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Abstract: Background and objectives: Colorectal cancer (CRC) is the second most common cause of
cancer-related death in the world, but early diagnosis ameliorates the survival of CRC. This report
aimed to identify molecular biomarker signatures in CRC. Materials and Methods: We analyzed two
microarray datasets (GSE35279 and GSE21815) from the Gene Expression Omnibus (GEO) to identify
mutual differentially expressed genes (DEGs). We integrated DEGs with protein–protein interaction
and transcriptional/post-transcriptional regulatory networks to identify reporter signaling and
regulatory molecules; utilized functional overrepresentation and pathway enrichment analyses
to elucidate their roles in biological processes and molecular pathways; performed survival
analyses to evaluate their prognostic performance; and applied drug repositioning analyses through
Connectivity Map (CMap) and geneXpharma tools to hypothesize possible drug candidates targeting
reporter molecules. Results: A total of 727 upregulated and 99 downregulated DEGs were detected.
The PI3K/Akt signaling, Wnt signaling, extracellular matrix (ECM) interaction, and cell cycle were
identified as significantly enriched pathways. Ten hub proteins (ADNP, CCND1, CD44, CDK4, CEBPB,
CENPA, CENPH, CENPN, MYC, and RFC2), 10 transcription factors (ETS1, ESR1, GATA1, GATA2,
GATA3, AR, YBX1, FOXP3, E2F4, and PRDM14) and two microRNAs (miRNAs) (miR-193b-3p and
miR-615-3p) were detected as reporter molecules. The survival analyses through Kaplan–Meier curves
indicated remarkable performance of reporter molecules in the estimation of survival probability in
CRC patients. In addition, several drug candidates including anti-neoplastic and immunomodulating
agents were repositioned. Conclusions: This study presents biomarker signatures at protein and RNA
levels with prognostic capability in CRC. We think that the molecular signatures and candidate drugs
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presented in this study might be useful in future studies indenting the development of accurate
diagnostic and/or prognostic biomarker screens and efficient therapeutic strategies in CRC.

Keywords: colorectal cancer; differentially expressed genes; biomarkers; protein–protein interaction;
reporter biomolecules; candidate drugs; systems biology; drug repositioning

1. Introduction

Colorectal cancer (CRC) is the second most common cause of mortality of men and women in
the world [1]. The number of CRC cases is still increasing, and the global burden of CRC is expected
to increase by 60% to more than 2.2 million new cases and 1.1 million deaths by 2030 [2]. Like other
cancers, a number of factors such as genetic factors, epigenetic alterations, diet, and environmental
factors contribute to the progression and metastasis of CRC [3,4]. Despite the comprehensive studies
(as reviewed by Reference [5]), the molecular mechanisms of CRC pathogenesis are only partially
understood. Several biomarkers (KRAS and BRAF) are used to detect CRC, but these biomarkers are
not sufficiently sensitive and specific; consequently, there is an urgent need for the identification of
efficacious biomarkers, therapeutic targets, and agents for early diagnosis, prevention, and personalized
therapy in CRC [6].

Gene expression profiling technologies were employed for years to identify genetic alterations
at the transcriptional level that pave the way to candidate biomarkers in human diseases including
cancers [7–9]. These biomarkers may be used in early detection and/or serve as novel therapeutic
targets. Hundreds of differentially expressed genes (DEGs) were identified in CRC from microarray
data [10,11]; however, their roles within human signaling networks and their transcriptional regulatory
mechanisms via transcription factors (TFs) and microRNAs (miRNAs) were not studied in detail
within a network biomedicine approach. The regulatory biomolecules might be attractive biomarkers
since several reports proposed microRNAs (miRNAs) that act as key players in CRC as prognostic
biomarkers [12,13].

The power of multi-omics analyses within the network biomedicine perspective [14] in the
elucidation of molecular signatures in human diseases was previously shown in many human diseases
such as head and neck cancers [15], esophageal squamous cell carcinoma [16], triple negative breast
cancer [17], cervical cancer [18], ovarian cancer [19] and ovarian diseases [20], psoriasis [21], and type
2 diabetes [22]. Therefore, in this study, systems-based approaches were considered to explore the
potential biomarker signatures at protein (i.e., hub proteins and transcription factors (TFs)) and RNA
levels (i.e., miRNAs and messenger RNAs (mRNAs)) (Figure 1). For this purpose, we considered
mutual DEGs identified from two independent gene expression profiling studies to maintain robustness,
integrated this information with human biomolecular networks (i.e., protein–protein interaction and
transcriptional/post-transcriptional regulatory networks) to identify reporter signaling and regulatory
molecules, utilized functional overrepresentation and pathway enrichment analyses to elucidate the roles
of reporter molecules in biological processes and molecular pathways, and performed survival analyses
to evaluate their prognostic performance as potential biomarkers in CRC. In addition, several candidate
drugs were repositioned in CRC using in silico drug repositioning tools, Connectivity Map (CMap) [23]
and geneXpharma [24], considering these biomarker signatures as therapeutic targets.
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Figure 1. The integrative analytical pipeline employed in the present study. (A) The colorectal cancer 
(CRC) datasets were analyzed under the Bioconductor platform in R. We used linear models for 
microarray data (LIMMA) to detect the differentially expressed genes (DEGs) in CRC compared to 
normal samples. (B) Gene ontology (GO) terms and molecular pathways were identified by DEGs 
enrichment via the Database for Annotation, Visualization and Integrated Discovery (DAVID). (C) 
The hub proteins were identified by protein–protein interaction (PPI) analysis. (D) The reporter 
feature algorithm was used to identify reporter biomolecules as transcriptional regulatory elements. 
(E) The survival analysis of the hub biomolecules was done through The Cancer Genome Atlas 
(TCGA) CRC datasets via SurvExpress and oncomiR. (F) The candidate drug molecules were 
identified by Connectivity Map (cMap) and geneXpharma. 

2. Materials and Methods 

2.1. High-Throughput Microarray Gene Expression Datasets 

To analyze mRNA signatures in CRC samples compared to normal tissues, two gene expression 
datasets obtained using Agilent microarrays in independent experiments, GSE35279 [25] and 
GSE21815 [26], were downloaded from the Gene Expression Omnibus (GEO) database [27], which is 
a public functional genomics data repository supporting MIAME compliant data submissions. 
Consequently, a total of 220 specimens (206 CRC specimens and 14 normal samples) were 
comparatively analyzed. 

2.2. Identification of Differentially Expressed Genes 

To characterize differentially expressed genes (DEGs), each dataset was normalized by means 
of the robust multi-array average (RMA) expression measure [28], and DEGs were identified from 
the normalized log-expression values using the multiple testing option of LIMMA (linear models for 
microarray data) [29] using the R/Bioconductor platform (version R × 64 3.4.1). 
Benjamini–Hochberg’s method was used to control the false discovery rate. An adjusted p-value 
threshold of 0.01 with a fold-change cutoff of 2 was used to determine the statistical significance of 
differential expression. 

2.3. Gene Ontology and Pathway Analysis 

Clustering of DEGs and reporter molecules into functional groups (i.e., biological processes and 
molecular pathways) was performed via DAVID’s functional annotation tool [30]. In the analyses, 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] was preferably used as the pathway 
database and the Gene Ontology (GO) project [32] was used as the annotation source for biological 
processes and molecular functions. Fisher’s exact test was used to evaluate the statistical 

Figure 1. The integrative analytical pipeline employed in the present study. (A) The colorectal cancer
(CRC) datasets were analyzed under the Bioconductor platform in R. We used linear models for
microarray data (LIMMA) to detect the differentially expressed genes (DEGs) in CRC compared
to normal samples. (B) Gene ontology (GO) terms and molecular pathways were identified by
DEGs enrichment via the Database for Annotation, Visualization and Integrated Discovery (DAVID).
(C) The hub proteins were identified by protein–protein interaction (PPI) analysis. (D) The reporter
feature algorithm was used to identify reporter biomolecules as transcriptional regulatory elements.
(E) The survival analysis of the hub biomolecules was done through The Cancer Genome Atlas (TCGA)
CRC datasets via SurvExpress and oncomiR. (F) The candidate drug molecules were identified by
Connectivity Map (cMap) and geneXpharma.

2. Materials and Methods

2.1. High-Throughput Microarray Gene Expression Datasets

To analyze mRNA signatures in CRC samples compared to normal tissues, two gene expression
datasets obtained using Agilent microarrays in independent experiments, GSE35279 [25] and
GSE21815 [26], were downloaded from the Gene Expression Omnibus (GEO) database [27], which is
a public functional genomics data repository supporting MIAME compliant data submissions.
Consequently, a total of 220 specimens (206 CRC specimens and 14 normal samples) were
comparatively analyzed.

2.2. Identification of Differentially Expressed Genes

To characterize differentially expressed genes (DEGs), each dataset was normalized by means
of the robust multi-array average (RMA) expression measure [28], and DEGs were identified from
the normalized log-expression values using the multiple testing option of LIMMA (linear models for
microarray data) [29] using the R/Bioconductor platform (version R × 64 3.4.1). Benjamini–Hochberg’s
method was used to control the false discovery rate. An adjusted p-value threshold of 0.01 with a
fold-change cutoff of 2 was used to determine the statistical significance of differential expression.

2.3. Gene Ontology and Pathway Analysis

Clustering of DEGs and reporter molecules into functional groups (i.e., biological processes and
molecular pathways) was performed via DAVID’s functional annotation tool [30]. In the analyses,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [31] was preferably used as the pathway
database and the Gene Ontology (GO) project [32] was used as the annotation source for biological
processes and molecular functions. Fisher’s exact test was used to evaluate the statistical significance.
The p-values were corrected via Benjamini–Hochberg’s method, and an adjusted p-value threshold
(adj-p < 0.05) was used for all enrichment analyses.
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2.4. Reconstruction and Analysis of Protein–Protein Interaction (PPI) Network in CRC

We recruited the previously reconstructed high-confidence PPI network of Homo sapiens [33]
consisting of 288,033 physical interactions between 21,052 proteins to construct a PPI subnetwork
around the proteins encoded by the identified DEGs. The subnetwork was visualized and analyzed via
Cytoscape (v3.4 and 2.8.3) [34]. The topological analysis was performed to characterize the network
properties through the Cyto-Hubba plugin [35]. The dual-metric approach [17,22] utilizing a local
(i.e., degree) and a global (i.e., betweenness centrality) metric was simultaneously employed to define
hub proteins. The modules in the PPI sub-networks were identified using MCODE plug-in [36] in
Cytoscape. The modules were further analyzed through enrichment analyses in DAVID’s functional
annotation tool [30].

2.5. Identification of Reporter Biomolecules

To identify reporter regulatory molecules (i.e., TFs and miRNAs) around which significant
changes occur at the transcriptional level, we employed the comprehensive human transcriptional and
post-transcriptional regulatory network [37], consisting of the experimentally verified TF–target gene
and miRNA–target gene interactions from HTRIdb [38] and miRTarbase (Release 6.0) [39] databases.
The reporter features algorithm [40] was used and implemented as described previously [15,18,20]
to obtain z-scores and corresponding p-values of the molecules. The p-values were corrected via
Benjamini–Hochberg’s method, and statistically significant (adj-p < 0.01) results were considered as
reporter biomolecules.

2.6. Evaluation of the Prognostic Performance of Reporter Molecules

The prognostic power of reporter biomolecules (i.e., hubs, TFs, and miRNAs) was analyzed
via multivariate Cox regression analysis as implemented in SurvExpress [41] and OncomiR [42],
using independent gene expression (RNA sequencing (RNA-Seq) or miRNA-Seq) datasets obtained
from The Cancer Genome Atlas (TGCA). The RNA-Seq dataset consisted of 467 samples with their
clinical information, whereas the miRNA-Seq data included 424 patients. The patients were partitioned
into low- and high-risk groups according to their prognostic index determined by SurvExpress
or OncomiR. The differences in gene expression levels between the risk groups were represented
via box-plots, and the statistical significance of the differences was estimated by Student’s t-test.
The survival signatures of reporter biomolecules were evaluated by Kaplan–Meier plots, and a log-rank
p-value < 0.05 was considered as the cut-off to describe statistical significance in all survival analyses.

2.7. Identification of Candidate Drugs

We simultaneously used the Connectivity Map (CMap) database [23] and geneXpharma tool [24]
to identify potential candidate drugs. CMap stores the expression profiles from cultured human cells
exposed to various small molecular agents. A total of 50,304 gene–drug interactions comprising
4344 genes and 11,939 drugs are presented in geneXpharma. The hypergeometric probability test was
used to statistically associate drugs to CRC.

3. Results

3.1. Identification of Differentially Expressed Genes

We studied two microarray CRC datasets (GSE35279 and GSE21815) from independent
experiments to detect DEGs dysregulated in CRC samples compared to normal tissues. The analyses
presented 727 upregulated and 99 downregulated genes mutually differentiated in both CRC datasets
(Figure 2). Then, we performed gene set overrepresentation analyses to obtain the GO annotations
(in terms of molecular function, biological process, and cellular component) and KEGG pathways
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significantly associated with DEGs. The top 5 GO terms for upregulated and downregulated DEGs are
summarized in Table 1, and the significant molecular pathways altered in CRC are shown in Figure 3.
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Figure 2. Identification of differentially expressed genes (DEGs) in colorectal cancer (CRC) from
microarray CRC datasets: (A) the upregulated genes in the CRC expression profiling datasets; (B) the
downregulated genes in the CRC expression profiling datasets.

Table 1. Functional overrepresentation of differentially expressed genes in colorectal cancer (CRC).

Gene Ontology Gene Ontology (GO) Term # of Genes Coverage (%) p-Value

Upregulated genes

Biological Process

Collagen fibril organization 11 1.62 4.53 × 10−7

Extracellular matrix organization 22 3.24 2.94 × 10−6

Male gonad development 14 2.06 1.53 × 10−5

Positive regulation of transcription
from RNA polymerase II promoter 58 8.56 3.90 × 10−5

Collagen catabolic process 11 1.62 5.07 × 10−5

Cellular Component

Extracellular region 84 12.4 2.40 × 10−5

Cytoplasm 216 31.9 5.80 × 10−5

Extracellular space 70 10.3 1.50 × 10−4

Basement membrane 11 1.62 2.56 × 10−4

Extracellular matrix 23 3.39 3.34 × 10−4

Molecular Function

Protein binding 354 52.3 8.10 × 10−8

Protein homodimerization activity 42 6.20 7.54 × 10−4

Growth factor activity 15 2.21 1.04 × 10−3

Extracellular matrix binding 6 0.88 1.47 × 10−3

Amino-acid transmembrane
transporter activity 7 1.03 4.43 × 10−3

Downregulated genes

Biological Process

Bicarbonate transport 5 4.90 5.89 × 10−5

One-carbon metabolic process 4 3.92 4.00 × 10−4

Chloride transmembrane transport 5 4.90 1.06 × 10−3

Nervous system development 7 6.86 2.63 × 10−3

Regulation of chloride transport 2 1.96 9.62 × 10−3

Cellular Component

Plasma membrane 31 30.4 0.0108
Extracellular space 14 13.7 0.0135

Integral component of membrane 36 35.3 0.0163
Anchored component of membrane 4 3.92 0.0179

Integral component of plasma
membrane 13 12.7 0.0421

Molecular Function

Carbonate dehydratase activity 4 3.92 4.16×10−5

Hormone activity 5 4.90 0.0012
Zinc ion binding 15 14.7 0.0018

UDP-galactose:β-N-acetylglucosamine
β-1,3-galactosyltransferase activity 3 2.94 0.0018

Chloride channel activity 4 3.92 0.0025



Medicina 2019, 55, 20 6 of 18

Medicina 2019, 55, x FOR PEER REVIEW  6 of 18 

 

Function Hormone activity 5 4.90 0.0012 
Zinc ion binding 15 14.7 0.0018 

UDP-galactose:β-N-acetylglucosamine 
β-1,3-galactosyltransferase activity 

3 2.94 0.0018 

Chloride channel activity 4 3.92 0.0025 

 
Figure 3. The significant pathways altered in colorectal cancer: (A) upregulated pathways in 
colorectal cancer; (B) downregulated pathways in colorectal cancer. 

The overrepresentation analyses indicated the upregulation of collagen-associated processes, 
extracellular matrix (ECM) organization, and male gonad development. The upregulated proteins 
mainly had protein-binding activities and localized in extracellular environments or the cytoplasm. 
On the other hand, transport process, most specifically bicarbonate and chloride transport, were 
downregulated in CRC. Downregulated proteins mostly involved zinc ion binding, and hormone 
and chloride channel activities and were localized in the integral component of the plasma 
membrane (Table 1). In parallel to GO enrichment results, the PI3K/Akt signaling pathway, Wnt 
signaling pathway, cell cycle, lung cancer, ECM–receptor interaction, protein digestion and 
absorption, pathways in cancer, and TGF-β signaling pathway were upregulated in CRC (Figure 
3A). Contrarily, nitrogen metabolism, pancreatic secretion, axon guidance, retinol metabolism, renin 
secretion, and chemical carcinogenesis pathways were downregulated in CRC (Figure 3B). 

3.2. Analysis of Protein–Protein Interaction Network to Identify Hub Proteins 

To identify hub proteins, a PPI sub-network around proteins encoded by the DEGs was 
constructed, and its topological analysis was performed. Following the scale-free degree distribution 
and small-world properties of biological networks, the presence of 10 hub proteins (ADNP, CCND1, 

Figure 3. The significant pathways altered in colorectal cancer: (A) upregulated pathways in colorectal
cancer; (B) downregulated pathways in colorectal cancer.

The overrepresentation analyses indicated the upregulation of collagen-associated processes,
extracellular matrix (ECM) organization, and male gonad development. The upregulated proteins
mainly had protein-binding activities and localized in extracellular environments or the cytoplasm.
On the other hand, transport process, most specifically bicarbonate and chloride transport, were
downregulated in CRC. Downregulated proteins mostly involved zinc ion binding, and hormone and
chloride channel activities and were localized in the integral component of the plasma membrane
(Table 1). In parallel to GO enrichment results, the PI3K/Akt signaling pathway, Wnt signaling pathway,
cell cycle, lung cancer, ECM–receptor interaction, protein digestion and absorption, pathways in cancer,
and TGF-β signaling pathway were upregulated in CRC (Figure 3A). Contrarily, nitrogen metabolism,
pancreatic secretion, axon guidance, retinol metabolism, renin secretion, and chemical carcinogenesis
pathways were downregulated in CRC (Figure 3B).
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3.2. Analysis of Protein–Protein Interaction Network to Identify Hub Proteins

To identify hub proteins, a PPI sub-network around proteins encoded by the DEGs was
constructed, and its topological analysis was performed. Following the scale-free degree distribution
and small-world properties of biological networks, the presence of 10 hub proteins (ADNP, CCND1,
CD44, CDK4, CEBPB, CENPA, CENPH, CENPN, MYC, and RFC2) was detected using degree and
betweenness centrality metrics. These hub proteins may play significant key roles in signal transduction
during the progression of CRC (Table 2). Two functional modules were revealed from the PPI network:
module 1, consisting of IPO5, RBP2, and RAN, was associated with intracellular protein transport,
and module 2, consisting of CENPN, CENPA, and CENPH, was enriched with sister chromatid
cohesion, and kinetochore and nucleosome assembly (data not shown).

Table 2. Summary of hub proteins in colorectal cancer.

Symbol Description Feature

Hub proteins

ADNP Activity-dependent neuroprotector homeobox Stimulatory and inhibitory effect on the growth of tumor cells
CEBPB CCAAT/enhancer-binding protein beta Involved in immune and inflammatory responses

CCND1 Cyclin D1 (afflicted with cancers colonic
adenocarcinomas, myeloma) Cell-cycle regulatory protein

CD44 CD44 molecule Required in cell–cell interactions, migration
CDK4 Cyclin-dependent kinase 4 Cyclin D1 activates CDK4, which causes proliferation of cellular division.

CENPA Centromere protein A (afflicted with colorectal cancer) Central role in the assembly of kinetochore
CENPH Centromere Protein H (afflicted with colorectal cancer) Central role in the assembly of kinetochore proteins

RFC2 Replication factor C subunit 2 Encodes activator 1 small subunit family
MYC Myc proto-oncogene Regulator gene contributes to formation of many human cancers

CENPN Centromere protein N Involved in cell-cycle process

3.3. Identification of Regulatory Biomolecules

To identify reporter regulatory molecules (i.e., TFs and miRNAs) around which significant
changes occur at transcriptional level, we integrated DEGs with a human transcriptional and
post-transcriptional regulatory network and employed the adopted version of reporter features
algorithm [20,40] for each dataset. Considering a statistical significance level of adj-p < 0.01,
we identified 10 TFs (ETS1, ESR1, GATA1, GATA2, GATA3, AR, YBX1, FOXP3, E2F4, and PRDM14)
and 10 miRNAs (miR-16-5p, miR-26b-5p, miR-124-3p, let-7b-5p, miR-92a-3p, miR-192-5p, miR-155-5p,
miR-93-5p, miR-193b-3p, and miR-17-5p) as the mutual transcriptional regulatory components in both
CRC datasets (Table 3).

Table 3. Summary of reporter regulators in colorectal cancer.

Symbol Description Feature

Reporter Transcription Factors

AR Androgen receptor Involved in prostate cancer
GATA1 GATA binding protein 1 Transcriptional activator or repressor
GATA2 GATA binding protein 2 (afflicted with colorectal cancer) Transcriptional activator
GATA3 GATA binding protein 3 Transcriptional activator

E2F4 E2F transcription factor 4 Controls of cell cycle
ETS1 ETS proto-oncogene 1 Involved in tumorigenesis
YBX1 Y-box binding protein 1 Aberrant expression is associated with cancer

PRADM14 PR/SET domain 14 Involved in breast cancer
ESR1 Estrogen receptor 1 Involved in breast cancer

FOXP3 Forkhead box P3 (afflicted with colorectal cancer) DNA binding

Reporter microRNAs

miR-193b-3p MicroRNA 193 Afflicted with CRC and epidermal squamous cell carcinoma
miR-615-3p MicroRNA 615 Afflicted with CRC
miR-16-5p MicroRNA 16 Potential biomarkers in gastric cancer

miR-26b-5p MicroRNA 26 Afflicted with CRC
let-7b-5p MicroRNA 7 Afflicted with CRC

miR-92a-3p MicroRNA 92 Afflicted with CRC
miR-124-3p MicroRNA 124 Afflicted with CRC, gastric and breast cancer

miR-484 MicroRNA 484 Afflicted with CRC
miR-192-5p MicroRNA 192 Afflicted with CRC
miR-93-5p MicroRNA 93 Afflicted with head and neck cancer
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3.4. Survival Analysis of Biomolecules

We performed the survival analysis of biomolecules (i.e., 10 hubs, 10 TFs, and 10 miRNAs) using
CRC datasets from TCGA. Based on expression levels of reporter biomolecules and estimated survival
probabilities, the patients were partitioned into two groups (i.e., high-risk and low-risk groups).
The differential gene expression levels in high- and low-risk groups were represented by the box-plots
and the estimated the survival probabilities were represented by Kaplan–Meier plots. In simulations,
hub proteins, reporter TFs, and reporter miRNAs were considered as separate biomarker sets.

Almost all of the hub proteins (except RFC2) contributed to the discrimination of risk groups
as seen in statistical powers represented in the box-plot (Figure 4A), and the hub proteins as
a group demonstrated statistically significant prognostic capability with a hazards ratio of 2.57
(log-rank p = 9.56 × 10−6) (Figure 4B). The reporter TFs (log-rank p = 0.0185) were also indicative
of CRC prognosis with a hazards ratio of 1.75 (Figure 5B). Among the TFs, GATA1, GATA2, E2F4,
ESR1, and PRDM14 were the major discriminators (Figure 5A). In addition, the survival analysis of a
subset of reporter miRNAs, consisting of miR-193b-3p and miR-615-3p, showed a prognostic signature
(log-rank p = 0.014) (Figure 6).Medicina 2019, 55, x FOR PEER REVIEW  9 of 18 
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3.5. Identification of Candidate Drugs through In Silico Drug Repositioning

Regarding the hub proteins and TFs as potential drug targets in CRC, we identified potential
drugs based on the transcriptome signatures guided drug repositioning tool, geneXpharma, and the
CMap database. We considered only the common drugs between both databases for CRC. Statistical
evaluation revealed 45 candidate drugs targeting six proteins (Table 4). The drugs were classified
according to the anatomical sites and development stages (Figure 7). Among the 10 hub proteins
considered as a drug target, three hub proteins, i.e., CCND1, CDK4, and MYC, were targeted by
nine drugs (Table 4). Contrarily, among the 10 reporters TFs, three reporter TFs were targeted by
23 drugs (Table 4). The repositioned drugs were classified based on the Anatomical Therapeutic
Chemical classification system and it was found that 16.12% were antineoplastic, and 22.58% were
antineoplastic and immunomodulating agents. The hormones and contraceptives agents (9.67%)
followed the antineoplastic and immunomodulating agents. The repositioned drugs were analyzed
and it was found that 49% of drugs were approved, whereas 48% were still under investigation and
3% were in the experimental stage (Figure 7).

Table 4. Selected repositioned drugs in colorectal cancer.

Target Repositioned Drug Drug Class/Status/Description

Hub protein

CCND1

Gefitinib Antineoplastic agent; approved; investigational/used in the
treatment of cancer

Hydrocortisone Anti-inflammatory agent; approved; used in the treatment of inflammation,
allergy, collagen diseases, asthma, and some neoplastic conditions

Irinotecan Antineoplastic agent; approved; investigational/used in the treatment of
colorectal cancer

Letrozole Antineoplastic agent; approved; investigational/introduced for treatment
of breast cancer

Lidocaine Anesthetic; approved; local anesthetic and used as an antiarrhythmia agent

Methotrexate Antimetabolite, antineoplastic; approved; antineoplastic antimetabolite
with immunosuppressant properties

Sirolimus
Antineoplastic and immunomodulating agents; approved;

investigational/a potent immunosuppressant which possesses both
antifungal and antineoplastic properties

Tamoxifen Antineoplastic and immunomodulating agent; approved; for the treatment
and prevention of breast cancer

CDK4
Gefitinib Antineoplastic agent; approved; investigational/used in the

treatment of cancer
Lidocaine Anesthetic; approved; local anesthetic and used as an antiarrhythmia agent

Sirolimus
Antineoplastic and immunomodulating agent; approved; investigational/a

potent immunosuppressant which possesses both antifungal and
antineoplastic properties

MYC
Gefitinib Antineoplastic agent; approved; investigational/used in the

treatment of cancer

Tamoxifen Antineoplastic and immunomodulating agent; approved; for the treatment
and prevention of breast cancer

Simvastatin Cardiovascular system; approved; a lipid-lowering agent

Reporter TFs

GATA3

Azathioprine Antineoplastic and immunomodulating agent; approved;
immunosuppressive antimetabolite pro-drug

Daunorubicin Antineoplastic and immunomodulating agent; approved; used in treatment
of leukemia and other neoplasms

Dexamethasone
Antineoplastic agent; approved, investigational, vet approved; for the

treatment of endocrine disorders, rheumatic disorders, collagen diseases,
dermatologic diseases

Doxorubicin
Antineoplastic and immunomodulating agent; approved;

investigational/used neoplastic conditions like acute
lymphoblastic leukemia

Mercaptopurine Antimetabolite antineoplastic agent with immunosuppressant properties;
approved; in the treatment of leukemia

Methotrexate Antimetabolite, antineoplastic; approved; antineoplastic antimetabolite
with immunosuppressant properties
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Table 4. Cont.

Target Repositioned Drug Drug Class/Status/Description

ESR1

Clomifene Estrogen agonist, antagonist; approved; investigational/used mainly in
female infertility due to anovulation to induce ovulation

Daunorubicin Antineoplastic and immunomodulating agent; approved; used in treatment
of leukemia and other neoplasms

Dexamethasone
Antineoplastic agent; approved; investigational/for the treatment of

endocrine disorders, rheumatic disorders, collagen diseases,
dermatologic diseases

Estriol Estradiol congener; approved; investigational/used as a test to determine
the general health of an unborn fetus

Estrone Hormone; approved; used for management of perimenopausal and
postmenopausal symptoms

Etoposide Antineoplastic agent; approved; used in the treatment of refractory
testicular tumors and in patients with small cell lung cancer

Fulvestrant Antineoplastic and immunomodulating agent; approved; investigational/a
drug treatment of metastatic breast cancer

Glibenclamide Oral hypoglycemic; approved; used for the treatment of
non-insulin-dependent diabetes mellitus

Imipramine Central nervous system agent; approved; antidepressant used for the relief
of symptoms of depression

Letrozole Antineoplastic agent; approved; investigational/introduced for the
treatment of breast cancer

Megestrol Antineoplastic and immunomodulating agent; approved;
investigational/used in the palliative treatment of breast cancer

Mifepristone
Abortifacient agent and blood-glucose-lowering agent; approved;

investigational/for the medical termination of intrauterine pregnancy; also
indicated to control hyperglycemia

Progesterone Contraceptive agent; approved, vet approved; progesterone acts on the
uterus, the mammary glands, and the brain

Raloxifene Estrogen agonist, antagonist; approved; investigational/used to prevent
osteoporosis in postmenopausal women

Tamoxifen Antineoplastic and immunomodulating agent; approved; for the treatment
and prevention of breast cancer

Testosterone
Androgen and estrogen; approved; investigational/in men, testosterone is

produced primarily by the leydig cells of the testes; testerone in women
functions to maintain libido and general wellbeing.

AR

Cyproterone
Antineoplastic agent and hormone antagonist; approved;

investigational/used in the treatment of hypersexuality in males, as a
palliative in prostatic carcinoma

Flufenamic acid Antiinflammatory and antirheumatic; experimental; analgesic,
anti-inflammatory, and antipyretic properties

Flutamide Antineoplastic agent, hormonal; approved; investigational/for the
management of metastatic carcinoma of the prostate

Levonorgestrel Contraceptive agent; approved; investigational/for the treatment of
menopausal and postmenopausal disorders

Mifepristone
Abortifacient agent and blood-glucose-lowering agent; approved;

investigational/for the medical termination of intrauterine pregnancy; also
indicated to control hyperglycemia

Spironolactone Agent causing hyperkalemia; approved; used primarily to treat low-renin
hypertension, hypokalemia, and Conn’s syndrome

Testosterone
Androgen and estrogen; approved; investigational/in men, testosterone is

produced primarily by the interstitial cells of the testes; it functions to
maintain libido and general wellbeing in women.
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4. Discussion

Colorectal cancer (CRC) is a complex disease, and the molecular mechanisms of CRC pathogenesis
are only partially understood. The augmenting effect of genetic, endocrinological perturbations,
and epigenetic aberrations contribute to the pathobiology of CRC [4–6]. High-throughput gene
expression profiling technology is considered as one of the efficient sources for screening of biomarker
candidates [7–9]. Understanding the disease pathways and exploration of biomarkers requires
integration of omics data from different levels, and the power of this multi-omics approach in
the elucidation of molecular signatures in human diseases was previously shown in many human
diseases [14–22]. Consequently, we employed a systems biomedicine approach to explore the in-depth
mechanism of CRC in the present study.

Analysis of differential gene expression in CRC using two different high-throughput
experimentations resulted in the identification of 727 upregulated and 99 downregulated DEGs.
The pathway enrichment analyses revealed significant molecular pathways including Wnt signaling
pathway and inflammatory signaling pathways, which were already implicated in the pathogenesis of
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CRC [43]. The TGF-β pathway behaves as a tumor suppressor or tumor promoter depending on context
in different cancers, and TGF-β was proposed as a target for cancer therapy [44]. Considering the
significant alterations in these pathways during the progression of the CRC, we propose their
components of as potential therapeutic targets in CRC.

Analysis of the PPI provides insight into central mechanisms on the pathobiology of cancers [45].
The PPI networks were reconstructed in order to clarify the interaction among the identified DEGs.
Several hub proteins came into prominence as the reporter signaling mediators in CRC associated PPI.
The prognostic survival analysis showed that these hub genes were significantly associated with the
worse survival outcomes in CRC patients (Figure 5). Among the hub proteins, ADNP is dysregulated
in CRC with high Wnt activity [46]; CEBPB is afflicted with colorectal cancer and glioblastoma
cells [47,48]; CCND1 dysregulation contributes to the pathogenesis of CRC [49,50]; CD44 plays diverse
roles in cancer cells [51]; CDK4 is the target for different cancer treatments including colorectal
cancer [51,52]; CENPA is associated in the pathobiology of CRC [53]; CENPH is also implicated in
CRC [54]; RFC2 is implicated in hematologic cancers [55,56]; MYC is dysregulated in CRC [57–59];
CENPN is a protein that, in humans, is involved in tge cell-cycle process showing direct binding of
CENPN to CENPA [60]. The modules significantly contained the nodes (i.e., CENPA, CENPN, and
CENPH) which are associated with different cancers and disease progression as discussed above.

Significant TFs regulating the DEGs were also characterized. Among the reporter TFs, AR is
dysregulated in the prostate cancer [61]; ETS is involved in different types of cancers [62]; GATA2 is
deregulated in CRC with poor survival outcomes [63]; GATA3 and GATA4 were proposed to be
implicated in different cancers [64]; YBX1 and FOXP3 are markers of cancers [65–67]; E2F4 disruption
is involved in cancers [68,69]; the dysregulation of PRDM14 and ESR1 is found in breast cancers [70–72].

The expression of 500 miRNAs was determined in CRC [6]. Thus, we evaluated the biomarker
potentiality of the miRNAs in CRC since they regulate genes involved in the cell cycle [12,73,74].
We identified relevant miRNA signatures (miR-193b-3p and miR-615-3p), and survival analysis showed
their significant potential as biomarkers in CRC. Recently, Wu et al. found that dysregulation of
miR-193b-3p affects the growth of CRC via TGF-β and regulation of the SMAD signaling pathway [75].
Our pathway enrichment results also showed the dysregulation of the TGF-β signaling pathway.
Moreover, miR-193b-3p is a predictive biomarker of renal cell carcinoma [76]. The high expression of
miR-615-3p is associated with the pathogenesis of CRC and gastric cancer [77,78]. Researches on these
miRNAs might provide a therapeutic target for CRC.

The survival analysis of the hub genes, TFs, and miRNAs clarified that these gene signatures
(MYC, CENPN, RFC, CENPA, CEBPB, ADNP, CDK4, CCND1, CENPH, and CD44) have high
potentiality of being prognostic biomarkers in CRC. It was found that the high expression of reporter
TF signatures (AR, GATA1, GATA2, GATA3, EST1, YBX1, PRADM14, ESR1, E2F4, and FOXP3) is
associated with worse survival outcomes of the CRC patients. The survival analysis of the miRNA
signatures (miR-193b-3p and miR-615-3p) also showed significant prognostic power in CRC. In addition,
we here identified 45 candidate repositioned drugs, which were mostly antineoplastics, antidiabetics,
and endocrinologicals.

Despite the tremendous significance of the computational finding of this present work,
further experiments at the transcription and protein expression levels (such as Western blot, qRT–PCR,
CRISPR/Cas9 gene editing, etc.) and in vitro and in vivo cell culture assays for potential drugs should
be performed for confirmation of the above results.

5. Conclusions

We employed a well-established systems biomedicine framework where transcriptome datasets
were incorporated with genome-scale human molecular networks to reveal molecular biomarker
signatures at the RNA (i.e., mRNAs and miRNAs) and protein (i.e., hub proteins and TFs) levels in
CRC. The prognostic survival analysis of the identified reporter biomolecules revealed proteomic
signatures consisting of hub proteins (MYC, CENPN, RFC, CENPA, CEBPB, ADNP, CDK4, CCND1,
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CENPH, and CD44), and regulatory signatures consisting of TFs (AR, GATA1, GATA2, GATA3, EST1,
YBX1, PRADM14, ESR1, E2F4, and FOXP3) and miRNAs (miR-193b-3p and miR-615-3p) as prognostic
biomarker candidates in CRC. In addition, candidate repositioned drugs targeting hub proteins and
TFs were identified. The identified biomarker signatures and candidate repositioned drugs in this
study deserve further experimentation, since they show importance as candidate biomarkers and
therapeutics for precision medicine approaches to treat CRC.
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