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Abstract: Background and Objectives: Diagnosis of dementia subtypes caused by different brain patho-
physiologies, particularly Alzheimer’s disease (AD) from AD mixed with levels of cerebrovascular
disease (CVD) symptomology (AD-CVD), is challenging due to overlapping symptoms. In this pilot
study, the potential of Electrovestibulography (EVestG) for identifying AD, AD-CVD, and healthy
control populations was investigated. Materials and Methods: A novel hierarchical multiclass diag-
nostic algorithm based on the outcomes of its lower levels of binary classifications was developed
using data of 16 patients with AD, 13 with AD-CVD, and 24 healthy age-matched controls, and
then evaluated on a blind testing dataset made up of a new population of 12 patients diagnosed
with AD, 9 with AD-CVD, and 8 healthy controls. Multivariate analysis was run to test the between
population differences while controlling for sex and age covariates. Results: The accuracies of the
multiclass diagnostic algorithm were found to be 85.7% and 79.6% for the training and blind testing
datasets, respectively. While a statistically significant difference was found between the populations
after accounting for sex and age, no significant effect was found for sex or age covariates. The best
characteristic EVestG features were extracted from the upright sitting and supine up/down stimulus
responses. Conclusions: Two EVestG movements (stimuli) and their most informative features that
are best selective of the above-populations’ separations were identified, and a hierarchy diagnostic
algorithm was developed for three-way classification. Given that the two stimuli predominantly
stimulate the otholithic organs, physiological and experimental evidence supportive of the results are
presented. Disruptions of inhibition associated with GABAergic activity might be responsible for the
changes in the EVestG features.

Keywords: feature selection; diagnostic algorithm; Electrovestibulography; Alzheimer’s disease;
cerebrovascular pathology; gamma-aminobutyric acid

1. Introduction

Dementia is a progressive clinical syndrome, describing an array of brain disorders
with debilitating cognitive and behavioral impairments [1]. Diagnosis of dementia is
based on clinical symptoms, i.e., medical history, neuropsychiatric and neuropsychological
assessments as well as brain imaging results and genetic tests [1,2]. Alzheimer’s disease
(AD) and vascular dementia (VaD) are the most common types of dementia, and make
up to around 60% and 30% of all cases, respectively [3]. Given that the chance to develop
cerebrovascular disease (CVD) increases with age [4], AD patients often present with
varying levels of CVD symptomology, and are considered as a dementia subtype called AD-
CVD [5–7]. Differential diagnosis of AD and AD-CVD is challenging due to overlapping
symptomologies [1,2]. Currently, brain autopsy is the only way to confirm dementia and
its subtypes [8].
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AD and AD-CVD have commonalities but also differences in their characteristics,
which may both hinder and help their separation. Given that the AD-CVD pathology
sits in the continuous spectrum between AD and VaD, and due to the involvement of
cerebrovascular pathology, i.e., cerebrovascular lesions/blood flow reductions, AD-CVD
has been found to be associated with a more rapid cognitive decline that often ends in
a more severe form of dementia than predominant AD pathology [9,10]. On the other
hand, AD-CVD pathology has been associated with a lower burden of Amyloid-β (Aβ)
pathology than dementia with AD predominance [11,12], suggesting the presence of less
AD pathology in AD-CVD compared to that in AD patients [13,14]. Regardless of the
difference in origins, AD and AD-CVD both demonstrate neurodegenerative pathology,
which makes their distinction complex due to similar symptoms, specifically, at early stages
of the disease. While there are accepted criteria to diagnose AD and VaD [2,6,15], there is
little consensus for the diagnosis of AD-CVD (mixed pathology) [16].

A common clinical method to identify AD, AD-CVD, and VaD cases is using the
Hachinski ischemic score (HIS) [7,17]. A change in score range cut off for AD to 3 rather
than 4 in HIS, i.e., modified HIS, improved the classification accuracy to 78.8% (from
73.3%) when AD was compared to a combined population of VaD and AD-CVD [18].
Another scale, the National Institute of Neurological Disorders and Stroke–Association
Internationale pour la Recherche et l’Enseignement en Neurosciences (NINDS-AIREN)
scale, identifies VaD (but not AD-CVD) cases more accurately compared to HIS by including
the imaging results, which is the main limitation of HIS [6]. Nevertheless and to the best
of our knowledge, no highly accurate separation of AD from AD-CVD (alone and not
pooled with VaD) has been presented [19–21]. Presumably, mixed Alzheimer’s, including
AD-CVD, is considered as a category for underdiagnosed cases, and its diagnosis has an
important clinical and prognostic value [16,19,22,23].

Electrovestibulography (EVestG), a non-invasive technique that detects vestibulo-
acoustic neural activities [24], has shown promising results in the identification of various
neurodegenerative [25,26], vertiginous [27–29], and neuropsychiatric disorders [30]. Given
the extensive direct and indirect links between neuropathologies associated with demen-
tia and the vestibular system [31,32], the distinct impact of AD and AD-CVD has been
investigated using EVestG data [31,33]. Analysis of EVestG signals in response to some
of its stimuli, as well as using the Montreal Cognitive Assessment (MoCA) score as one
of the features, showed >80% accuracy in separating AD from AD-CVD and/or from
age-matched healthy controls in our previous studies [31,34]. However, EVestG signals of
the entire stimuli were not investigated [31]. Additionally, the time interval histogram (IH)
of the detected field potentials (FPs), in addition to the average of spontaneous and driven
vestibular FPs (FPave), were not considered in the previous studies [34]. In this study, the
potential of EVestG for identifying AD, AD-CVD, and healthy control populations was
investigated using both FP and IH characteristic curves of the EVestG signal in response to
the entire stimuli. A novel hierarchy diagnostic algorithm based on the binary classification
outcomes of its lower levels was developed and evaluated.

Low frequency range (proximal to 10 Hz) modulations of IH signals are hypothesized
to occur in response to vestibular efferent or α band activity [35]. Spontaneous vestibular
efferent activity is seen at 10–50 spikes/s [36] and the α band range is 8–13 Hz. As
the experimental average detected gap between every two FPs is ~3.3 ms, a 33 FP gap
approximately corresponds to about 100 ms (10 Hz). Thus, the normalized histogram
of the time intervals between each 33 FPs (called the IH33 signal) could be of value to
investigate for features. EVestG studies showed that the IH33 signal is shifted over the
range of frequency depending on the pathology [25,35].

Furthermore, imaging studies showed AD biomarkers at an early stage are associated
with decreased gamma-aminobutyric acid (GABA) interneurons signaling rather than
cholinergic or glutamatergic dysfunction, i.e., due to Aβ and, particularly, Aβ oligomers
(AβO) pathology [23,37–40]. Given that GABA could act as a facilitator in the spontaneous
and driven discharge of the vestibular afferents, decreased GABAergic inhibitory function
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may lead to the defacilitation of/reduction in afferent discharges [41,42]. Thus, an AD fea-
ture sensitive to changes in the afferents’ firing pattern could be investigated. Accordingly,
the IH33 curve of the AD population is speculated to shift to the lower frequency range or
longer time intervals.

Conversely, studies have shown that the decrease in the cerebrovascular blood flow
in animals and humans significantly increases the neuronal inhibition and GABAergic
activity [43,44]. This was suggested as a mechanism to reduce the cell injury and enhance
the tolerance of neurons to the ischemic and hypoxic condition [45]. Increased synaptic
inhibition promotes synchrony of spiking among interneurons and between groups of
excitatory neurons [42,46], while it also reduces slow timescale activity in a large population
of neurons [47–49]. Moreover, a reduction in the blood flow to the vestibular periphery as a
result of CVD leads to excitation of the vestibular nuclei, and via the efferent feedback loop,
results in modulatory excitation of the vestibular afferents [50]. Based on these findings,
we hypothesize that the IH33 curve of the AD-CVD population will shift to the higher
frequency range or shorter time intervals compared to that of the AD group.

The main contribution of this paper is developing a novel hierarchy diagnostic al-
gorithm based on the binary classification outcomes using unbiased features of the IH33
and FPave curves of selected EVestG stimuli. While this work is conceptually similar to
our previous studies, here we propose a general hierarchical diagnostic algorithm for the
separation of AD, AD-CVD, and controls using features of EVestG signals selected through
an unbiased selection without any prior assumption(s).

2. Materials and Methods
2.1. Participants

EVestG data were collected either from the participants who were enrolled in one of
the two clinical trial studies for monitoring and treatment of different types of dementia, or
from healthy volunteers. From these, data of 16 individuals with AD, 13 with AD-CVD,
along with data of 24 healthy controls, which were used in our previous study [34], were
adopted for feature extraction, feature selection, and building the classification model.
Additionally, the new data of 12 individuals with AD, 9 with AD-CVD, and a maximum of
8 healthy controls were acquired and used as a blind testing dataset. The healthy partici-
pants were carefully selected to be free of any significant cerebrovascular disease symp-
tomology, particularly when compared to the AD-CVD population. Thus, two control
participants were excluded from the test dataset versus the AD-CVD population (due to
having focal neurologic signs).

All participants signed a consent form approved by the Biomedical Research Ethics
Board of University of Manitoba prior to being enrolled in the study. The dementia subtype
diagnosis was determined by medical specialists (neurologists and neuropsychiatrists)
through several visits using clinical assessments and brain imaging results, i.e., magnetic
resonance imaging (MRI) and/or positron emission tomography. All the diagnosed AD-
CVD individuals also met the NINDS-AIREN criteria for “AD with CVD” [6]. All the
diagnosed individuals were assessed based on the modified HIS [17,18], similar to our
recent studies [31,34], using their full diagnostic reports (Table 1).

The participants went through a screening hearing test, MoCA [51], and Montgomery–
Asberg Depression Rating Scale (MADRS) [52] before EVestG recording. Table 1 lists the
participants’ demographics. Except for one healthy control participant with a moderate
MADRS score (22 out of 60), none of the participants had any significant depression at the
time of testing.
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Table 1. Control, Alzheimer’s disease (AD), and AD mixed with levels of cerebrovascular disease
(CVD) symptomology (AD-CVD) study participants’ demographics.

Age
(µ ± SD) Sex MoCA

(µ ± SD)
Modified HIS
(µ ± SD)

MADRS
(µ ± SD)

Control, N = 24 65.3 ± 7 9 M 27.6 ± 1.7 - 2.6 ± 5.7
AD, N = 16 72.5 ± 7.5 11 M 16.4 ± 4.8 1.8 ± 1.2 1.9 ± 2.8
AD-CVD, N = 13 75.8 ± 7.3 9 M 17 ± 4.4 5.6 ± 1.4 3.1 ± 4
Blind testing AD, N = 12 67.2 ± 7.1 9 M 16 ± 6.7 1.3 ± 1.3 4.7 ± 4.7
Blind testing AD-CVD, N = 9 71.3 ± 7.7 6 M 16.8 ± 6.7 4.6 ± 1 2.2 ± 3.6
Blind testing controls:

- N = 8 used vs. AD 69.4 ± 5 4 M 26 ± 2.5 - 4 ± 3.4

- N = 6 used vs. AD-CVD 69.8 ± 4.1 3 M 27 ± 1.8 - 3 ± 3.2

(µ ± SD) values represent mean ± standard deviation.

2.2. Electrovestibulography (EVestG)

The detailed methodology for EVestG recordings has previously been presented in [24].
In brief, gelled wick cotton wool tip active and reference electrodes are placed bilaterally
proximal to the tympanic membrane and on the outer ear canal, respectively (Figure 1a). A
common electrode is placed on the forehead. While seated on a hydraulic chair (Figure 1b)
inside an anechoic chamber, in a relaxed state and with eyes closed, the participant’s ears
signals are recorded in response to seven different tilting stimuli (Figure 1c) as follows:
(a) 15 cm up/downward translation, while the participant is either in the upright sitting
position (up/down tilt) or in the supine position (supine up/down tilt); (b) 40-degree
rotation to the right side, either in the upright sitting position (rotation tilt) or in the supine
position (supine rotation tilt); (c) 40-degree back/forward tilting in the upright sitting
position (back/forward tilt); and (d) 40-degree tilting to the right side in the upright sitting
position (ipsilateral right and contralateral left tilts), back to the center, and then 40-degree
tilting to the left side in the upright sitting position (ipsilateral left and contralateral right
tilts). The ipsilateral and contralateral tilts are abbreviated as IT and CT.

In each tilt, the chair returns to the center before starting another tilt. In every tilt, the
chair movement has stationary (background or BGi), acceleration (OnAA), and deceleration
(OnBB) phases that each take 1.5 s (Figure 1d). Corresponding to these phases and in each
tilt, six 1.5 s segments of recorded EVestG signal are selected for each right/left ear as BGi,
OnAA, OnBB, return to center (RTC) BGi, RTC OnAA, and RTC OnBB segments. The
selected segments are analyzed offline via the Neural Event Extraction Routine (NEER
V5.1) program [24], which detects and averages spontaneous and driven vestibular FPs to
produce FPave. It also detects the time of occurrence of each FP and generates a normalized
time interval histogram based on every 33rd detected FP (Figure 1e), i.e., ~100 ms time
interval, named as IH33 (Figure 1f), during both static and dynamic conditions. It con-
sists of 25 logarithmically spaced bins spanning the time interval or the frequency range
(f = 1/time). The IH33 signal is used to focus on the low-frequency modulation of the
FPs’ firing pattern proximal to 10 Hz, which is hypothesized to be linked to the alpha
band [35] and the lower end of vestibular efferent activity [36]. All the recordings were
carried out at the EVestG lab, Riverview Health Center, Winnipeg, Manitoba, Canada.
As the discriminative features in relation to the FPave signal were already selected in our
previous study [34], here we explain the IH33 feature selection procedure and then use of
the final selected features to develop the hierarchy diagnostic algorithm.

The noisy IH33 signals that occurred due to muscle artifacts, poor electrode placement,
or jittery movement of the chair were checked manually and removed from the analysis
(approximately 5% of the IH33 signals). Typically, IH33 signals corresponding to the
following conditions were excluded if: (i) the registered times of occurrence of the detected
FPs did not produce a smooth curve versus the FPs’ number (similar to a stepwise rather
than a semi-linear curve); (ii) the number of registered FPs was less than 350 or the times of
occurrence of FPs spanned below 97% of the recorded segment duration (i.e., below 1.46 s
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compared to 1.5 s); or (iii) the shape of the IH33 signal looked like a bimodal histogram
rather than a normal one with the smaller peak exceeding more than 10 percent of the
population.

Medicina 2023, 59, x FOR PEER REVIEW  5  of  24 
 

 

 

Figure 1. Electrovestibulography (EVestG) recording system and frequency response plot generated 

by  the  interval histogram of every 33rd detected  field potential  (IH33).  (a) Active and  reference 

electrode placement. (b) Hydraulic chair inside the anechoic room. (c) Chair position and velocity 

profiles during movement. (d) Chair entire movement pattern. (e) IH33 generation process. (f) A 

typical normalized IH33 (time = 1/f). 

In each tilt, the chair returns to the center before starting another tilt. In every tilt, the 

chair  movement  has  stationary  (background  or  BGi),  acceleration  (OnAA),  and 

deceleration (OnBB) phases that each take 1.5 s (Figure 1d). Corresponding to these phases 

and in each tilt, six 1.5 s segments of recorded EVestG signal are selected for each right/left 

ear  as  BGi, OnAA, OnBB,  return  to  center  (RTC)  BGi,  RTC OnAA,  and  RTC OnBB 

segments. The  selected  segments are analyzed offline via  the Neural Event Extraction 

Routine (NEER V5.1) program [24], which detects and averages spontaneous and driven 

vestibular  FPs  to produce  FPave.  It  also detects  the  time  of  occurrence of  each  FP  and 

generates a normalized time interval histogram based on every 33rd detected FP (Figure 

1e), i.e., ~100 ms time interval, named as IH33 (Figure 1f), during both static and dynamic 

conditions. It consists of 25 logarithmically spaced bins spanning the time interval or the 

frequency  range  (f  =  1/time).  The  IH33  signal  is  used  to  focus  on  the  low‐frequency 

modulation of  the FPs’  firing pattern proximal  to 10 Hz, which  is hypothesized  to be 

linked to the alpha band [35] and the lower end of vestibular efferent activity [36]. All the 

Figure 1. Electrovestibulography (EVestG) recording system and frequency response plot generated
by the interval histogram of every 33rd detected field potential (IH33). (a) Active and reference
electrode placement. (b) Hydraulic chair inside the anechoic room. (c) Chair position and velocity
profiles during movement. (d) Chair entire movement pattern. (e) IH33 generation process. (f) A
typical normalized IH33 (time = 1/f).

2.3. Signal Analysis

Figure 2 demonstrates a summary of the proposed approach for classification. The
IH33 signals from every tilt were analyzed separately. Each tilt included IH33 signals
of the six aforementioned segments for each (left/right) ear. Moreover, IH33 signals of
the background segments (BGi or RTC BGi) of each ear, which were either in the upright
sitting position (7 segments) or in the supine position (4 segments), were averaged to be
used in the upright sitting or the supine tilt, respectively. These IH33 signals are named
as “Upright average” and “Supine average” IH33 signals. Additionally, summation and
subtraction (asymmetry) of the left and right ear BGi or RTC BGi IH33 signals were included
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in the analysis (“LR” and “L-R” were added to the label for summation and subtraction,
respectively).
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Figure 2. A summary of the proposed approach for classification.

Having data of seven different tilts from three populations (AD, AD-CVD, and Con-
trol), an unbiased feature extraction method, similar to our previous study (for a one-vs.-one
classification approach [34]) was conducted. Thus, 21 binary classifiers, i.e., seven Control-
vs.-AD, seven AD-vs.-AD-CVD, and seven AD-CVD-vs.-Control classifiers, were designed.
The procedure for each binary classification is presented below.

2.4. Feature Extraction

To extract characteristic unbiased features from IH33 signals, subsets of the training
data were selected as training sets by randomly leaving 20% of the training data of every
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population out for testing. For binary classification, the minimum number of selected
training sets for which all of the training data were used in a “left-out” set at least once
was equal to 25 (5 × 5). Considering the small training dataset and to improve the sta-
bility of the outcome features, the number of random training sets was chosen as 1600
(40 × 40). In each training set, the standard error bands around the averaged IH33 signals
of the two groups were searched for any mutual separation (i.e., the separation occurred
if the lower standard error band of one group had higher values compared to the upper
standard error band of the other group in time/frequency bins). In case of separation,
and thus moving the standard error bands of the averaged IH33 signals of the two groups
away from each other, two possible time/frequency regions at either side of the crossing of
the two averaged IH33 signals were identified. The feature was computed as the average
values of the bins of one region subtracted from those of the other region to magnify the
shift in the IH33 signals. It is worth noting that the values of the first and last two bins,
as well as the three bins corresponding to the peak value of the IH33 average signal of
the two groups, were excluded as they were susceptible to noise (due to insignificant
large differences in variance). Then, based on the normality test result calculated by the
Shapiro–Wilk Normality test [53], either the non-parametric Wilcoxon–Mann –Whitney
test [54] or the Unpaired t-test [55] was applied on the feature. If a feature was found to
be significant (p-value < 0.05), it was saved as a selected feature in the training set. As the
number of extracted features in each training set was large, feature reduction and selection
were performed similar to the approach in [34] and summarized as follows:

2.5. Feature Reduction and Selection

In each training set and after imputation of the missing values, feature reduction was
performed based on selecting (maximum of three) feature combinations, which resulted
in the highest classification accuracy using supervised support vector machine (SVM)
classification [56] in an exhaustive search scheme. In cases where the feature sets had the
same classification accuracy, the feature set with the lowest number of missing values was
selected (please find the detailed information of feature reduction in the Supplementary
File of [34]). Assuming the first and second classes in a binary classification as the positive
and negative classes, respectively, the classification accuracy in a binary classification was
calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative
cases, respectively.

Using the reduced feature set in every training set, a supervised 10-fold cross-validation
SVM classification was applied and the averaged training and testing performances were
calculated. Then, the feature set that yielded the highest test accuracy and its features that
were the most frequently repeated ones among the selected features across all the training
sets was selected. Since the identified region(s) of the IH33 signal for the repeated features
varied due to difference in the training set, the region(s) that was present for more than
50% of the repetitions, herein named as the common region(s), was selected to be used in
the final classification. Given that the total number of possible training sets was larger than
what was generated, the procedures of feature extraction, reduction, and selection were
repeated three times with different random training sets to test if similar final features were
selected. This stage ensures that the number of shuffles of the training data (training sets)
is enough to be representative of the entire training dataset and to prevent overfitting of
the classification model.

2.6. Binary Classification

The selected features were recalculated based on their common region(s), and missing
data were imputed for the entire dataset. The features were Z-score normalized before
and after imputation. Then, a 10-fold cross-validation SVM classification was applied
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and the averaged training and testing performances were calculated. In every binary
classification (Control-vs.-AD, AD-vs.-AD-CVD, or AD-CVD-vs.-Control), the tilts for
which their selected features yielded ≥75% averaged test accuracy were chosen as the most
informative ones in relation to using the IH33 signal in that classification.

In order to find the most informative features among the top IH33 and FPave selected
features across all the tilts, the IH33 features of the most informative tilt(s) were pooled
with the top FPave selected features of our previous work [34]. Then, the above feature
reduction, selection, and classification were applied on the entire pooled features. It is
noteworthy that, at this stage, the features of the training sets were known; thus, no feature
extraction was needed. The most informative selected features of each classifier were then
used in a 5-fold (as the blind test set was smaller) cross-validation SVM classification for
the blind testing dataset and the averaged performances were computed.

2.7. Diagnostic Hierarchy Algorithm

Given the three SVM binary classifiers and using the approximated posterior probabil-
ities of an SVM model via the Platt scaling method [57], six probabilities were calculated for
each participant. Every two of these probabilities identified the extent to which a partici-
pant belonged to either of the two groups out of the three populations, i.e., Control (C), AD,
or AD-CVD. Additionally, the averaged sensitivity and specificity of the binary classifiers
on the training data were incorporated as a weighting coefficient to the above probabilities.
This helps in accounting for the binary classifier that had a higher classification result. Then,
the weighted averages of the two probabilities for each group were calculated and used as
a score that showed the degree of assignment of a participant to that group. Finally, the
three scores for every participant (score of being identified as AD, AD-CVD, and C) were
normalized to represent a probability measure. As an example, the following formulas
show the calculation of the normalized score (probability measure) of a participant as a
control subject:

ScoreC = Average
{

PCC−vs−AD ×WCc−vs−AD + PCAD−CVD−vs−C ×WC AD−CVD−vs−C
}

(2)

Normalized ScoreC = ScoreC/(ScoreC + ScoreAD + ScoreAD−CVD) (3)

where PCC−vs−AD and PCAD−CVD−vs−C are the probabilities of a participant to be identified as
a control in the “Control-vs.-AD” and “AD-CVD vs. Control” classifiers, respectively. In
addition, WCc−vs−AD is the averaged sensitivity of the “Control-vs.-AD” binary classifier,
and WC AD−CVD−vs−C is the averaged specificity of the “AD-CVD vs. Control” binary
classifier. The sensitivity and specificity of the binary classifiers were calculated as follows:

Sensitivity =
TP

TP + FN
(4)

Speci f icity =
TN

TN + FP
(5)

Moreover, the MoCA score was used (as in [31]) to increase the three-way classification
accuracy by separating healthy cognitive aging from a spectrum of cognitively impaired
participants (control versus patient). A recent meta-analysis revealed that a MoCA cutoff
score of 23 lowers the false positive rate (i.e., falsely identifying a participant as a cognitively
impaired individual) and shows an overall better diagnostic accuracy [58]. Consequently,
if a participant’s MoCA score was 23 or below, which implies the participant’s cognitive
impairment, the participant was classified to either the AD or AD-CVD group depending
on which of the two normalized scores was higher. On the other hand, participants with
MoCA scores above 23 were classified to one of the three groups (Control, AD, or AD-CVD),
based on which of their computed normalized scores was the highest. Figure 3 shows the
flow chart of the diagnostic hierarchy algorithm for the three-way classification. The final
selected features and classification performances are reported in the Results section.
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Figure 3. Flow chart of the three-way classification. Depending on the subject’s Montreal Cognitive
Assessment (MoCA) score, either of the two grey-color-filled parallelograms determines the classifica-
tion result. The test subject is classified to the population group in which it achieved a higher/highest
normalized score.

2.8. Statistical Analysis

One-way multivariate analysis of covariance (MANCOVA) was conducted on the
final selected most informative features of the Control-vs.-AD, AD-CVD-vs.-Control, and
AD-vs.-AD-CVD classifiers with sex and age as covariates. All of the signal processing
steps were performed using the MATLAB (v2017a) environment except for the analyses of
covariance, which were performed using SPSS v21 (IBM, New York, NY, USA).
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3. Results

Table 2 lists the averaged test binary classification performances of the Control-vs.-AD,
AD-vs.-AD-CVD, and AD-CVD-vs.-Control classifiers on the entire training dataset for
every tilt. In each classification, the tilts are sorted based on the averaged classification
accuracy. This table shows that back/forward, supine up/down, and up/down tilts in
the AD-vs.-AD-CVD classifier, supine up/down and IT tilts in the AD-CVD-vs.-Control
classifier, and supine up/down tilt in the Control-vs.-AD classifier are selected as the most
informative tilts (≥75% accuracy) in the classification of their corresponding populations.

Table 2. Supervised support vector machine (SVM) binary classification averaged test results on the
entire dataset.

Averaged Test Performances of the Binary Classifiers on Training Dataset

AD-vs.-AD-CVD Control-vs.-AD AD-CVD-vs.-Control

Tilt Sens
(%)

Spec
(%) Acc (%) Tilt Sens

(%)
Spec
(%) Acc (%) Tilt Sens

(%)
Spec
(%) Acc (%)

Back/forward a 95 60 80 Supine
up/down a 86.7 80 82.3 Supine

up/down a 60 90 80.3

Supine
up/down a 70 80 76.7 Back/forward 75 70 73 IT a 55 88.3 77

Up/down a 80 70 75 Supine
rotation 80 60 70.3 Rotation 45 85 72.1

IT 85 60 74.2 Up/down 86.7 45 69.7 Back/forward 30 88.3 68.3

CT 70 60 65.8 IT 76.7 55 68 Supine
rotation 25 86.7 65.5

Supine
rotation 80 40 62.5 CT 83.3 35 63.5 Up/down 10 85 59

Rotation 80 40 61.7 Rotation 75 25 54 CT 15 76.6 54.8

The results are sorted according to the highest average accuracy. a The tilts that achieved an accuracy ≥ 75% are
marked as the most informative tilts. Sens: sensitivity, Spec: specificity, and Acc: accuracy.

Considering the IH33 selected features of the most informative tilts and pooling them
with the most informative FPave selected features that were previously identified in [34],
the final selected most informative features were found. A set of three FPave features that
were selected across all the tilts for the AD-vs.-AD-CVD classifier in [34] showed 78%
averaged test accuracy; thus, these features were pooled with the IH33 features in the
AD-vs.-AD-CVD classifier. Table 3 presents the final selected most informative features for
the three binary classifications. In this table, the selected features are listed based on the
EVestG tilt, the type of signal (FPave or IH33), the EVestG segment, and the recorded ear side.
The area under the curve (AUC) values associated to the receiver operating characteristic
(ROC) curves of the 10-fold cross-validation for each feature was calculated and averaged.
This denotes the relevance of each feature to the target class. As seen, the signal type of all
of the final selected features was found to be the IH33 signal. Moreover, the majority of the
final features (six out of nine) were selected from the supine up/down tilt recording.

Table 4 reports the averaged test performance of the binary classifiers on the blind
testing dataset. The AUC values associated with the ROC curves of the 5-fold cross-
validation for each feature were calculated and averaged. As seen, the averaged AUC
calculated values for the blind testing dataset were close to the averaged AUC values for
the training dataset. Moreover, among the three classifiers, AD-vs.-AD-CVD achieved the
highest accuracy (80.9%).
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Table 3. The final selected most informative features (F1, F2, and F3) for the three binary classifica-
tions.

Selected Most Informative Features of the Binary Classifiers

Tilt Signal Type Segment_Side AUC

AD-vs.-AD-CVD

F1—Upright average IH33 BGi_LR 0.64

F2—Up/down IH33 OnBB_R 0.77

F3—Supine up/down IH33 OnBB_R 0.79

Control-vs.-AD

F1—Supine average IH33 BGi_L 0.62

F2—Supine up/down IH33 RTC_BGi_L 0.78

F3—Supine up/down IH33 RTC_BGi_LR 0.82

AD-CVD-vs.-Control

F1—Supine up/down IH33 OnAA_L 0.51

F2—Supine up/down IH33 OnAA_R 0.78

F3—Supine up/down IH33 OnBB_R 0.51
The selected features are listed based on the EVestG tilt, the type of signal, i.e., averaged field potentials (FPave) or
IH33, the EVestG segment, the recorded ear side, i.e., left (L), right (R), or summation of left and right (LR) sides,
and the averaged area under the curve (AUC) values associated with the receiver operating characteristic (ROC)
curves of 10-fold cross-validation.

Table 4. SVM binary classification averaged test results on the blind testing dataset.

Averaged Test Performances of the Binary Classifiers
on the Blind Testing Dataset

Sens (%) Spec (%) Acc (%) AUC

AD-vs.-AD-CVD 75.11 88.9 80.9 F1 = 0.66, F2 = 0.77, F3 = 0.79

Control-vs.-AD 87.6 66.4 74.9 F1 = 0.62, F2 = 0.8, F3 = 0.82

AD-CVD-vs.-Control 72.5 67 70.2 F1 = 0.5, F2 = 0.77, F3 = 0.51
Sens: sensitivity, Spec: specificity, and Acc: accuracy. F1, F2, and F3 are the selected features of each binary
classifier according to Table 3.

Figures 4–6 demonstrate the IH33 signals of the final selected most informative features
that achieved the highest averaged AUC for the training dataset in every binary classifica-
tion. These signals are plotted separately for the training and blind testing datasets. The
time bins that contributed to the calculation of the significant feature are mentioned and
shown with a star in each Figure. The classification scatter plots of the features of Table 3
are also presented for training and blind testing.

As seen in the Figures, the averaged AD IH33 signal is shifted towards longer time
intervals/lower frequencies, i.e., a larger population percentage of firing in lower frequen-
cies as well as a smaller population percentage of firing in higher frequencies, compared to
those of the control and AD-CVD IH33 signals. Conversely, the averaged AD-CVD IH33
signal is shifted towards shorter time intervals/higher frequencies, i.e., a larger population
percentage of firing in higher frequencies as well as a smaller population percentage of
firing in lower frequencies, compared to those of the control and AD IH33 signals.

Table 5 shows the three-way classification performance including the confusion matrix,
one versus rest approach sensitivity and specificity (i.e., one population is assumed as the
positive group and the other two populations are merged together as the negative group),
and balanced accuracy for the training and blind testing datasets. Balanced accuracy
is calculated as the arithmetic mean of the sensitivities or recalls for each class; thus, it
naturally provides a higher weight to the classes with a smaller sample size, which can
be more appropriate if the classes are not exactly balanced. Thus, balanced accuracies of
85.7%, and 79.6% were attained on the training and blind testing datasets, respectively.
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Figure 4. AD-vs.-AD-CVD classification. (a) IH33 signals of the final selected most informative
feature of AD-vs.-AD-CVD classification that achieved the highest averaged AUC for the training
dataset, i.e., supine up/down-OnBB-R, for training and (b) blind test datasets. Mean with standard
error band is shown for ease of visualization. The middle point of time bins that contributed to the
calculation of the feature are marked with stars and are as follows: 94.5, 140.2, 151.8 ms. (c) The
AD-vs.-AD-CVD classification scatter plot of the features of Table 3 for training and blind testing
datasets.

Table 5. Three-way classification averaged training and blind testing results.

Train, Test Dataset
Classification Results True Class

Total Number = 54, 27 AD AD-CVD Control Sens vs. Rest
(%)

Spec vs. Rest
(%)

Balanced
Accuracy (%)

Predicted Class

AD 15, 10 2, 0 2, 0 93.8, 83.3 89.2, 100

85.7, 79.6AD-CVD 1, 2 11, 8 3, 2 84.6, 88.9 90, 77.8

Control 0, 0 0, 1 19, 4 79.2, 66.7 100, 95.2

The confusion matrix, one versus rest approach sensitivity, specificity, and balanced accuracy for the training and
blind testing datasets are listed. Sens: sensitivity and Spec: specificity.

Statistical Analysis

MANCOVA was applied on the combined selected features of the Control-vs.-AD,
AD-CVD-vs.-Control, and AD-vs.-AD-CVD classifiers. A statistically significant difference
was found between the two populations after accounting for sex and age; no significant
effect was found for sex or age covariates (details are provided in the Supplementary File).
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Figure 5. Control-vs.-AD classification. (a) IH33 signals of the final selected most informative feature
of Control-vs.-AD classification that achieved the highest averaged AUC for the training dataset,
i.e., supine up/down-RTC-BGi-LR, for training and (b) blind test datasets. Mean with standard
error band is shown for ease of visualization. The middle point of time bins that contributed to the
calculation of the feature are marked with stars and are as follows: 74.5, 80.6, 87.3, 129.6, and 140.2
ms. (c) The Control-vs.-AD classification scatter plot of the features of Table 3 for training and blind
testing datasets.
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Figure 6. AD-CVD-vs.-Control classification. (a) IH33 signals of the final selected most informative
feature of AD-CVD-vs.-Control classification that achieved the highest averaged AUC for the training
dataset, i.e., supine up/down-OnAA-R, for training and (b) blind test datasets. Mean with standard
error band is shown for ease of visualization. The middle point of time bins that contributed to the
calculation of the feature are marked with stars and are as follows: 68.9, 74.5, 80.6, 87.3, 140.2, 151.8,
and 164.3 ms. (c) The AD-CVD-vs.-Control classification scatter plot of the features of Table 3 for
training and blind testing datasets.
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4. Discussion

In this pilot study, we applied our developed automated algorithm [34] to extract
unbiased features of EVestG IH33 signals in regard to the separation of pairs of AD, AD-
CVD, and healthy control populations. We designed three binary classifiers for every
EVestG tilt and compared the accuracies of classification across different EVestG tilts.
According to Table 2, the supine up/down tilt was selected as one of the most informative
stimuli (achieved an accuracy of ≥75% when applied alone) in all of the three binary
classifiers, while the back/forward and up/down (sitting position) tilts, and the IT tilt
were selected in the AD-vs.-AD-CVD and AD-CVD-vs.-C classifications, respectively. It
is noteworthy to mention that although the IT tilt achieved ≥ 75% accuracy in AD-CVD-
vs.-C classification, it was not very successful in the identification of AD-CVD participants
(specificity = 55%). Among the EVestG tilts, the supine up/down tilt predominantly
stimulates the utricular organ, and together with the sitting up/down tilt, which mainly
stimulates the saccule, contains the lowest contribution of muscle artefacts, hemodynamic
effects, and participant anxiety. Considering the closeness of the utricular maculae to the
stapes and thus to the EVestG recording electrode, it is more likely that the EVestG response
is mostly driven from the utricle [59]. Therefore, the selection of the supine up/down tilt for
mutual separation of the three aforementioned groups can be considered physiologically
and experimentally reasonable. According to epidemiological human studies, saccular
and utricular impairments are associated with five- and four-fold increased odds of AD,
respectively [60]. Human studies on measuring Cervical Vestibular Evoked Myogenic
Potential and MRI analysis have suggested that decreased saccular function is significantly
related to a lower average hippocampal volume [61,62]. These results may give a picture of
the cognitive impairment impact of AD on the otolithic organ, particularly the saccule, thus
justifying the selection of the up/down tilts for AD-vs.-AD-CVD classification. Finally, the
back/forward tilt also showed a high AD-vs.-AD-CVD classification accuracy. Features of
this tilt together with the supine up/down tilt were previously found to be discriminative
in the prediction of the response to rTMS treatment for AD and AD-CVD participants [33].
Although the back/forward tilt stimulates almost the entire vestibular organ, it could
contain blood pressure change and anxiety components, which both need to be carefully
studied. It is noteworthy that the back/forward tilt features were not selected as the final
selected most informative features in our study.

Using the combination of IH33 features from the selected most informative tilts and the
previously selected FPave features [34], the final selected most informative EVestG features
in the classification of pairs of AD, AD-CVD, and control populations were identified.
According to Table 3, all of the selected features were found from IH33 signals, and as
expected and hypothesized, they were from either the supine up/down or up/down tilts.
It is worth noting that the discriminative features that were selected as being predictive of
rTMS efficacy in our previous study were also found from IH33 signals. The final selected
most informative feature with the highest averaged AUC from the training dataset (0.79)
for separation of the AD and AD-CVD populations was found from the upward moving
deceleration (OnBB) segment of the supine up/down tilt (Figure 4). Interestingly, the
same feature was selected previously [31] but more intuitively for both classification and
prediction of the response to treatment in AD and AD-CVD populations. Furthermore, the
final selected most informative features of each classifier were used to classify the blind
testing dataset. The moderate averaged performances in Table 4 show the robustness of the
extracted features. According to Figures 4–6, the averaged AD IH33 signals corresponding
to the final selected most informative features were shifted towards lower frequencies, i.e.,
a larger population percentage of firing in lower frequencies as well as a smaller population
percentage of firing in higher frequencies, compared to those of the control and AD-CVD
IH33 signals. On the other hand, the averaged AD-CVD IH33 signals corresponding to
the final selected most informative features were shifted towards higher frequencies, i.e., a
larger population percentage of firing in higher frequencies as well as a smaller population
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percentage of firing in lower frequencies compared to those of the control and AD IH33
signals. This trend was consistent between the training and blind testing datasets.

Synaptic loss, which precedes neurodegeneration, is one of the pathological hallmarks
of AD and the strongest predictor of cognitive decline [63,64]. Much evidence indicates
that Aβ oligomers (AβO), rather than Aβ plaques, could mediate the neurotoxic effects of
the Aβ pathway [63,65,66], as they build up earlier and are more potent than Aβ plaques
in eliciting abnormalities in synaptic function and neural network activity [64,65]. Over
the past few years, lines of evidence in animal models, and in in vitro and human studies
have suggested that synaptic failure, particularly at the early stage of AD, is induced
by neuronal hyperactivity rather than later stage hypoactivity [64,67–69]. They support
the major role of AβO accumulation in neuronal hyperactivity observed at the onset of
AD, in both cortical and subcortical brain regions, although other AD-peptides may also
contribute [40,64,68,70].

In the past decades, studies have implicated the disruption of cholinergic and gluta-
matergic neurotransmission in instigating synaptic failure and AD pathology [23]. How-
ever, an increasing number of studies support the onset of AD being linked to the decrease
in GABAergic inhibitory function as a result of the pathological elevation of AβO pep-
tides [39,40]. This in turn can induce activation of the excitatory glutamatergic response
and cause a vicious cycle of an excessive release of Aβ as a result of the disruption of
the excitatory/inhibitory neuronal balance [40,64]. Given the GABAergic inhibitory role
in regulating, synchronizing, and preventing excess neuronal signaling [23,71], it is not
surprising that GABAergic-decreased inhibition increases the incidence of neuronal firing
in local assemblies of interconnected neurons in the early stage of AD [23,39,63]. How-
ever, this enhanced activity occurs locally among the proportion of neurons that are more
vulnerable and not the overall neuronal network [40,67]. Therefore, despite the increased
local hyperactivity and due to the lack of unified synchrony of larger assemblies of inter-
connected neural circuits involving different brain regions, the pathologically elevated
AβO in AD could result in network activity destabilization, reduced excitatory current,
and synaptic depression [63]. As evidence, this localized neuronal hyperactivity causes
gamma wave conductance disruption (lower power of gamma oscillatory activity) in the
MCI and early stage AD pathology [39,64,72]. This may imply the lack of overall brain
wave modulation of higher frequency firing during the onset of AD.

Studies have shown a similar yet lower degree of various GABAergic component
alterations, including depression of GABA levels [39], increased GAD activity [37], synap-
tic function disruption at GABAergic terminals [37], and increased sensitivity of GABA
receptors [73], indicating the lack of inhibitory responses in subcortical regions such as
the thalamus, Locus Coeruleus (LC), cochlear, and vestibular nucleus compared to cortical
regions during the AD pathology or aged brain. Notably, AβO in the LC neurons of AD
patients showed a close association with impaired GABA A receptors, which result in the
defacilitation of overall neural network activity due to local (at single cell levels) neuronal
hyperexcitability [65]. Given the LC bidirectional links to the vestibular nucleus [74], and
similar GABAergic alternations such as the increased sensitivity of GABAergic receptors in
an aged vestibular nucleus complex [73], this may imply that AβO-induced GABAergic
inhibitory disruption may reduce the facilitation of vestibular firing, particularly afferent
discharges, at the vestibular periphery, thus resulting in the speculation about a lower
frequency firing pattern for AD patients.

On the contrary, it has been shown in animal and human studies that, as a result
of a decrease in the blood flow supply of the brain tissues, the neuronal inhibition and
GABAergic activity significantly increases [43,44] and then decreases during the recovery
process. Moreover, the increase in GABA levels is observed in patients with vascular risk
factors (diabetic aged participants that were compared to controls) [75,76]. Similarly, GABA
levels are shown to increase after inhibiting brain glycogen in Type 2 diabetic rats [77]. It is
argued that the increased GABA activity could be assumed to be an underlying mechanism
that reduces cell injury by antagonizing glutamate excitotoxicity, enhances the tolerance
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of neurons to the ischemic and hypoxic condition, and has significant neuroprotective
effects [45]. Given that the inhibition increases fast spike synchrony between excitatory
neurons [42,46], and reduces the slow (long) timescale relationship among large population
of neurons [47–49], it is probable that, as a result of a chronic CVD condition, the synchrony
of the neuronal network in the transmission of faster firing increases and leads to a firing
pattern that is shifted towards higher frequencies. Conforming to this could be the excita-
tion of vestibular nuclei and vestibular afferents via the efferent feedback loop following
hypotension [50].

Finally, a hierarchy diagnostic algorithm was developed for three-way classification
by averaging the pairs of probabilities that identified a participant to belong to one of the
three population groups. The averaged specificity or sensitivity of the classifiers over the
training dataset were also used as weighting coefficients of the probabilities. Thus, three
normalized linear weighted average scores were calculated for each participant. Then, the
participant’s final diagnosis was the group where he/she had the highest normalized score.
This could be similar to the way the brain of a physician concludes a clinical diagnosis: by
comparing the symptoms against each class of dementia (and healthy controls) and going
with the one with the highest likelihood of probability.

As shown in our previous studies [31], the averaged IH33 signal of the control popula-
tion sits in between the AD and AD-CVD ones (a graph of the IH33 signals for the three
populations is added in the Supplementary File). This causes averaging of the probabilities
that assign a participant to either the AD or AD-CVD group to sometimes be misleading.
As an example, an AD participant can gain a low classification probability of being a control
in the Control-vs.-AD classifier; however, due to the special placement of the IH33 signals
of the three populations over the range of frequency (or time), the same participant may
gain a high classification probability of being a control in the AD-CVD-vs.-Control classifier.
Thus, the average probability of being a control may become large, which is not correct.
We solved this issue by incorporating a cutoff MoCA score, as a preprocessing step before
EVestG signal classifications, which separated the cognitively impaired participants (MoCA
≤ 23) from the healthy ones. The groupings of such participants were later identified by
comparing only the AD and AD-CVD scores of the three-way classifier.

5. Conclusions

In this pilot study, we extracted the most informative features of the EVestG signals
to classify pairs of AD, AD-CVD, and healthy control populations in an unbiased and
automated manner. We also identified the EVestG tilts for which their extracted features
were the best candidates for the above separations. Additionally, the robustness of the
most informative features was tested via a blind testing dataset. Using the participants’
MoCA score and the normalized linear weighted average score of the binary classifiers, we
developed a novel diagnostic algorithm for a three-way classification that resulted in 85.7%
and 79.6% accuracy in the training and blind testing datasets, respectively. The possible
physiological changes support the selected EVestG features. Disruptions to inhibition
associated with GABAergic activity might be responsible for the shift of AD/AD-CVD
EVestG IH33 signals to lower/higher frequencies.

6. Limitations and the Future of the Study

One of the limitations of this study is the small sample size of the dataset. Given the
difficulties of participant recruitment, particularly participants who are diagnosed at the
early stage of AD or AD-CVD, and the chance of not being able to record some participants’
EVestG signals due to excessive ear wax, a slow data collection process and small dataset
were the result. Moreover, noise corrupted signals due to artefactual reasons, which could
have led to missing data and a further reduction in the sample size. Considering the
heterogeneity of biological data, a larger sample size could represent the entire population
more accurately; hence, the reliability and credibility of the selected features could be
enhanced as well. Additionally, a larger sample size may include patients who suffer from
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AD mixed with other types of dementia, i.e., AD-non-specific, as not all mixed AD patients
are AD-CVD. The hierarchical algorithm that is introduced in this study may have the
potential to be generalized to separate AD-non-specific groups from the AD, AD-CVD, and
control groups. The discriminative features can also be used in future studies to monitor
and investigate the effects of interventions, and to predict the disease’s progression.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/medicina59122091/s1, Figure S1: IH33 signals of the average of left
and right RTC BGi segments in Supine Up//down tilt (Supine Up/down-RTC-BGi-LR) for the three
populations over the range of frequency or time.; Table S1: One-way MANCOVA on the selected
features of C-vs.-AD, AD-CVD-vs.-C, and AD-vs.-AD-CVD classifiers controlling for age and sex.
Each feature is named based on the IH33 that is extracted from in terms of the IH33′s tilt name,
segment (seg), and the ear side, left (L) or right (R). Refs [78–80] are in the file.
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Abbreviations

Aβ Amyloid-β
AβO Amyloid-β oligomers
Acc Accuracy
AD Alzheimer’s disease
AD-CVD AD mixed with levels of cerebrovascular disease symptomology
AUC Area under the curve
BGi Background segment
C Control
CT Contralateral tilt
CVD Cerebrovascular disease
EVestG Electrovestibulography
FP Field potential
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FPave Average of spontaneous and driven vestibular field potentials
GABA Gamma-aminobutyric acid
HIS Hachinski ischemic score
IH Interval histogram
IH33 33-Interval histogram
IT Ipsilateral tilt
L left
LC Locus Coeruleus
LR Summation of left and right signals
L-R Subtraction of left and right signals
µ Mean
MADRS Montgomery–Asberg Depression Rating Scale
MANCOVA Multivariate analysis of covariance
MoCA Montreal Cognitive Assessment
MRI Magnetic resonance imaging
NEER Neural Event Extraction Routine
NINDS-AIREN National Institute of Neurological Disorders and Stroke–Association

Internationale pour la Recherche et l’Enseignement en Neurosciences
OnAA Acceleration segment
OnBB Deceleration segment
R right
ROC Receiver operating characteristic
RTC Return to center
SD Standard deviation
Sens Sensitivity
Spec Specificity
SVM Supervised support vector machine
VaD Vascular dementia
VN Vestibular nucleus
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