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Abstract: Background and Objectives: We attempted to determine the optimal radiation dose to
maintain image quality using a deep learning application in a physical human phantom. Materials
and Methods: Three 5 × 5 × 5 mm3 uric acid stones were placed in a physical human phantom
in various locations. Three tube voltages (120, 100, and 80 kV) and four current–time products
(100, 70, 30, and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with filtered
back projection (FBP), statistical iterative reconstruction (IR, iDose), and knowledge-based iterative
model reconstruction (IMR). By applying deep learning to each image, we took 12 more scans.
Objective image assessments were calculated using the standard deviation of the Hounsfield unit
(HU). Subjective image assessments were performed by one radiologist and one urologist. Two
radiologists assessed the subjective assessment and found the stone under the absence of information.
We used this data to calculate the diagnostic accuracy. Results: Objective image noise was decreased
after applying a deep learning tool in all images of FBP, iDose, and IMR. There was no statistical
difference between iDose and deep learning-applied FBP images (10.1 ± 11.9, 9.5 ± 18.5 HU, p = 0.583,
respectively). At a 100 kV–30 mAs setting, deep learning-applied FBP obtained a similar objective
noise in approximately one third of the radiation doses compared to FBP. In radiation doses with
settings lower than 100 kV–30 mAs, the subject image assessment (image quality, confidence level,
and noise) showed deteriorated scores. Diagnostic accuracy was increased when the deep learning
setting was lower than 100 kV–30 mAs, except for at 80 kV–15 mAs. Conclusions: At the setting
of 100 kV–30 mAs or higher, deep learning-applied FBP did not differ in image quality compared
to IR. At the setting of 100 kV–30 mAs, the radiation dose can decrease by about one third while
maintaining objective noise.

Keywords: urolithiasis; tomography, X-ray computed; deep learning; radiation dosage;
phantoms, imaging

1. Introduction

With a 10.6% male prevalence rate and a 7.1% female prevalence rate, urolithiasis
is a widespread disease [1]. Although the prevalence differs according to country, the
incidence and prevalence are rising due to increasing obesity or systemic disease rates
and social situations [2]. Around 10% of patients experience numerous recurrences, while
approximately 50% of recurrent cases experience just one [3,4]. For these patients, thin
section non-enhanced computed tomography (CT) has been used frequently because it
offers a quick, precise evaluation [5]. In this case, additional evaluation is performed to
confirm the presence or absence of stones. CT, which can identify stones by checking the
surrounding anatomical structures, does not have a delay time and is increasingly being
used [3–5].
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The typical radiation dose of standard or regular dose CT for stone disease is 8–10 mSv
and the exposed amount of the dose could be increased according to the organ or field [3,4].
The International Commission on Radiological Protection recommended a radiation dose
limit of up to a mean of 20 mSv per year [6]. The potential carcinogenic effect of CT
scans is concerning [7,8]. Urinary tract stones are prone to recurrence and patients are
likely to be exposed to radiation with repeated CT scanning [3,4,9]. Low-dose CTs may
reduce the risk of radiation exposure. Recently, the advent of ultra-low dose CT (ULDCT)
has led to an extremely low level of radiation exposure (<1.9 mSv), compared to both
the low-dose CT (LDCT) at 3 mSv and the standard X-ray at 2.15 mSv [10]. A similar
result was demonstrated in another study, where radiation exposure was 1.28 ± 0.34 mSv
for ULDCT vs. 5.49 ± 1.00 mSv for LDCT, without altering the examination’s detection
rate [11]. However, trying to minimize the radiation exposure, low-dose CT results in low
image quality due to increased noise [12]. For patients with urinary stones, image noise
reduction is crucial to enabling scanning at a reduced radiation dosage.

With the recent advancement of artificial intelligence, radiology integration is pro-
gressing quickly. Deep learning of a convolutional neural network (CNN) has had a
significant impact on diagnostic image analysis in urology [13]. We aimed to determine if
deep learning could help reduce the radiation risk in urinary tract stones.

2. Materials and Methods
2.1. Phantom Model

For this investigation, the Radiation Health Research Institute of Korea Hydro and
Nuclear Power (Seoul, Republic of Korea), provided the standard Korean male physical
phantom (Figure 1a). The phantom size weighs 68 kg, stands 172 cm tall, and has a body
mass index of 22.99 kg m2. The model simulates the average height and weight of a Korean
male. Epoxy resin, urethane foam, and polyurethane were used to create the phantom’s
bone, lungs, and soft tissues, and they had densities that were comparable to that of human
tissue. The phantom was cut into 2 cm thick slices. It had grids with holes that were 7 mm
in diameter and spaced 2 cm apart. We placed an approximately 5 × 5 × 5 mm3 uric acid
stone in a hole. In the phantom model, we determined that a low CDIvol value could affect
the subjective evaluation of stones near the epoxy resin. To improve the accuracy of the
subjective evaluation, we placed the three stones in various locations (proximal, mid, and
distal based on the locations of frequent ureteral stones symptoms). To avoid movement
during scanning, the phantom was locked in a supine posture in a frame (Figure 1b).

2.2. CT Protocol and Image Reconstruction

A 256-multidetector CT scanner (Brilliance iCT; Philips Healthcare, Cleveland, OH,
USA) was used to scan the phantom. Standard non-enhanced CT for urolithiasis was
performed with a scan range between the proximal aspect of the 12th thoracic vertebra and
the distal aspect of the symphysis pubis of the phantom in the supine position. For all scans,
an automated z-axis dose modulation (DoseRight; Philips Healthcare) derived from the
survey image was used. The following were the scanning parameters: kernel, B(standard)
filer; section thickness, 3 mm; increment, 2.7 mm; detector configuration, 128 × 0.625;
pitch, 0.915; beam collimation, 80 mm; rotation time, 0.4 s; and helical acquisition. Four
current–time products (100, 70, 30, and 15 mAs) and three tube voltages (120, 100, and
80 kV) were employed. We had 84 reconstructed imaging data from a previous study (FBP,
iDose 4 (Levels 5–7) and IMR (soft tissue Levels 1–3)) [14]. For this study, ClariCT was
applied to each CT image. ClariCT (ClariPi, Seoul, Republic of Korea) is based on the CNN
algorithm noise reduction approach and features digital imaging and communications
in medicine (DICOM)-based sinogram blend and statistical iterative reconstruction (IR).
It has benefits in terms of denoising from both projection and image space. A total of
168 reconstructed imaging data sets (84 pre-processed through the various reconstruction
and 84 post-processed using ClariCT) were obtained.
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Figure 1. Model of the Korean physical phantom. (a) The phantom has 43 slices, each with a thickness
of 2 cm. (b) The phantom was fixed in a supine position in a frame to prevent shaking during
CT scanning.

2.3. Radiation Dose

The manufacturer’s CT scanner software recorded the volume CT dose index (CT-
DIvol) and dose–length product (DLP). The ED was calculated from the DLP using a
constant region-specific normalized effective dose (ED) value of 0.015 mSv−1 mGy−1 cm.
Size-specific dose estimate (SSDE) values were used to consider the patient size.

2.4. Objective Image Quality Assessment

An independent urologist who was not involved in the subjective image evaluation
reviewed the objective image noise. The Hounsfield unit (HU) standard deviation in
circular region of interest, each with a 1 cm2 area, were put in the homogenous soft tissue
of the phantom around the distal ureter stone allocated to them (Figure 2). The CT number
(HU) divided by the standard deviation was used to define the signal-to-noise ratio (SNR).
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Figure 2. The representative CT image of the phantom at 100 kV and 30 mAs. The noise in the images
was produced by filtered back projection (FBP) (a) and FBP applied ClariCT (b). The objective image
noise was evaluated as the standard deviation of the Hounsfield unit in round legions (each with an
area of 1 cm2).
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2.5. Subjective Image Assessment

One radiologist and one urologist, both with at least ten years of expertise, indepen-
dently and subjectively reviewed the 168-image data set while being unaware of the scan
settings or reconstruction techniques. We evaluated the average of the readers’ results. All
images were transmitted to picture archiving and communication systems and displayed
randomly on a Barco monitor that was calibrated every three months with s resolution of
1200 pixels wide and 1600 pixels high. The default window/level was 400/40, however this
may be altered as needed. On a five-point scale, the image quality surrounding the target
stone that was inserted into the hole was rated (1 = poor image quality, not diagnostically
acceptable for interpretation; 2 = suboptimal image quality, worse than acceptable quality;
3 = acceptable image quality, diagnostic interpretation possible; 4 = good image quality;
and 5 = excellent image quality). On a three-point scale, the level of confidence in the
urolithiasis diagnosis was graded (1 = no confidence; 2 = confidence with reservations; and
3 = highly confident). Using the image’s graininess or pixel-to-pixel variance, a three-point
scale was used to subjectively rate the noise in the entire image (1 = minimal; 2 = acceptable;
and 3 = excessive, rendering diagnostic interpretation impossible).

2.6. Subjective Stone Diagnosis Assessment

The stone was placed somewhere in the phantom. The stone detectability was eval-
uated by 2 staff radiologists blinded to the presence of the stones. They did not perform
the subjective image assessment and evaluated by consensus. The overall diagnostic ac-
ceptability for each stone was graded on a three-point scale (1 = poor image quality, not
diagnostically acceptable for interpretation, 2 = suboptimal image quality, worse than
acceptable quality, and 3 = diagnostic interpretation possible). The radiologists found the
stone (1 = found and 0 = not found or wrong).

2.7. Statistical Analyses

The paired t-test and Wilcoxon signed-rank test were used to compare the objective
image noise, SNR, subjective image quality, confidence level, and image noise from fil-
tered back projection (FBP), statistical IR (iDose), and knowledge-based iterative model
reconstruction (IMR) data, with ClariCT applied to each. SPSS® v. 21.0 (IBM Corp., New
York, NY, USA; formerly SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.
Significance was set at p-value < 0.05.

To subjectively assess the stone diagnosis, we calculated the stone cut-off value using
the receiver operating characteristic curve according to the overall diagnostic acceptability
grade. Based on the cut-off value, we divided the images into two groups and matched the
group that answered correctly and the group that answered incorrectly or did not answer.
Diagnostic accuracy was calculated as TP/(TP + FP + TN + FP) × 100 [true positive (TP),
true negative (TN), false positive (FP), and false negative (FN)].

3. Results
3.1. Radiation Dose

Table 1 provides an overview of CT scan settings and dosage data. Lower voltages
and current–time products tended to display lower CTDIvol, SSDE, DLP, and ED. The EDs
were between 0.095–2.621 mSv.

3.2. Quantitative Analysis of the Image Quality

As seen in Figure 3, the connection between CTDIvol and the objective image noise
was inverse. FBP and ClariCT-applied FBP had significantly different objective noise levels
(18.1 ± 46.8 and 9.5 ± 18.5 HU, respectively, p = 0.002) (Figure 3a), as did iDose and ClariCT
applied iDose (10.1 ± 11.9 and 6.6 ± 5.7 HU, respectively, p= 0.002) (Figure 3b). IMR and
ClariCT applied IMR also had significantly different objective noise levels (4.4 ± 11.1 and
3.5 ± 8.3 HU, respectively, p = 0.002) (Figure 3c). Interestingly, there was no statistically
significant difference in the levels of iDose and ClariCT-applied FBP (10.1 ± 11.9 and
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9.5 ± 18.5 HU, respectively, p = 0.583). On the other hand, when the noise value was
the same, the amount of radiation could be reduced by approximately one-third, in the
120 kV–15 mAs setting (Figure 4). However, there was a slightly statistically significant
difference in the levels of IMR and ClariCT applied iDose (4.4 ± 11.1 and 6.6 ± 5.7 HU,
respectively, p = 0.034, respectively).

Table 1. Scan parameters and dose reports.

Voltage (kV)
Reference

Current–Time
Product (mAs)

Effective
Current–Time
Product (mAs)

CTDIvol(mGy) SSDE
(mGy)

DLP
(mGy)

ED
(mSv)

120 100 84 3.82 5.73 174.7 2.621

120 70 44 2.7 4.05 123.4 1.851

120 30 19 1.11 1.665 50.9 0.764

120 15 10 0.54 0.81 24.8 0.372

100 100 61 2.25 3.375 102.9 1.544

100 70 43 1.56 2.34 71.3 1.07

100 30 18 0.63 0.945 28.7 0.431

100 15 10 0.28 0.42 13 0.195

80 100 58 1.03 1.545 46.9 0.704

80 70 41 0.72 1.08 33 0.495

80 30 18 0.3 0.45 13.8 0.207

80 15 10 0.14 0.21 6.3 0.095

CTDIvol, volume computed tomography (CT) dose index; SSDE, size-specific dose estimate; DLP, dose length
product; and ED, effective dose.

3.3. Qualitative Analysis

In the case of an ED greater than 0.431 mSv (100 kV–30 mAs setting), there was no
difference in the subjective evaluation of all three graphs (Figure 5). There was a statistical
difference in the subjective score at settings between ED 0.372 mSv (120 kV–15 mAs) and ED
0.431 mSv (100 kV–30 mAs), including the image quality, confidence level, and subjective
image noise. The FBP image quality score was 2.6 in the 120 kV–15 mAs setting and 4.6
in the 100 kV–30 mAs setting (p = 0.083). The ClariCT applied FBP image quality score
was 2.6 in the 120 kV–15 mAs setting and 5.0 in the 100 kV–30 mAs setting (p = 0.102)
(Figure 5a). The FBP confidence level was 2.1 in the 120 kV–15 mAs setting and 2.8 in
the 100 kV–30 mAs setting (p = 0.102). In the 120 kV–15 mAs setting, the ClariCT applied
FBP confidence level was 2.8, while in the 100 kV–30 mAs setting, it was 3.0 (p = 0.317)
(Figure 5b). The FBP subjective image noise score was 1.5 in the 120 kV–15 mAs setting
and 2.0 in the 100 kV–30 mAs setting (p = 0.317). In the 120 kV–15 mAs setting, the ClariCT
applied FBP subjective image noise score was 1.5, while in the 100 kV–30 mAs setting,
it was 1.0 (p = 0.317) (Figure 5c). There were no differences between iDose and ClariCT
applied iDose in the image quality (p = 0.498), confidence level (p = 0.066), and subjective
image noise (p = 0.180). Likewise, there were no differences between IMR and ClariCT
applied IMR in the image quality (p = 0.104), confidence level (p = 0.068), and subjective
image noise (p = 0.588).
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Figure 5. Subjective image assessment by each CT parameter. (a) Image quality on a five-point scale.
(b) Confidence level on a three-point scale. (c) Subjective image noise on a three-point scale.

The break point of the subjective image quality, confidence level, and image noise is
0.63 mGy in CTDIvol.

When the CTDIvol was >0.54 (120 kV–15 mAs setting), there was little difference in
subjective evaluation and ability to diagnose stones. However, when the CTDIvol was
<0.54, there was a difference depending on the image reconstruction method and whether
ClariCT was applied.

3.4. Diagnostic Accuracy for Stone Detection

The cut-off value of the overall diagnostic acceptability grade was 1.5. The diagnostic
accuracy is shown in Table 2. In the 120 kV–15 mAs setting, the CTDIvol value was 0.54 with
FBP reconstruction, and the accuracy increased from 65 to 75 when ClariCT was applied.
This approximates the accuracy of iDose (p = 0.083). Overall, the accuracy increased when
ClariCT was applied at a low CTDIvol, except for at the 80 kV–15 mAs setting (Table 2).
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Table 2. Diagnostic accuracy for stone detection.

CTDIvol
(mGy)

Voltage
(kV)

Reference
Current–Time
Product (mAs)

FBP iDose IMR FBP-
ClariCT

iDose-
ClariCT

IMR-
ClariCT

3.82 120 100 100 100 100 100 100 100

2.7 120 70 100 100 100 100 100 100

2.25 100 100 100 100 100 100 100 100

1.56 100 70 100 100 100 100 100 100

1.11 120 30 100 100 100 100 100 100

1.03 80 100 100 100 100 100 100 100

0.72 80 70 100 100 100 100 100 100

0.63 100 30 100 100 100 100 100 100

0.54 120 15 65 80 75 75 85 85

0.3 80 30 5 35 50 65 65 65

0.28 100 15 10 35 55 55 55 60

0.14 80 15 0 0 0 0 0 0

Data presented as percentage (%). CTDIvol, volume computed tomography (CT) dose index.

4. Discussion

This study compared a deep learning image reconstruction (DLIR) algorithm with
FBP, iDose, and IMR algorithms for the reconstruction of urolithiasis CT. We evaluated the
image quality (objective and subjective) of different CT protocols and reconstructions and
urinary stone diagnostic accuracy. DLIR improved noise characteristics and image quality.
ClariCT results in better-quality images with less radiation. Applying ClariCT lowers
radiation dose during CT scans, which can lower radiation exposure. As the subjective
assessment score shows a significant decrease when it is less than 100 kV–30 mAs setting,
image quality improves if ClariCT is applied. FBP is the most widely used method, and
the amount of radiation exposure may be high to obtain a quality image [15]. In this study,
applying DLIR to FBP showed objective noise similar to iDose with a one-third reduction in
radiation. As there was no difference in subjective assessment, applying ClariCT to iDose
or IMR has insignificant effect. Therefore, applying ClariCT to CT images using FBP will
have the greatest noise reduction. Also, deep learning denoising techniques are vendor
agnostic; that is, they can be applied regardless of vendor and regardless of reconstruction
technique. In other words, their great advantage is that they can reduce the amount of
radiation to which patients are exposed and improve the quality of images without adding
new vendor.

This study was conducted under a 2.621 mSv (120 kV–100 mAs) setting or less, which
is lower than the radiant dose of conventional CT conditions. This confirms it is possible to
check for stones at a low radiation dose using ClariCT.

Low-dose radiation is defined as less than 3.5 mSv and ultra-low-dose as less than
1.9 mSv [16]. In our study, the ED for 100 kV–30 mAs setting was 0.431 mSv, which is
equivalent to an ultra-low dose. The ED of CT, which is mainly taken with urinary stones,
exceeds about 3 mSv [17]. This deep learning program can maintain the image quality of
stone reading with radiation values corresponding to an ultra-low dose. FBP is a widely
used reconstruction method in many hospitals [18] and requires no special additional
hardware. Statistical IR (iDose) and model-based IR (IMR) require hardware from the
manufacturers, making them less versatile and more expensive [19,20].

In this study, the optimal setting for urolithiasis is 100kV–30 mAs more specifically, in
terms of objective image noise, subjective image quality, diagnostic accuracy, and use of
deep learning reconstruction technique.
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Attempts to apply deep learning are also being actively made in the field of urinary
tract stones [13]. Deep learning can be used to analyze the components of the stone using
only endoscopic images of urolithiasis [21,22]. Kidney stones can also be found using deep
learning in the CT images [23]. This model was 96% accurate when compared with two
experts [23]. In addition, deep learning has been applied to low-dose or ultra-low-dose
CT denoising. Despite the significant dose reduction achieved with ultra-low dose CT,
diagnostic performance for urolithiasis remained excellent using two vendor-specific deep
learning imaging reconstruction algorithms (TrueFidelity in GE Healthcare and Advanced
intelligent Clear-IQ Engine in Cannon Medical System) [24]. It was consistent with this
study in terms of deep learning imaging reconstruction. However, this is the first study to
use vendor neutral deep learning image reconstruction algorithm.

There is no evidence to suggest that values below 1 mSv can prevent radiation-induced
cancer transformations. But a recent meta-analysis revealed a significant correlation be-
tween CT scan and cancer risk and said that cancer is more likely to occur in the area
where CT is taken [25]. The less exposure to radiation, the lower the probability of cancer
occurrence, so we should make efforts to ensure that there is less radiation continuously
exposed. Furthermore, C-arm X-rays are often used for endourological procedures, and
endourological procedures can frequently expose operators and patients to radiation. So,
we should effort to reduce the amount of radiation that directly reaches the human body
by wearing protective gear while taking minimal C-arm X-ray images [26].

Patients with frequent recurrence of urinary tract stone or high risk for urinary tract
stone formation often need to undergo non-enhanced CT multiple times. Urologists
gathered to publish their papers in FAQ format, and it is recommended that patients with
recurrent stones or high-risk groups for the Asian population take images every three to
six months [27]. Applying deep learning techniques to real clinical setting would be good
for both doctor and patient. On the patient side, the more radiation exposure is minimized,
the more helpful it will be for the patient. On the doctor side, this is because it helps read
by reducing image noise.

Our study has several limitations. First, in clinical practice, patients of various sizes
may have stones of different positions, compositions, and sizes in their bodies. The optimal
radiation dose should be set to ensure the detection of stones with all common components,
sizes, and positions in most people of body types, instead of detecting stones with a single
composition and single size in patients of standard size. Further research needs to at least
count the characteristics of stone patients in a single center, including the thickness of the
abdominal fat layer and the data of stone location, composition, and size, and select a
reasonable test range. Also, BMI is an important factor affecting CT reading and should
be considered when determining optimal radiation dose of low dose CT. In the future, it
is thought that follow-up studies will be possible if Korean female phantom models are
developed or BMI is applied to create phantom of various body types. Second, this study
was not modeled on humans, but on a phantom copy of the human body without the organs.
This study required the use of a phantom to determine the radiation dose as it is unethical
to repeatedly scan humans by applying various radiation settings. However, no matter how
similar a phantom is to the human body, it will not be identical. It is inevitable, inherent,
and hard to correct. Third, the experiment was conducted with knowledge regarding stone
location. Since the results were predicted and evaluated, the subjective score could be quite
high. Other test results, such as clinical symptoms and laboratory data, may differ from
experimental phantom studies because they aid in making a diagnosis. Future research
involving actual patient data is warranted. However, we have confirmed that our research
can reduce objective noise indicators. Fourth, only uric acid stones were considered in
this study. We will proceed with the follow-up study to see if there is any change in the
optimal radiation dose to maintain image quality using a deep learning application in
a physical human phantom when we conduct research on stones of other components
including calcium phosphate. Furthermore, in the real clinical practice, the size, shape,
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and location of the urolithiasis has large spectrum. Finally, we did analyze other objective
methods, such as the structural similarity index and edge rise distance [28,29].

5. Conclusions

In conclusion, we suggest an optimal imaging setting at 100 kV and 30 mAs for
urolithiasis in a Korean phantom model. When a deep learning is FBP, the noise was similar
to IR. Deep learning could reduce the radiation dose to approximately 70% compared
to the same amount of FBP noise. It is said that an accurate diagnosis can be made by
reducing the amount of radiation to which patients are exposed when diagnosing stones.
In the future, there will be a strong tendency to use artificial intelligence as diagnostic
assistance, reduce noise, and further predict the success rate of treatment through individual
customized treatment.
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