110.5(4) . . ?
_diffrn_measured_fraction_theta_max
                                       0.999
_diffrn_reflns_theta_full
                                       18.45
_diffrn_measured_fraction_theta_full
                                       0.999
_refine_diff_density_max
                           0.071
_refine_diff_density_min
                           -0.079
_refine_diff_density_rms
                            0.020
```

data\_2010031501brwparere35561\_0m

```
_audit_creation_method
                                   SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common
                                   ?
_chemical_melting_point
                                   ?
_chemical_formula_moiety
                                   ?
_chemical_formula_sum
 'C20 H28 O5'
_chemical_formula_weight
                                  348.42
loop
_atom_type_symbol
 _atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
 _atom_type_scat_source
 'C' 'C'
            0.0033
                     0.0016
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
                     0.0000
 'Η'
     'Η'
            0.0000
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
 '0' '0'
                     0.0060
            0.0106
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting
                                   2
_symmetry_space_group_name_H-M
                                  P2(1)2(1)2(1)
loop_
 _symmetry_equiv_pos_as_xyz
 'x, y, z'
 'x+1/2, -y+1/2, -z'
 '-x, y+1/2, -z+1/2'
 '-x+1/2, -y, z+1/2'
_cell_length_a
                                   9.542(3)
_cell_length_b
                                   10.416(3)
_cell_length_c
                                   19.612(6)
_cell_angle_alpha
                                   90.00
_cell_angle_beta
                                  90.00
_cell_angle_gamma
                                   90.00
_cell_volume
                                   1949.1(10)
_cell_formula_units_Z
                                   4
_cell_measurement_temperature
                                   150(2)
_cell_measurement_reflns_used
                                   105
_cell_measurement_theta_min
                                   2.08
_cell_measurement_theta_max
                                   18.05
_exptl_crystal_description
                                  plate
_exptl_crystal_colour
                                   colourless
_exptl_crystal_size_max
                                   0.5
```

```
_exptl_crystal_size_mid
                                   0.3
_exptl_crystal_size_min
                                   0.1
_exptl_crystal_density_meas
                                   ?
_exptl_crystal_density_diffrn
                                   1.187
_exptl_crystal_density_method
                                   'not measured'
_exptl_crystal_F_000
                                   752
_exptl_absorpt_coefficient_mu
                                   0.084
_exptl_absorpt_correction_type
                                   multiscan
_exptl_absorpt_correction_T_min
                                   0.6689
                                   0.7442
_exptl_absorpt_correction_T_max
_exptl_absorpt_process_details
                                   ?
_exptl_special_details
;
 ?
;
_diffrn_ambient_temperature
                                   150(2)
_diffrn_radiation_wavelength
                                   0.71073
_diffrn_radiation_type
                                   MoK∖a
_diffrn_radiation_source
                                   'fine-focus sealed tube'
_diffrn_radiation_monochromator
                                   graphite
_diffrn_measurement_device_type
                                   Bruker Smart Apex II
_diffrn_measurement_method
                                   ?
_diffrn_detector_area_resol_mean
                                   ?
_diffrn_reflns_number
                                   9176
_diffrn_reflns_av_R_equivalents
                                   0.0416
                                   0.0243
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
                                   -8
_diffrn_reflns_limit_h_max
                                   8
                                   -9
_diffrn_reflns_limit_k_min
_diffrn_reflns_limit_k_max
                                   9
_diffrn_reflns_limit_l_min
                                   -17
_diffrn_reflns_limit_l_max
                                   16
_diffrn_reflns_theta_min
                                   2.08
_diffrn_reflns_theta_max
                                   17.97
_reflns_number_total
                                   1332
_reflns_number_gt
                                   1255
_reflns_threshold_expression
                                   >2sigma(I)
                                   ?
_computing_data_collection
_computing_cell_refinement
                                   ?
_computing_data_reduction
                                   ?
_computing_structure_solution
                                    'SHELXS-97 (Sheldrick, 2008)'
                                   'SHELXL-97 (Sheldrick, 2008)'
_computing_structure_refinement
_computing_molecular_graphics
                                   ?
_computing_publication_material
                                   ?
_refine_special_details
;
Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR
and
 goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based
 on F, with F set to zero for negative F^2^. The threshold expression of
```

 $F^2$  > 2sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2^{-1}$  are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; Fsqd \_refine\_ls\_structure\_factor\_coef \_refine\_ls\_matrix\_type full \_refine\_ls\_weighting\_scheme calc \_refine\_ls\_weighting\_details 'calc w=1/[ $s^2^{(Fo^2^)+(0.0136P)^2+0.5000P}$ ] where P=(Fo^2^+2Fc^2^)/3' \_atom\_sites\_solution\_primary direct \_atom\_sites\_solution\_secondary difmap \_atom\_sites\_solution\_hydrogens geom \_refine\_ls\_hydrogen\_treatment mixed \_refine\_ls\_extinction\_method SHELXL \_refine\_ls\_extinction\_coef 0.0027(5)refine ls extinction expression 'Fc^\*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^' \_refine\_ls\_abs\_structure\_details 'Flack H D (1983), Acta Cryst. A39, 876-881' \_refine\_ls\_abs\_structure\_Flack 0.8(14)\_refine\_ls\_number\_reflns 1332 235 \_refine\_ls\_number\_parameters \_refine\_ls\_number\_restraints 0 \_refine\_ls\_R\_factor\_all 0.0243 \_refine\_ls\_R\_factor\_gt 0.0215 \_refine\_ls\_wR\_factor\_ref 0.0466 \_refine\_ls\_wR\_factor\_gt 0.0451 \_refine\_ls\_goodness\_of\_fit\_ref 1.042 \_refine\_ls\_restrained\_S\_all 1.042 \_refine\_ls\_shift/su\_max 0.001 \_refine\_ls\_shift/su\_mean 0.000 loop\_ \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy \_atom\_site\_symmetry\_multiplicity \_atom\_site\_calc\_flag \_atom\_site\_refinement\_flags \_atom\_site\_disorder\_assembly \_atom\_site\_disorder\_group 01 0 -0.1321(2) 1.1529(2) 0.29732(10) 0.0436(6) Uani 1 1 d . . . 02 0 0.0121(2) 1.09969(19) 0.38258(12) 0.0389(6) Uani 1 1 d . . . O3 O 0.5509(2) 0.86676(19) 0.46394(9) 0.0437(6) Uani 1 1 d . . .

04 0 0.45788(18) 0.73560(18) 0.20531(10) 0.0364(5) Uani 1 1 d . . . 05 0 0.3656(2) 0.76444(18) 0.14722(9) 0.0417(6) Uani 1 1 d . . . C1 C 0.1565(3) 0.9622(3) 0.32053(16) 0.0255(8) Uani 1 1 d . . . C2 C 0.1366(3) 1.0181(3) 0.39010(15) 0.0305(8) Uani 1 1 d . . . H2A H 0.1158 0.9475 0.4231 0.037 Uiso 1 1 calc R . . C3 C 0.2565(3) 1.0959(3) 0.41599(18) 0.0322(8) Uani 1 1 d . . . H3A H 0.2976 1.1542 0.3846 0.039 Uiso 1 1 calc R . . C4 C 0.3120(3) 1.0928(3) 0.47763(18) 0.0352(9) Uani 1 1 d . . . C5 C 0.4379(3) 1.1730(3) 0.49402(15) 0.0425(9) Uani 1 1 d . . . H5A H 0.4174 1.2257 0.5348 0.051 Uiso 1 1 calc R . . H5B H 0.4560 1.2323 0.4555 0.051 Uiso 1 1 calc R . . C6 C 0.5702(3) 1.0934(3) 0.50744(15) 0.0447(9) Uani 1 1 d . . . H6A H 0.6519 1.1516 0.5113 0.054 Uiso 1 1 calc R . . H6B H 0.5600 1.0474 0.5513 0.054 Uiso 1 1 calc R . . C7 C 0.5968(3) 0.9975(3) 0.45152(15) 0.0370(8) Uani 1 1 d . . . H7A H 0.5783 1.0300 0.4044 0.044 Uiso 1 1 calc R . . C8 C 0.6987(3) 0.8926(3) 0.45549(17) 0.0382(9) Uani 1 1 d . . . C9 C 0.7587(3) 0.8336(3) 0.39118(16) 0.0429(9) Uani 1 1 d . . . H9A H 0.8590 0.8572 0.3880 0.051 Uiso 1 1 calc R . . H9B H 0.7535 0.7390 0.3953 0.051 Uiso 1 1 calc R . . C10 C 0.6873(3) 0.8728(3) 0.32604(17) 0.0405(9) Uani 1 1 d . . . H10A H 0.7179 0.9505 0.3054 0.049 Uiso 1 1 calc R . . C11 C 0.5873(3) 0.8101(3) 0.29519(17) 0.0350(9) Uani 1 1 d . . . H11A H 0.5638 0.7278 0.3126 0.042 Uiso 1 1 calc R . . C12 C 0.5062(3) 0.8569(3) 0.23456(14) 0.0303(8) Uani 1 1 d . . . C13 C 0.3821(3) 0.9399(2) 0.25696(13) 0.0289(8) Uani 1 1 d . . . H13A H 0.4192 1.0185 0.2788 0.035 Uiso 1 1 calc R . . H13B H 0.3299 0.9668 0.2157 0.035 Uiso 1 1 calc R . . C14 C 0.2791(3) 0.8762(3) 0.30618(14) 0.0292(8) Uani 1 1 d . . . H14A H 0.2452 0.7946 0.2862 0.035 Uiso 1 1 calc R . . H14B H 0.3277 0.8559 0.3494 0.035 Uiso 1 1 calc R . . C15 C 0.0582(3) 1.0064(3) 0.27873(16) 0.0276(8) Uani 1 1 d . . . C16 C -0.0302(4) 1.0924(3) 0.31691(18) 0.0318(8) Uani 1 1 d . . . C17 C 0.0317(3) 0.9813(3) 0.20479(14) 0.0454(9) Uani 1 1 d . . . H17A H 0.0879 0.9077 0.1899 0.068 Uiso 1 1 calc R . . H17B H 0.0578 1.0572 0.1781 0.068 Uiso 1 1 calc R . . H17C H -0.0679 0.9625 0.1979 0.068 Uiso 1 1 calc R . . C18 C 0.2593(3) 1.0096(3) 0.53504(15) 0.0527(10) Uani 1 1 d . . . H18A H 0.1804 0.9576 0.5189 0.079 Uiso 1 1 calc R . . H18B H 0.2285 1.0641 0.5729 0.079 Uiso 1 1 calc R . . H18C H 0.3349 0.9530 0.5506 0.079 Uiso 1 1 calc R . . C19 C 0.7876(4) 0.8734(3) 0.51807(15) 0.0642(11) Uani 1 1 d . . . H19A H 0.8174 0.7834 0.5207 0.096 Uiso 1 1 calc R . . H19B H 0.7330 0.8952 0.5588 0.096 Uiso 1 1 calc R . . H19C H 0.8704 0.9289 0.5155 0.096 Uiso 1 1 calc R . . C20 C 0.5947(3) 0.9288(3) 0.18257(14) 0.0391(9) Uani 1 1 d . . . H20A H 0.5378 0.9479 0.1422 0.059 Uiso 1 1 calc R . . H20B H 0.6750 0.8757 0.1693 0.059 Uiso 1 1 calc R . . H20C H 0.6284 1.0093 0.2027 0.059 Uiso 1 1 calc R . . H5 H 0.258(5) 0.712(4) 0.168(2) 0.165(18) Uiso 1 1 d . . .

loop\_

\_atom\_site\_aniso\_label \_atom\_site\_aniso\_U\_11

```
_atom_site_aniso_U_22
 atom site aniso U 33
 _atom_site_aniso_U_23
 _atom_site_aniso_U_13
 _atom_site_aniso_U_12
01 0.0320(13) 0.0425(14) 0.0563(15) 0.0035(12) 0.0045(14) 0.0121(13)
02 0.0389(15) 0.0431(14) 0.0347(16) -0.0104(12) 0.0015(12) 0.0101(13)
03 0.0451(15) 0.0370(16) 0.0490(14) -0.0003(11) 0.0013(12) -0.0086(12)
04 \ 0.0354(12) \ 0.0284(14) \ 0.0455(14) \ -0.0075(12) \ -0.0004(11) \ 0.0021(12)
05 \ 0.0446(13) \ 0.0477(14) \ 0.0330(13) \ -0.0037(12) \ -0.0074(13) \ -0.0036(12)
C1 \quad 0.027(2) \quad 0.023(2) \quad 0.026(2) \quad -0.0043(18) \quad 0.006(2) \quad 0.0003(18)
C2 \ 0.031(2) \ 0.030(2) \ 0.031(2) \ 0.0030(18) \ -0.0011(18) \ 0.010(2)
C3 0.038(2) 0.028(2) 0.031(2) -0.0046(18) 0.0034(18) -0.003(2)
C4 \ 0.043(2) \ 0.032(2) \ 0.031(2) \ -0.0084(19) \ -0.002(2) \ 0.001(2)
C5 \quad 0.054(2) \quad 0.036(2) \quad 0.038(2) \quad -0.0091(17) \quad -0.005(2) \quad -0.002(2)
C6 \ 0.044(2) \ 0.046(2) \ 0.044(2) \ -0.005(2) \ -0.0109(18) \ -0.008(2)
C7 \ 0.037(2) \ 0.037(2) \ 0.036(2) \ 0.000(2) \ -0.0021(17) \ -0.011(2)
\texttt{C8} \ \texttt{0.030(2)} \ \texttt{0.041(2)} \ \texttt{0.044(2)} \ \texttt{0.002(2)} \ -\texttt{0.009(2)} \ -\texttt{0.003(2)}
C9 \ 0.035(2) \ 0.042(2) \ 0.051(2) \ 0.003(2) \ -0.005(2) \ -0.0004(17)
C10 \ 0.037(2) \ 0.043(2) \ 0.041(2) \ 0.0019(19) \ 0.0015(19) \ 0.003(2)
C11 \quad 0.030(2) \quad 0.029(2) \quad 0.045(2) \quad -0.0038(19) \quad 0.001(2) \quad 0.0029(18)
C12 \ 0.0295(19) \ 0.026(2) \ 0.035(2) \ -0.0045(19) \ -0.002(2) \ -0.0006(19)
C13 \ 0.0276(19) \ 0.0243(19) \ 0.035(2) \ -0.0030(16) \ -0.0010(17) \ 0.0012(18)
C14 \ 0.0332(19) \ 0.0253(19) \ 0.0291(19) \ -0.0024(17) \ 0.0011(17) \ -0.0032(19)
C15 \ 0.023(2) \ 0.032(2) \ 0.027(2) \ -0.0020(19) \ -0.001(2) \ 0.003(2)
C16 0.023(2) 0.030(2) 0.042(3) 0.000(2) 0.001(2) 0.003(2)
C17 \ 0.040(2) \ 0.061(2) \ 0.035(2) \ -0.0036(18) \ -0.0036(18) \ 0.0081(19)
C18 \ 0.059(2) \ 0.066(2) \ 0.033(2) \ -0.006(2) \ 0.0000(18) \ -0.008(2)
C19 \ 0.068(3) \ 0.071(3) \ 0.053(2) \ -0.005(2) \ -0.026(2) \ 0.019(2)
C20 0.037(2) 0.041(2) 0.039(2) 0.0007(17) 0.0058(18) -0.0064(18)
_geom_special_details
 All esds (except the esd in the dihedral angle between two l.s. planes)
 are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are
only
 used when they are defined by crystal symmetry. An approximate
(isotropic)
 treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
 _geom_bond_atom_site_label_1
 _geom_bond_atom_site_label_2
 _geom_bond_distance
 _geom_bond_site_symmetry_2
 _geom_bond_publ_flag
O1 C16 1.221(3) . ?
O2 C16 1.352(3) . ?
O2 C2 1.468(3) . ?
O3 C8 1.445(3) . ?
```

| 04       01       1.462(3)       ?         04       05       1.471(2)       ?         05       H5       1.23(5)       ?         01       C15       1.328(3)       ?         01       C15       1.328(3)       ?         01       C14       1.500(4)       ?         02       H2A       1.0000       ?         03       C4       H3A       0.9500       ?         04       C5       1.492(4)       ?       ?         03       H3A       0.9500       ?       ?         04       C13       1.507(4)       ?       ?         05       H5A       0.9900       ?       ?         05       H5A       0.9900       ?       ?         05       H5B       0.9900       ?       ?         05       H6A       0.9900       ?       ?         05       H6B       0.9900       ?       ?         05       H55(4)       ?       ?       ?         05       H9B       0.9900       ?       ?         01       H10A       0.9500       ?         01 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>loop_   _geom_angle_atom_site_label_1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

```
_geom_angle_atom_site_label_2
 _geom_angle_atom_site_label_3
 _geom_angle
 _geom_angle_site_symmetry_1
 _geom_angle_site_symmetry_3
 _geom_angle_publ_flag
C16 O2 C2 107.7(2) . . ?
C8 O3 C7 60.73(19) . . ?
C12 04 05 108.44(18) . . ?
O4 O5 H5 99.0(19) . . ?
C15 C1 C2 109.8(2) . . ?
C15 C1 C14 129.9(3) . . ?
C2 C1 C14 120.2(3) . . ?
O2 C2 C3 109.9(2) . . ?
O2 C2 C1 103.7(2) . . ?
C3 C2 C1 115.1(3) . . ?
O2 C2 H2A 109.3 . .
                    ?
C3 C2 H2A 109.3 . . ?
C1 C2 H2A 109.3 . . ?
C4 C3 C2 127.3(3) . . ?
C4 C3 H3A 116.3 . . ?
C2 C3 H3A 116.3 . . ?
C3 C4 C5 120.3(3) . . ?
C3 C4 C18 124.3(3) . . ?
C5 C4 C18 115.3(3) . . ?
C4 C5 C6 113.3(2) . . ?
C4 C5 H5A 108.9 . . ?
C6 C5 H5A 108.9 . . ?
C4 C5 H5B 108.9 . . ?
C6 C5 H5B 108.9 . . ?
H5A C5 H5B 107.7 . . ?
C7 C6 C5 111.9(2) . . ?
C7 C6 H6A 109.2 . .
                    ?
C5 C6 H6A 109.2 . . ?
C7 C6 H6B 109.2 . . ?
С5 С6 Н6В 109.2 . . ?
H6A C6 H6B 107.9 . . ?
O3 C7 C8 59.44(19) . . ?
O3 C7 C6 116.7(2) . . ?
C8 C7 C6 124.6(3) . . ?
O3 C7 H7A 114.8 . . ?
C8 C7 H7A 114.8 . . ?
C6 C7 H7A 114.8 . . ?
O3 C8 C7 59.83(18) . . ?
O3 C8 C19 115.6(3) . . ?
C7 C8 C19 121.1(3) . . ?
O3 C8 C9 112.8(2) . . ?
C7 C8 C9 120.6(3) . . ?
C19 C8 C9 114.3(3) . . ?
C10 C9 C8 115.2(2) . . ?
C10 C9 H9A 108.5 . . ?
C8 C9 H9A 108.5 . . ?
C10 C9 H9B 108.5 . . ?
C8 C9 H9B 108.5 . . ?
```

H9A C9 H9B 107.5 . . ? C11 C10 C9 126.1(3) . . ? C11 C10 H10A 117.0 . . ? C9 C10 H10A 117.0 . . ? C10 C11 C12 125.6(3) . . ? C10 C11 H11A 117.2 . . ? C12 C11 H11A 117.2 . . ? O4 C12 C11 101.1(2) . . ? O4 C12 C20 109.7(2) . . ? C11 C12 C20 113.9(2) . . ? O4 C12 C13 110.9(2) . . ? C11 C12 C13 110.8(2) . . ? C20 C12 C13 110.1(2) . . ? C14 C13 C12 115.7(2) . . ? C14 C13 H13A 108.4 . . ? C12 C13 H13A 108.4 . . ? C14 C13 H13B 108.4 . . ? C12 C13 H13B 108.4 . . ? H13A C13 H13B 107.4 . . ? C1 C14 C13 111.1(2) . . ? C1 C14 H14A 109.4 . . ? C13 C14 H14A 109.4 . . ? C1 C14 H14B 109.4 . . ? C13 C14 H14B 109.4 . . ? H14A C14 H14B 108.0 . . ? C1 C15 C16 107.9(3) . . ? C1 C15 C17 131.1(3) . . ? C16 C15 C17 120.9(3) . . ? 01 C16 O2 120.5(3) . . ? O1 C16 C15 128.6(3) . . ? O2 C16 C15 110.9(3) . . ? C15 C17 H17A 109.5 . . ? C15 C17 H17B 109.5 . . ? H17A C17 H17B 109.5 . . ? C15 C17 H17C 109.5 . . ? H17A C17 H17C 109.5 . . ? H17B C17 H17C 109.5 . . ? C4 C18 H18A 109.5 . . ? C4 C18 H18B 109.5 . . ? H18A C18 H18B 109.5 . . ? C4 C18 H18C 109.5 . . ? H18A C18 H18C 109.5 . . ? H18B C18 H18C 109.5 . . ? C8 C19 H19A 109.5 . . ? C8 C19 H19B 109.5 . . ? H19A C19 H19B 109.5 . . ? C8 C19 H19C 109.5 . . ? H19A C19 H19C 109.5 . . ? H19B C19 H19C 109.5 . . ? C12 C20 H20A 109.5 . . ? C12 C20 H20B 109.5 . . ? H20A C20 H20B 109.5 . . ? C12 C20 H20C 109.5 . . ? H20A C20 H20C 109.5 . . ?

H20B C20 H20C 109.5 . . ?

\_diffrn\_measured\_fraction\_theta\_max 1.000 \_diffrn\_reflns\_theta\_full 17.97 \_diffrn\_measured\_fraction\_theta\_full 1.000 \_refine\_diff\_density\_max 0.069 \_refine\_diff\_density\_min -0.079 \_refine\_diff\_density\_rms 0.017