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Abstract: Background and Objectives: To determine the percentage of breast cancers detectable by
fused diffusion-weighted imaging (DWI) using unenhanced magnetic resonance imaging (MRI) and
abbreviated post-contrast-enhanced MRI. Materials and Methods: Between October 2016 and October
2017, 194 consecutive women (mean age, 54.2 years; age range, 28–82 years) with newly diagnosed
unilateral breast cancer, who underwent preoperative 3.0 T breast MRI with DWI, were evaluated.
Both fused DWI and abbreviated MRI were independently reviewed by two radiologists for the
detection of index cancer (which showed the most suspicious findings in both breasts), location,
lesion conspicuity, lesion type, and lesion size. Moreover, the relationship between cancer detection
and histopathological results of surgical specimens was evaluated. Results: Index cancer detection
rates were comparable between fused DWI and abbreviated MRI (radiologist 1: 174/194 [89.7%]
vs. 184/194 [94.8%], respectively, p = 0.057; radiologist 2: 174/194 [89.7%] vs. 183/194 [94.3%],
respectively, p = 0.092). In both radiologists, abbreviated MRI showed a significantly higher lesion
conspicuity than fused DWI (radiologist 1: 9.37 ± 2.24 vs. 8.78 ± 3.03, respectively, p < 0.001;
radiologist 2: 9.16 ± 2.32 vs. 8.39 ± 2.93, respectively, p < 0.001). The κ value for the interobserver
agreement of index cancer detection was 0.67 on fused DWI and 0.85 on abbreviated MRI. For lesion
conspicuity, the intraclass correlation coefficients were 0.72 on fused DWI and 0.82 on abbreviated
MRI. Among the histopathological factors, tumor invasiveness was associated with cancer detection
on both fused DWI (p = 0.011) and abbreviated MRI (p = 0.004, radiologist 1), lymphovascular invasion
on abbreviated MRI (p = 0.032, radiologist 1), and necrosis on fused DWI (p = 0.031, radiologist 2).
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Conclusions: Index cancer detection was comparable between fused DWI and abbreviated MRI,
although abbreviated MRI showed a significantly better lesion conspicuity.

Keywords: breast cancer; cancer detection; lesion conspicuity; diffusion-weighted imaging; abbrevi-
ated magnetic resonance imaging

1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the most
sensitive method for detecting breast cancer [1–3]. However, in the breast screening setting,
access to DCE-MRI is relatively limited because of its prolonged inspection time, high cost,
and long interpretation time. Thus, abbreviated MRI, which consists of a first post-contrast
subtracted image and a maximum-intensity projection, is increasingly used in the clinical
setting [4,5]. However, gadolinium-containing contrast agents cannot be administered for
patients with renal dysfunction or previous adverse reactions to the contrast agents [6].
Many studies have documented the deposition and long-term retention of gadolinium
in the deep nuclei of the brain, particularly after repeated exposure to gadolinium-based
contrast agents [7–9]. For these reasons, non-contrast breast MRI with diffusion-weighted
imaging (DWI) is currently used in research aiming to utilize it for screening purposes [10–12].

DWI, an unenhanced MRI technique, is one of the few non-invasive imaging modali-
ties. It can evaluate microstructural data at the cellular level and enables the calculation of
the apparent diffusion coefficient (ADC) associated with changes in tissues and intracellular
structures [13,14]. DWI is useful for distinguishing between benign and malignant breast
lesions [15,16]. A recent study has reported that DWI can potentially detect breast cancer
and characterize breast lesions [17]. However, limitations in the clinical application of DWI,
caused by breast anatomy, high susceptibility to artifacts, low spatial resolution, and spatial
distortions, may result in decreased lesion conspicuity. [18]. These limitations can be over-
come by fused high-b-value DWI and T1-weighted imaging (T1WI), which can provide both
functional and anatomical information [19–21]. Shin et al. reported that fused high-b-value
DWI and unenhanced T1WI could replace DCE-MRI with DWI as a screening tool [12].
Eghtedari et al. demonstrated that DWI with a b-value of 1000 s/mm2 showed better
sensitivity for lesion detection [22]. Zhou, B. et al. reported that abbreviated MRI showed
high sensitivity and specificity for the diagnosis of breast cancer, compared to full-scanning
protocols [23]. However, few studies have compared the diagnostic performance of fused
high-b-value DWI using unenhanced T1WI with that of abbreviated post-contrast-enhanced
MRI [24,25]. Therefore, in the present study, we aimed to determine the percentage of
breast cancers detectable by fused diffusion-weighted imaging (DWI) using unenhanced
magnetic resonance imaging (MRI) and abbreviated post-contrast-enhanced MRI.

2. Materials and Methods
2.1. Case Descriptions

Our institutional review board approved this retrospective study and waived the
requirement for informed consent (IRB No. 05-2022-108). In a review of medical records
between October 2016 and October 2017 at our institution, we identified 409 consecutive
women with newly diagnosed unilateral breast cancer, who underwent preoperative breast
MRI with DWI and subsequent breast cancer surgery. For patients who underwent multiple
MRI examinations, only the first preoperative MRI was included. All MRI scans were
reviewed by a senior radiologist (with 16 years of experience in breast imaging), who
did not participate in this study. Moreover, 215 patients were excluded for the following
reasons: underwent 1.5 T MRI (n = 74), underwent neoadjuvant chemotherapy (n = 54),
underwent vacuum-assisted biopsy (n = 31), underwent excisional biopsy (n = 21), were
lost to follow-up (n = 14), and had poor-quality MR images (n = 21). Finally, 194 unilateral
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breast cancers were identified in 194 patients, who constituted the study population (mean
age, 54.2 years; range, 28–82 years) (Figure 1).
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2.2. MRI Acquisition

MRI was performed using a 3.0-T system (Magnetom Skyra; Siemens Healthineers,
Erlangen, Germany). A body radiofrequency coil was used for excitation, and a bilateral
breast coil (16-channel or 18-channel phased-array coil) was used as the receiver.

The MRI sequences included localizing, axial T2-weighted, axial diffusion-weighted,
sagittal T1-weighted (before and five times after contrast medium injection), and axial
T1-weighted (after dynamic enhancement) sequences.

Dynamic MRI was performed using a three-dimensional, fat-suppressed, volumet-
ric, interpolated breath-hold examination sequence with a parallel acquisition technique
(generalized autocalibrating partial-parallel acquisition (GRAPPA) factor 4) before and
five times after injecting a bolus of gadobutrol (0.1 mmol/kg, Gadovist; Bayer Schering
Pharma, Berlin, Germany) at a rate of 2 mL/s and a subsequent 20 mL saline flush; all
substances were administered using an automatic injector. Both breasts were examined in
the sagittal plane on five dynamic images acquired every 90 s after the contrast medium
injection. Additionally, subtraction images were obtained using pre- and post-contrast se-
ries to suppress the bright-fat signals. T1-volumetric interpolated breath-hold examination
(vibe) images were acquired with repetition time (TR), 6.35 ms; echo time (TE), 2.92 ms;
voxel size, 0.6 × 0.6 × 1.5 mm3; partition of slab, 224; flip angle, 24◦; fat-suppression, quick
fat sat technique; bandwidth, 330 Hz/pixel; plane, sagittal; and acquisition time, 90 s.

DWIs were acquired in the axial plane using the readout segmentation of long variable
echo-trains (resolve) technique with b-values of 0, 1000 s/mm2; TR/TE, 7500/63 ms; voxel
size, 2 × 2 × 4 mm3; number of acquisitions (NEX), 2; number of slices, 35; slice gap,
1.6 mm; number of readout segmentations, 7; diffusion mode, 3-scan trace; diffusion
scheme, monopolar; echo spacing, 0.38 ms; bandwidth, 620 Hz/pixel; acquisition plane,
axial; and acquisition time, 5 min 20 s. ADC maps were generated automatically using
b-values by scanner.

Pre-contrast T1-weighted sagittal images and axial diffusion-weighted images were
transferred to a post-processing workstation (Syngovia, version of VB10, Siemens Healthi-
neers) to generate sagittal fused images using a b-value of 1000 s/mm2.

2.3. Protocols of Fused High-b-Value DWI and Abbreviated MRI

The fused high-b-value DWI protocol consisted of sagittal fused images using a b-
value of 1000 s/mm2 on the axial DWI and pre-contrast T1-weighted sagittal image, as well
as axial, coronal, and sagittal DWI maximum-intensity projection (MIP) images.



Medicina 2023, 59, 1563 4 of 12

The abbreviated MRI protocol consisted of T1-weighted sagittal images acquired once
before and immediately after the contrast medium injection. These two image stacks were
subtracted from first post-contrast subtracted images. Axial, coronal, and sagittal MIP
images were reconstructed using the subtracted images.

2.4. Review Sessions

A senior radiologist identified the location of the index cancer on full dynamic contrast-
enhanced MRI before the analysis. Two breast radiologists with 6 and 2 years of experience
independently reviewed the fused high-b-value DWI and abbreviated MRI. During the
review of the 194 image sets, the two radiologists were informed that all the patients had
unilateral breast cancer. However, both radiologists were blinded to other clinical and
pathological findings. Each radiologist evaluated two sets of MRI data, including fused
high-b-value DWI and abbreviated MRI, according to the following criteria: detection
of index cancer that showed the most suspicious finding in bilateral breasts, laterality
(right vs. left), location (quadrant and subareolar area), lesion type on MRI (mass vs. non-
mass enhancement), lesion size, and lesion conspicuity, using a 10-point scoring system.
Scoring systems for lesion conspicuity were as follows: 2 (less than 25% of lesion borders
definable), poorly delineable; 4 (25–50% of borders definable), moderately delineable;
6 (50–75% of borders definable), well delineable; 8 (more than 75% of lesion borders
definable), excellently delineable; and 10 (100% of lesion borders definable), perfectly
delineable. Cancer detectability scoring was defined as 0 or 1: 0, cancer was not marked; 1,
cancer was correctly marked. Each radiologist reviewed the fused high-b-value DWI and
the abbreviated MRI two weeks later to reduce the effect of the previous dataset review
findings on subsequent review findings by the radiologist.

2.5. Pathologic Analysis

Histopathological information was acquired from pathology reports stored in the
electronic archives of our institution. The final histopathological results of the surgical
specimens were reviewed to determine the tumor type; invasiveness (invasive vs. in situ);
levels of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth
factor receptor 2 (HER-2), and Ki-67; presence of lymphovascular invasion; presence of
necrosis; presence of lymph node (LN) metastasis; and tumor size. Carcinoma in situ
was defined as the proliferation of malignant epithelial cells that had not breached the
myoepithelial layer. When malignant epithelial cells reached the basement membrane and
invaded the adjacent stroma to a depth of 1 mm, microinvasion was deemed to be present.
We classified the histopathological results of the surgical specimens into two groups based
on invasiveness, and cancers exhibiting microinvasion were classified as invasive.

2.6. Statistical Analysis

The chi-square test was used to compare the detection rates of index cancers between
fused high-b-value DWI and abbreviated MRI. A paired t-test was used to compare the
lesion conspicuity between fused high-b-value DWI and abbreviated MRI. The chi-square
test or Fisher’s exact test and the independent t-test were performed to ascertain the
difference in cancer detectability between fused high-b-value DWI and abbreviated MRI
based on the tumor type; invasiveness (invasive vs. in situ); levels of ER, PR, HER-2, and Ki-
67; presence of lymphovascular invasion; presence of necrosis; presence of LN metastasis;
tumor size; and lesion type on MRI. The κ statistic was used to determine the interobserver
agreement on index cancer detection for fused high-b-value DWI and abbreviated MRI.
Moreover, κ values of <0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and >0.80 were considered to
indicate poor, fair, moderate, good, and excellent agreement. In addition, the correlation
coefficient was calculated to quantify the interobserver agreement for lesion conspicuity.
According to Koo and Li, correlation coefficient values of <0.50, 0.50–0.74, 0.75–0.89, and
>0.90 were indicative of poor, moderate, good, and excellent agreement, respectively.
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Statistical analysis was performed using SPSS version 28.0 (IBM Corp., Armonk, NY, USA),
and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Breast Cancer Characteristics

The 194 study participants consisted of 161 patients with invasive ductal carcinoma,
15 with ductal carcinoma in situ (DCIS), 9 with mucinous carcinoma, 8 with invasive lobular
carcinoma, and 1 with invasive apocrine carcinoma. The 179 invasive cancer sizes ranged
from 0.1 to 12.5 cm, and the mean tumor size was 2.6 ± 1.62 cm. The 194 study participants
comprised 169 (87.1%) masses and 25 (12.9%) non-mass enhancement. Among the mass
lesions (n = 169), 131 (77.5%) masses were measured 2 cm or more, and 38 (22.5%) masses
were less than 2 cm. Forty (20.6%) cases showed multifocality.

3.2. Lesion Detection and Conspicuity

The detection rates of index cancers were higher on abbreviated MRI than on fused
high-b-value DWI; however, there was no significant difference in index cancer detection
between fused high-b-value DWI and abbreviated MRI (radiologist 1: 174/194 [89.7%] vs.
184/194 [94.8%], respectively, p = 0.057; radiologist 2: 174/194 [89.7%] vs. 183/194 [94.3%],
respectively, p = 0.092) (Table 1) (Figure 2).
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ER/PR/HER-2 (−/+/−). (A–D). Sagittal subtracted image using the first post-contrast image (A) and 
Figure 2. A 65-year-old woman with a 3.0 cm invasive ductal carcinoma in the right breast,
ER/PR/HER-2 (−/+/−). (A–D). Sagittal subtracted image using the first post-contrast image
(A) and sagittal maximum-intensity projection image (B) show a heterogeneous enhancing mass
in the upper outer quadrant of the right breast. Sagittal fused diffusion-weighted image (C) and
sagittal diffusion-weighted image with maximum-intensity projection (D) show an oval mass with
focal diffusion restriction in the right breast. ER = estrogen receptor, PR = progesterone receptor,
HER-2 = human epidermal growth factor receptor 2.
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Table 1. Index cancer detection and conspicuity on both fused high-b-value DWI using unenhanced
MRI and abbreviated post-contrast-enhanced MRI in patients with unilateral breast cancer.

Fused DWI ABMR p

Radiologist 1
Cancer detection (+), 174 (89.7) 184 (94.8) 0.057
Cancer detection (−), 20 (10.3) 10 (5.2)

Conspicuity 8.78 ± 3.03 9.37 ± 2.24 <0.001

Radiologist 2
Cancer detection (+), 174 (89.7) 183 (94.3) 0.092
Cancer detection (−), 20 (10.3) 11 (5.7)

Conspicuity 8.39 ± 2.93 9.16 ± 2.32 <0.001

For fused high-b-value DWI, 14 (7.2%) index cancers were missed by both radiologists,
6 (3.1%) were missed by radiologist 1, 6 (3.1%) were missed by radiologist 2, and 168
(86.6%) were detected by both radiologists. For abbreviated MRI, 9 (4.6%) index cancers
were missed by both radiologists, 1 (0.5%) was missed by radiologist 1, 2 (1.0%) were missed
by radiologist 2, and 182 (93.8%) were detected by both radiologists. Both radiologists
detected index cancers in five patients using abbreviated MRI; nevertheless, these cancers
were not detectable on fused high-b-value DWI by both radiologists. These cancers showed
a small size (≤1 cm), with persistent delayed enhancement on kinetic curve assessment
(n = 3), non-mass enhancement with persistent delayed enhancement, and high-diffusion
background signals (n = 2) (Figure 3) (Table 2).
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(86.6%) were detected by both radiologists. For abbreviated MRI, 9 (4.6%) index cancers 

were missed by both  radiologists, 1  (0.5%) was missed by  radiologist 1, 2  (1.0%) were 

missed by radiologist 2, and 182 (93.8%) were detected by both radiologists. Both radiol-

ogists detected index cancers in five patients using abbreviated MRI; nevertheless, these 

cancers were not detectable on fused high-b-value DWI by both radiologists. These can-

cers showed a small size (≤1 cm), with persistent delayed enhancement on kinetic curve 

assessment  (n = 3), non-mass enhancement with persistent delayed enhancement, and 

high-diffusion background signals (n = 2) (Figure 3) (Table 2). 

Figure 3. A 70-year-old woman with a 1.0 cm invasive ductal carcinoma in the right breast,
ER/PR/HER-2 (+/+/−). (A–D). Sagittal subtracted image using the first post-contrast image (A)
and sagittal maximum-intensity projection image (B) show irregular, spiculated, heterogeneously
enhancing mass in the upper outer quadrant of the right breast. Sagittal fused diffusion-weighted
image (C) and sagittal diffusion-weighted image with maximum-intensity projection (D) do not
show any diffusion restriction in the right breast. ER = estrogen receptor, PR = progesterone receptor,
HER-2 = human epidermal growth factor receptor 2.
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Table 2. Radiologic characteristics of five unilateral breast cancers detected on abbreviated post-
contrast-enhanced MRI, but not detected on fused high-b-value DWI by both radiologists.

Lesion Type
on MRI

Size on
MRI (cm)

Kinetic
Curve
Assessment

High-Diffusion
Background
Signals

Background
Parenchymal
Enhancement

Patient 1 Mass 1.0 Persistent (−) Minimal
Patient 2 Mass 1.0 Persistent (−) Minimal
Patient 3 Mass 0.8 Persistent (−) Minimal
Patient 4 NME 5.5 Persistent (+) Minimal
Patient 5 NME 6.5 Persistent (+) Minimal

MRI = magnetic resonance imaging, DWI = diffusion-weighted imaging, NME = non-mass enhancement.

Lesion conspicuity on abbreviated MRI was significantly higher than that on fused
high-b-value DWI for both radiologists (radiologist 1: 9.37 ± 2.24 vs. 8.78 ± 3.03, re-
spectively, p < 0.001; radiologist 2: 9.16 ± 2.32 vs. 8.39 ± 2.93, respectively, p < 0.001)
(Table 1).

3.3. Interobserver Agreement

Both radiologists showed good (κ = 0.67, 95% confidence interval [CI]: 0.49–0.84)
and excellent (κ = 0.85, 95% CI: 0.68–1.00) interobserver agreement based on index cancer
detection on fused high-b-value DWI and abbreviated MRI, respectively. Regarding lesion
conspicuity, the radiologists showed moderate (intraclass correlation coefficient [ICC] =
0.72, 95% CI: 0.64–0.78) and good (ICC = 0.82, 95% CI: 0.77–0.86) agreement on fused
high-b-value DWI and abbreviated MRI, respectively.

3.4. Relations of Cancer Detection with Histopathological and Radiological Factors

The higher detection rate of index cancers was associated with tumor invasiveness on
both fused high-b-value DWI and abbreviated MRI (p = 0.011 and p = 0.004, respectively;
radiologist 1). For radiologist 2, tumor invasiveness (92.3%) was associated with the cancer
detection rate on abbreviated MRI (p = 0.043), but not on fused high-b-value DWI (p = 0.190).
Lymphovascular invasion on abbreviated MRI (32.0%, p = 0.032; radiologist 1) and necrosis
on fused high-b-value DWI (37.1%, p = 0.031; radiologist 2) were associated with breast
cancer detection. There were no significant differences in cancer detection based on the
levels of ER, PR, HER-2, and Ki-67; presence of LN metastasis; tumor size; and lesion type
on MRI (Table 3).

Among the mass lesions, there were a total of 38 masses smaller than 2 cm, with
radiologist 1 detecting 36 (94.7%) on abbreviated MRI and 33 (86.8%) on fused high-b-
value DWI. Of the 131 masses that measured 2 cm or more, 127 (96.9%) masses were
detected on abbreviated MRI, and 124 (94.7%) were detected on fused high-b-value DWI
by radiologist 1. The detection rate of index cancers was not associated with tumor size on
both abbreviated MRI and fused high-b-value DWI (p = 0.517 and p = 0.099, respectively).
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Table 3. Characteristics of 194 unilateral breast cancers and the relationship of breast cancer detec-
tion rates between fused high-b-value DWI and abbreviated MRI, based on histopathological and
radiological factors.

Parameter
Number (%)
of Participants
(n = 194)

Radiologist 1 Radiologist 2

Fused DWI (+)
(n = 174)

ABMR (+)
(n = 184)

Fused DWI (+)
(n = 174)

ABMR (+)
(n = 183)

Invasiveness
Invasive 179 (92.3) 164 (94.3) 173 (94.0) 162 (93.1) 171 (93.4)
In situ 15 (7.7) 10 (5.7) 11 (6.0) 12 (6.9) 12 (6.6)

p 0.011 2 0.004 2 0.190 2 0.043 2

ER
Positive 149 (76.8) 131 (75.3) 141 (76.6) 131 (75.3) 140 (76.5)
Negative 45 (23.2) 43 (24.7) 43 (23.4) 43 (24.7) 43 (23.5)

p 0.171 2 1.000 2 0.171 2 1.000 2

PR
Positive 127 (65.5) 112 (64.4) 120 (65.2) 112 (64.4) 120 (65.6)
Negative 67 (34.5) 62 (35.6) 64 (34.8) 62 (35.6) 63 (34.4)

p 0.344 1.000 2 0.344 1.000 2

HER-2
Positive 39 (20.1) 37 (21.3) 38 (20.7) 37 (21.3) 38 (20.8)
Negative 155 (79.9) 137 (78.7) 146 (79.3) 137 (78.7) 145 (79.2)

p 0.376 2 0.690 2 0.376 2 0.697 2

Ki-67
≥14% 108 (55.7) 100 (57.5) 102 (55.4) 98 (56.3) 101 (55.2)
<14% 86 (44.3) 74 (42.5) 82 (44.6) 76 (43.7) 82 (44.8)

p 0.136 1.000 2 0.590 0.758 2

Lymphovascular invasion
Positive 62 (32.0) 59 (33.9) 62 (33.7) 58 (33.3) 61 (33.3)
Negative 132 (68.0) 115 (66.1) 122 (66.3) 116 (66.7) 122 (66.7)

p 0.086 0.032 2 0.226 0.179 2

Necrosis
Positive 72 (37.1) 67 (38.5) 69 (37.5) 69 (39.7) 69 (37.7)
Negative 122 (62.9) 107 (61.5) 115 (62.5) 105 (60.3) 114 (62.3)

p 0.236 0.747 2 0.031 0.749 2

LN metastasis
Positive 67 (34.5) 64 (36.8) 66 (35.9) 63 (36.2) 65 (35.5)
Negative 127 (65.5) 110 (63.2) 118 (64.1) 111 (63.8) 118 (64.5)

p 0.052 0.169 2 0.149 0.336 2

Tumor size (Invasive only)
(cm)

2.6 ± 1.62
(range 0.1–12.5) 2.70 ± 1.62 2.68 ± 1.58 2.67 ± 1.59 2.72 ± 1.59

p 0.061 1 0.588 1 0.605 1 0.127 1

Lesion type
on MRI

Mass 169 (87.1) 152 (87.3) 162 (88.0) 154 (88.5) 161 (88.0)
Non-mass enhancement 25 (12.9) 22 (12.7) 22 (12.0) 20 (11.5) 22 (12.0)

p 0.765 0.097 0.087 0.142

Data are mean ± standard deviation or patient number (%). 1 Calculated using t-tests. 2 Calculated using
Fisher’s exact tests. DWI = diffusion-weighted imaging, MRI = magnetic resonance imaging, ABMR = abbreviated
magnetic resonance imaging, ER = estrogen receptor, PR = progesterone receptor, HER-2 = human epidermal
growth factor receptor-2, LN = lymph node.

4. Discussion

In this study, fused high-b-value DWI and abbreviated MRI showed comparable lesion
detection rates, although fused high-b-value DWI showed a lower lesion conspicuity.
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DWI is an unenhanced MRI technique that has been used for the detection and
characterization of breast cancer, requiring only two or three minutes [26]. Many occult
breast cancers detected on DCE-MRI are also visible on DWI; therefore, it could be used
as an alternative tool to avoid safety problems, to reduce the cost issues associated with
gadolinium injection, and to avoid the longer scanning time of DCE-MRI [27]. For breast
index cancer detection, there was no significant difference between fused high-b-value DWI
and abbreviated MRI in this study. Likewise, in one recent study, the sensitivity/specificity
of unenhanced abbreviated MRI based on DWI to detect breast cancers with less than 2 cm
in diameter was comparable to that of post-contrast abbreviated MRI for breast cancer
populations (reader 1: 89.9/97.6% and 95.5/90.6%, respectively; reader 2: 95.5/94.1% and
98.9/94.1%, respectively) [25]. Another recent study by Kim et al. reported unenhanced
abbreviated MRI with DWI for detecting breast cancers was comparable to that of a post-
contrast abbreviated MRI protocol. The sensitivity/specificity of post-contrast abbreviated
MRI and qualitative and quantitative analyses of abbreviated DWI were 94.6%/94.2%,
84.8%/97.7%, and 87.0%/98.8%, respectively [28]. Based on these results, fused high-b-
value DWI could be proposed as a promising detection tool for breast cancer.

Although fused high-b-value DWI showed comparable lesion detectability, its lesion
conspicuity was lower than that of abbreviated MRI in our study. For DWI, the intravoxel
partial volume of the unsuppressed fat signal causes measurement reduction, and can
ultimately limit lesion conspicuity [29]. Chen et al. reported that the lesion conspicuity
of DWI is not significantly influenced by varying the maximum b-value from 600 to
1000 s/mm2 (p = 0.303 and 0.840 for malignant and benign lesions, respectively) and is
not different in conspicuity grades when compared among the three (600, 800, and 1000)
b-values (p = 0.072) [30]. Likewise, we used a b-value of 1000 for fused DWI in this study,
and the lesion conspicuity was lower than that of abbreviated MRI. For overcoming these
limitations, computed higher-b-value images are needed in MRI protocols for breast cancer
patients. One recent study revealed that the overall conspicuity of breast cancers on DWI is
maximized using b-values ranging from 1200 s/mm2 to 1400 s/mm2 [31].

In our study, five cancers were detected using abbreviated MRI; however, these were
not detected on fused high-b-value DWI by both radiologists. There were three mass lesions
among these cancers, all of which showed a small size (≤1 cm). Kazama et al. reported
a lower DWI sensitivity for the detection of cancers <1 cm (59%) than for the detection
of cancers ≥1 cm (93%) [32]. This might be due to the partial volume effect of DWI itself.
Better gradient and receiver coils could improve the spatial resolution and improve the
sensitivity for small lesions.

Invasive cancer showed a higher detection rate than carcinoma in situ on both fused
high-b-value DWI and abbreviated MRI. More than half of DCIS (8/15, 53.3%) presented
non-mass enhancement, which was affected by limited spatial resolution on DWI [33,34].
Furthermore, DCIS showed less angiogenesis and proliferation than invasive cancers,
which could affect the uptake of contrast media [35]. Our study showed that lympho-
vascular invasion was associated with breast cancer detectability on abbreviated MRI.
Lymphovascular invasion is a prognostic factor for poor clinical outcomes in patients with
breast cancer [36,37]. Cheon et al. demonstrated that the adjacent vessel sign was more
frequently found in patients with than without lymphovascular invasion [36]. In our study,
prominent adjacent vessels were noted in many abbreviated MRIs, which were helpful for
the detection of breast cancer. In addition, tumor necrosis was associated with the breast
cancer detection rate on fused high-b-value DWI. According to Geschwind et al., DWI can
be used to distinguish viable tumor cell zones from necrotic tumor zones. When tumor cells
are viable, the cell membranes are intact and can restrict the diffusion of water molecules.
Conversely, when tumor cells die, their membranes are broken and can no longer restrict
the diffusion of water molecules. In this setting, water molecules are free to circulate within
the tumor, and, thus, the signal intensity decreases in the necrotic portion of the tumor
more than in the viable region [38]. The signal intensity difference between the necrotic
and viable portions of the tumor might be helpful in detecting breast cancer on DWI.
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This study has several limitations. First, it was a retrospective, single-center study
conducted at a tertiary academic institution; thus, there might have been a selection bias.
Second, this study was conducted in a cancer-only population, which might differ from
the real-world setting. Although the radiologists were blinded to the DCE-MRI data, they
knew that all participants were patients with breast cancer. This might have resulted in an
overestimation of DWI performance. Third, all the patients had unilateral breast cancer.
If the study included patients with bilateral breast cancer, the breast cancer detection rate
might have been affected by the comparison with the other breast. Fourth, this study is
focused on mainly index cancer detection. In the real-world setting, additional suspicious
lesions are often detected through MR imaging, which can yield a different result of the
diagnostic performance. Fifth, the p-values for cancer detection between fused high-b-
value DWI using unenhanced MRI and abbreviated post-contrast-enhanced MRI were
not statistically significant (p = 0.057 for radiologist 1, p = 0.092 for radiologist 2). Despite
considering the possibility of increasing the cohort size, this study was limited by its
predefined timeline from October 2016 to October 2017. Finally, all MRI examinations were
performed after core needle biopsy, and, therefore, procedure-related changes, such as
subacute hematoma, might have affected the cancer detectability on fused high-b-value
DWI.

5. Conclusions

In conclusion, fused high-b-value DWI and abbreviated MRI showed a compara-
ble index cancer detectability, although abbreviated MRI showed a significantly better
lesion conspicuity, indicating the potential application of fused high-b-value DWI using
unenhanced MRI as an alternative to abbreviated post-contrast-enhanced MRI.
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