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Abstract: Deregulated angiogenesis has been identified as a key contributor in a number of
pathological conditions including cancer. It is a complex process, which involves highly regulated
interaction of multiple signalling molecules. The pro-angiogenic signalling molecule, vascular
endothelial growth factor (VEGF) and its cognate receptor 2 (VEGFR-2), which is often highly
expressed in majority of human cancers, plays a central role in tumour angiogenesis. Owing to
the importance of tumour vasculature in carcinogenesis, tumour blood vessels have emerged as an
excellent therapeutic target. The anti-angiogenic therapies have been shown to arrest growth of solid
tumours through multiple mechanisms, halting the expansion of tumour vasculature and transient
normalization of tumour vasculature which help in the improvement of blood flow resulting in more
uniform delivery of cytotoxic agents to the core of tumour mass. This also helps in reduction of
hypoxia and interstitial pressure leading to reduced chemotherapy resistance and more uniform
delivery of cytotoxic agents at the targeted site. Thus, complimentary combination of different agents
that target multiple molecules in the angiogenic cascade may optimize inhibition of angiogenesis and
improve clinical benefit in the cancer patients. This review provides an update on the current trend
in exploitation of angiogenesis pathways as a strategy in the treatment of cancer.

Keywords: angiogenesis; growth factor; endothelial cells; chemotherapy resistance; complimentary
combination

1. Introduction

Angiogenesis, the growth of new blood vessels, is central to tumor growth and metastasis [1].
Matrix degradation, endothelial cell proliferation, migration, sprouting and recruitment of mural cells
takes place during this process [2]. The growth of new blood vessels depends on the balance between
pro-angiogenic and anti-angiogenic factors, during which angiogenic switch gets activated when
pro-angiogenic stimulus is stronger than anti-angiogenic resistance. Hypoxic tumor microenvironment
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triggers release of growth factors which stimulate vascular endothelial cells to sprout and migrate,
which in turn causes release of proteases that enhance degradation of basal lamina of blood vessels.
Sprouting subsequently creates profuse network of vessels that transport nutrients and oxygen to fuel
tumor growth (Figure 1). Overexpression of angiogenic factors is often associated with hypervascular
nature of tumor angiogenesis [3]. Morphology of tumor vessels and extracellular matrix proteins
on cell surfaces are abnormal compared to normal vessels, hence many of these proteins are used as
markers to distinguish between tumor blood vessels and normal blood vessels [4,5].

Angiogenesis being the main basis of tumor growth and metastasis has been a subject undergoing
intense study. Targeting the proteins or mediators that are involved in promoting angiogenesis has
thus provided a great platform for future therapeutic treatment of cancer. As such this article intends
to explore the current trends in exploitation of angiogenesis pathways as a strategy in the treatment
of cancer.

Figure 1. Progression in tumor angiogenesis. Hypoxic tumor microenvironment triggers cells to
produce and release chemokines and cytokines. The overexpression of growth factors enhances
protease production leading to degradation of vessel basal lamina, and modulates endothelial cell
migration and proliferation. Tip cell guides the sprouts of new blood vessels towards the stimulus.
Recruitment of mural cells and generation of new basal membrane enhance blood vessel maturation.

2. Targeting Tumor Vasculature as a Therapeutic Strategy

Linings of the entire vascular system including blood and lymphatic vessels are made up of
endothelial cells (EC) [6,7]. In angiogenesis and lymphangiogenesis vascular and lymphatic ECs
play a very important role as versatile and multifunctional organs [6]. Regulation of angiogenic and
lymphangiogenic processes depends on the heterogenous behaviour of EC that exhibits complex
and diverse functions in different microenvironment [8]. In fact, these processes involve plenty of
molecular regulators and signaling pathways. In addition to vascular endothelial growth factor (VEGF),
other angiogenic factors including fibroblast growth factor (FGF), human epidermal growth factor
(HEGF), thromposondin 1 (TSP-1), endostatin and angiobiotin may act on ECs directly or indirectly by
inducing expression of angiogenic factors [9].

Rapid growth of neoplastic cells in tumor mass together with overexpression of multiple
pro-angiogenic factors often lead to development of vascular network that display numerous structural
and functional abnormalities. Newly formed blood vessels usually display irregularity in functional
perfusion alongside excessive branching and shunts [10,11]. Similarly, tumor vasculature lacks
structural organization into arterioles, capillaries and venules and has uneven blood flow towards
tumor mass. These structural abnormalities result in formation of hypoxic and acidic areas inside
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rapidly growing tumors [12]. In addition, a process known as vascular mimicry where tumor cells
can be incorporated into endothelial wall followed by differentiation of tumor stem-like cells into ECs
play an essential role in tumor vascular system [13]. Heterogeneous distribution of blood vessels is
apparent with dense network of blood vessels which is present on invading tumor edges, while there
is less blood supply towards the core of the tumor mass [13]. Furthermore, rapidly proliferating tumor
cells can also exert pressure on tumor vasculature which results in generation of increased interstitial
pressure [13,14]. This causes reduced blood supply and removal of metabolic wastes from tumor
mass that leads to generation of hypoxic and acidosis condition within the tumor microenvironment.
These structural abnormalities are responsible for impaired delivery of anticancer drugs to tumor
mass as well as generation of chemotherapy and radiotherapy resistant clones [15,16]. Structural
and functional abnormalities observed in tumor vasculature may result in dual effects. In light of
this, many studies have looked into targeted delivery of therapeutic modalities especially when
anti-angiogenic and chemotherapy drugs are combined together [17].

3. Molecular Mediators of Angiogenesis

Tumor microenvironment (TME) is created by a complex and dynamic network of growth factors,
cytokines, chemokines, inflammatory cells and matrix remodeling enzymes [18]. Individual role of
these mediators in carcinogenesis is highlighted in the following sections.

3.1. Inflammatory Cells

Macrophages are innate immune cells differentiated from bone marrow-derived monocytic
precursor cells [19]. Once these precursors arrive in their destined tissues, they are polarized
into distinct macrophage subsets and display different phenotypes depending on the tissue
microenvironment they reside in. Fundamentally, these subsets are comprised of the “classical M1” and
the “alternative M2” macrophages via displaying specific expression profiles of cell-surface markers,
enzymes and cytokines [20]. Characteristically, these cells produce pro-inflammatory cytokines such
as Interleukin (IL)-6, -12, -23 and tumor necrosis factor (TNF) α. M1 and M2 macrophages counteract
inflammation and perform reparative functions by contributing to wound healing, tissue repair
and angiogenesis [20,21]. Macrophages are also found within stroma of tumors and are commonly
referred to as tumor associated macrophages (TAMs) [22]. These macrophages support tumour growth
and metastasis. Therefore, the development of therapeutic candidates to hinder the recruitment
macrophages at primary and secondary tumour sites may be an important strategy to improve cancer
survival [23].

3.2. Growth Factors

3.2.1. Vascular Endothelial Growth Factors (VEGFs)

VEGFs are the most critical pro-angiogenic factors that enhance tumor growth and thus,
have become an attractive target for angiogenesis therapy [24]. The VEGF family consists of seven
ligands namely VEGF-A, -B, -C, -D, and -E, placenta growth factors (PIGFs)-1 and -2 [25]. The vascular
endothelial growth factor receptors (VEGFR-1, -2, and -3) are basic transmembrane receptor tyrosine
kinases that are able to form homodimers and heterodimers [26]. Dimerization of these receptors
is accompanied by activation of receptor-kinase activity that leads to auto-phosphorylation of these
receptors [27]. Cell migration, proliferation, survival, and mobilization of endothelial progenitor cells
from the bone marrow into the peripheral circulation involves VEGFRs [24]. Moreover, these receptors
have the ability to transduce signals within the vascular tubes to regulate vascular permeability that
leads to oedema and swelling of tissues [25]. VEGFR-1 plays an important role in the physiological and
developmental angiogenesis [27]. As the decoy receptor for VEGF-A, VEGFR-1 has the ability to bind to
VEGF-B and PIGF [26]. VEGFR-1 works as a positive regulator of angiogenesis as well as macrophage
and monocyte migration [25,28]. Besides that, the majority of the downstream effects in angiogenesis is
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mediated by VEGFR-2, another receptor for VEGF-A, which also mediates microvascular permeability,
endothelial cell proliferation, migration, invasion and survival [26]. VEGFR-2 is regarded as the earliest
marker for endothelial cell growth that directly controls the tumour angiogenesis. Autocrine/paracrine
mechanisms in the processes of cancer cell survival and proliferation is mediated by the upregulation
of VEGF/VEGFR-2 signalling [15,29]. VEGFR-3 on the other hand binds to VEGF-C and VEGF-D
to enhance endothelial cell migration and proliferation [30]. Although VEGFR-3 is expressed in
adult human with transient lymphangiogenesis and remodeling of primary vascular networks
during embryogenesis, it is lowly expressed in the blood vessels during tumor angiogenesis [31].
VEGFR-3 is required for the initial steps of VEGFD-mediated lymphogenous metastasis, even though
lymphogenous metastasis is reported to be less dependent on VEGFR-2 mediated angiogenesis [31].
Apatinib, axitinib, bevacizumab, and ramucirumab are antiangiogenic agents and targets VEGF and
its receptors in different types of cancer [32–34].

3.2.2. Fibroblast Growth Factors (FGFs)

FGFs comprise a family of nine related polypeptides that are mostly expressed in pituitary, brain,
and eyes in mammals [35]. Fibroblast growth factor receptor (FGFR)-1, -2, -3, and -4, are structurally
related four receptor tyrosine kinases which mediates the biological effects of FGF [36]. Acidic and
basic FGFs have been well characterized as angiogenic factors which play an important role in cell
proliferation, differentiation, and cell migration [37]. Acidic and basic FGFs have been reported to have
a synergistic effect with VEGF and PDGF on microvascular endothelial cell proliferation model [37].
Furthermore, FGFs and their receptors (FGFRs) have been implicated in several human cancers growth
and progression.FGFs are pleiotropic factors that exhibit paracrine and autocrine properties on tumor
and stromal cells [38]. Thus, FGFs may represent key players in the complex crosstalk among tumor
growth, angiogenesis, inflammation, and drug resistance that contribute in tumor progression [38].
Emibetuzumab is an antiangiogenic agent and targets FGFs in gastric cancer [39], whereas, lucitanib,
pazopanib, and ponatinib are antiangiogenic agent and targets FGF receptors in different types of
cancer [32].

3.2.3. Platelet-Derived Growth Factors (PDGFs)

PDGFs are members of the growth factor family that binds to tyrosine kinase receptors α and
β (PDGFR α and β) have been shown to play an important role during blood vessel development
in both normal and pathological angiogenesis [40]. These factors stimulate fibroblast proliferation,
survival, and migration to make contact withcollagen matrices and induce myofibroblast phenotypes
in these cells [41]. PDGFs are also involved in growth factor-mediated integrin activation which
is critical for cell proliferation and signalling in tumor angiogenesis [40,42]. In many cases, PDGF
signalling can cooperate with integrin signalling to induce oligodendrocyte precursor proliferation via
phosphotidylinositol-3 kinase (PI3K)-dependent signalling pathway [42]. PDGF signalling involves
degradation of MAP-kinase phosphatase which enhances ERK-MAP-kinase activation in porcine aortic
endothelial (PAE) and human embryonic kidney 293T cells, which further promotes cell migration,
proliferation, and cell cycle progression [43]. PDGFRs have been reported to activate STAT transcription
factors via activation of JAK kinases [44]. Cediranib, imatinib, lenvatinib, pazopanib, ponatinib,
and sorafenib are used to target PDGFs in caner [32,45,46].

3.2.4. Epidermal Growth Factors Receptors (EGFR) and Human Epidermal Growth Factors
Receptor2 (HER2)

Emerging evidence has demonstrated importance of targeting angiogenesis using HER2
inhibitors [47]. EGFR and HER2 have been reported to mediate tumor angiogenesis by up-regulating
VEGF and vascular permeability factors in cancer cells [48]. HER2 (c-erbB2) belongs to membrane
tyrosine kinase family, which also includes HER1 (EGFR), HER3 (c-erbB3), and HER4 (c-erbB4) [48].
HER2 has been found to enhance corneal epithelial cell wound healing and neovascularization in
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rabbit models [47,49]. Vandetanib is an antiangiogenic agent and targets EGFR in medullary thyroid
cancer [50].

3.2.5. Transforming Growth Factor-B (TGF-B)

This family of growth factors is comprised of 30 members and three isoforms of TGF-β i.e., TGF-β
1–3. It is secreted by ECs and pericytes in an inactive form and needs cleavage by proteases in acidic
environment and heat. Studies have shown that TGF-β acts as a pro-angiogenic and angiostatic
agent. In vitro studies show that it acts as a anti-angiogenic agent in a receptor specific manner and
down-regulates VEGFA expression through PKA-mediated pathway [51]. On the contrary, results
from in vivo studies show that it modulates EC wound proliferation, migration and capillary tube
formation owing to its ability to recruit inflammatory cells, which release pro-angiogenic molecules.
It also modulates the activity of other angiogenic pathways which may account for its pro-angiogenic
effects in vivo [52].

3.2.6. Angiopoietins (Angs)

Angiopoietins represent family of extracellular ligands which bind with Tie receptors present on
surface of ECs. There are four members in this family i.e., Angiopoietin 1, 2, 3 and 4. Angiopoietin
(Ang) 1 and 2 bind with Tie-2, but elicit very different responses. Angiopoietin 1 (Ang 1), secreted by
vascular smooth muscle and other periendothelial cells, lacks ability to induce ECs proliferation or tube
formation in vitro, but it promotes sprouting of ECs. Binding of Ang-1 with its receptors, causes rapid
receptor trans-phosphorylation, with subsequent activation of protein kinase B/Akt/FKHR (FOX01)
downstream pathway which in turn is responsible for ECs survival [53]. Ang 2 has been shown to
have a broad spectrum of effects (angiogenic as well as angiostatic) in angiogenic cascade depending
on the type of co-stimulatory molecules present. During early angiogenic events in the presence of
angiogenic stimuli (VEGF and hypoxia) it causes dramatic increase in the number of ECs by competing
with Ang 1 to bind with Tie 2 receptors and prevents receptor auto-phosphorylation. Ang 2 promotes
angiogenesis via EC survival, migration, capillary diameter expansion and differentiation into tubular
network [13]. In vivo studies show that Ang 2 is highly expressed in vascularised tumors. In absence
of angiogenic stimuli Ang 2 however acts as an antiangiogenic agent leading to induction of apoptosis
in ECs and vessel regression [53].

3.3. Cytokines and Chemokines

Cytokines are proteins that are secreted by the innate and adaptive immune system to regulate the
different biological functions in immune response [54]. The cytokines are structurally similar however
they exist in broad families and perform different functions [54]. Chemokine superfamily has a wide
rangeof lowmolecular weight chemotactic proteins that are involved in regulation of multiple steps of
tumorprogression and metastasis including proliferation, neovascularization, invasion and migration
of malignant cells to distinct organs [55]. This family is divided into two broad categories mainly
thosehaving “ELR” motif (ELR+ or ELR1) which are potent promoters of angiogenesis, whereas
members that are induced by interferon and lack ELR motif (ELR− or ELR2) which are potent
angiogenic inhibitors with exception of chemokine (C-X-C motif) ligand (CXCL12) [56]. CXCL8 is one of
most extensively studied chemokines in the ELR+ category, as a potent angiogenic mediator in a variety
of in vitroand in vivo assays [57]. In vitro studies have shown that CXCL8 receptors (CXCR1 and
CXCR2) are located on surface of epithelial cells, CXCL8 binds with these and induces ECs proliferation,
and differentiation into a capillary-like networkand inhibits apoptosisin a dose dependent manner [58].
CXCL8 exerts its angiogenic activity by up-regulating matrix metalloproteinase (MMP-2) and MMP-9
enzymes in tumor and endothelial cells leading to degradation of extracellular matrix which is
one of pre-requisites for EC migration and organization [59]. Another important pro-angiogenic
member of this family is CXCL12 that is likely to be derived from specialized stromal cells and tumor
cells [59]. Angiostatic chemokines (ELR−) include platelet factor 4 (CXCL4/PF) -4, CXCL4L1/PF-4var,
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CXCL9/Mig, CXCL10/IP-10, CXCL11/I-TAC and CXCL14/BRAK [60]. Main receptor for angiostatic
CXC ELR− chemokines is CXCR3. It can bind to CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10 and
CXCL11/I-TAC [61]. CXCL4/PF-4, a second major platelet chemokine, is the first member of this
family described to have angiostaticbehaviour. It is stored alongside with other secreteable platelet
proteins including pro-angiogenic chemokines [62]. Binding of pro-angiogenic factors (VEGF and
bFGF) to their respective receptors on surface of ECs are inhibited by CXCL4/PF-4 and also halts cell
cycle progression [62]. CXCL9 and CXCL10 are other members of this group which have been shown
to inhibit various stages of angiogenesis invitro and in vivo assays [63]. CXCL10 inhibits CXCL8- and
FGF-2-mediated angiogenesis [55].

3.3.1. Tumor Necrosis Factor α (TNF-α)

Like TGF-β, controversial reports exist on the role of TNF-α in angiogenesis [64]. Studies have
shown that TNF-α inhibits angiogenic sprouting at higher concentrations, while at lower concentration
stimulates angiogenesis cascade by inducing “tip cell” phenotype in ECs through an NF-κB dependent
mechanism [65]. TNF-α delays the VEGF-driven angiogenic response by blocking signalling through
VEGFR2 besides also up-regulating the expression of granulocyte-macrophage-colony stimulating
factor (GM-CSF), interleukin-1 (IL-1), platelet-derived growth factor B (PDGFB) and vascular
endothelial cell growth factor receptor-2 (VEGFR2), all at the same time [66]. Thus, the temporary
expression of TNF in angiogenesis is critical: angiogenesis is delayed by initially blocking VEGFR2
signalling, while inducing a tip cell phenotype through NF-κB dependent mechanism, it concurrently
prompt the endothelial cells (ECs) for sprouting once initial inflammatory phase has passed [53].
TNF-α and LPS exposure led to the up-regulation of VEGF and SIRT1 with subsequent up-regulation of
MMP-2 and MMP-9 production to promote angiogenesis via pathways involving PI3K, p38, ERK, JNK
and NF-κB was understood from another study that was using human dental papilla cells (HDPCs) [67].
Thalidomide is an antiangiogenic agent and targets TNF-α in AML myeloid metastasis [68].

3.3.2. Interferon Alpha (IFN-α)

IFN-α is a cytokine which has been shown to exhibit broad spectrum pharmacological activities
including angiogenesis arresting. It has been shown to inhibit EC motilityand survivalby blocking
activity of angiogenic molecules including bFGF, IL-8, and MMP-9 [69]. In vivo xenograft studies
have shown that it arrest tumor growth via different mechanisms in different animal models.
In subcutaneous xenograft models anti-angiogenic effects of IFN-α appear to be associated with
increased hypoxia and ischemic necrosis, while in transgenic mouse models, IFN-α has been shown to
simultaneously target both blood vessels and tumor cell proliferation, leading to regression of tumors
without necrosis [70].

3.3.3. Monocyte Chemotactic Protein-1 (MCP-1)

MCP-1, a key CC chemokine has been shown to have angiogenic activities in a variety of in vitro
and in vivo assays. It has been shown to play a central role in inflammation and angiogenesis and
controls trafficking and activation of monocytes/macrophages through its receptor CCR2. Studies
have revealed that MCP-1 can directly act on ECs to induce angiogenesis. In vivo studies using rabbit
and porcine models have resulted in increased monocyte/macrophage recruitment, collateral vessel
formation, and blood flow to ischemic tissue in hind limb models of ischemia through exogenous
administration of MCP-1 [71].

3.3.4. Hepatocyte Growth Factor (HGF) and C-Met

HGF and its receptor c-Met are involved in a communicative interplay between HGF-producing
mesenchymal cells and c-Met-expressing target cells [72]. HGF is an angiogenic growth factor
and its mitogenic effect in vitroin endothelial cellsis even more than that elicited by VEGF and
bFGF [73]. HGF and c-Met receptor are essential to induce regeneration of endothelial cells and
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neovascularization during myocardial infarction [74]. The combination of HGF and VEGF has
an additive effect on migration of endothelial cells and enhanced neovascularization in vivo [74].
Maturation of blood and collateral vessels promote angiopoietin/Tie2 ligand receptor system [75].
Notably, angiopoietin promotes HGF and induces the recruitment of smooth muscle cells, enhancing
the stabilization of angiogenesis [72]. Previous studies have proven that HGF induced c-Met
activation plays a fundamental role in angiogenesis and tumour progression in colorectal cancer
by avoiding anti-angiogenic therapy and maintaining the glucose uptake and utilization by inducing
GLUT1 expression [76]. In addition, inhibition of HGF and c-Met signaling pathway has resulted in
tumor reduction and progression in pancreatic cancer which paves the way for effective therapeutic
approach [77].

3.4. Membrane Protein and Adhesion Proteins

3.4.1. Ephrins (Eph)

Ephrins are ligands of ephrin receptors that are involved in angiogenesis via contact–dependent
cell-cell communication [78]. Eph receptors are considered largest receptor families in tyrosine
kinase receptors that are required for blood vessel maturation and vascular remodelling during
embryonic development [79]. Eph receptors can be divided into two groups, namely EphA and EphB
receptors, with EphA2/ephrinA1 and EphB4/ephrinB2 playing important roles in vasculogenesis and
angiogenesis [80]. Both receptors are required for vascular development during embryonic stage [78].
Reciprocal function of both EphB4/ephrinB2 promotes proper spatial position and vessel assembly
during angiogenesis. On the other hand, EphA2 and ephrinA1 are found to correspond to regions
of blood vessel formation, and may play a role in enhancing angiogenesis [80]. Nevertheless, ephrin
protein expression may be different in tumor vessels due to poor distinction and organization of
arterial and venous nature in tumors [78]. Regorafenib is an antiangiogenic agent and targets EGFR in
metastatic colon cancer [81].

3.4.2. Semaphorins

Semaphorins and its receptors are a large family of secretory and membrane bound proteins that
regulate various biological processes including angiogenesis and cancer progression [82]. Semaphorins
are classified into eight classes with two major receptor families, neuropilins and plexins [82].
It was reported that semaphorins class three inhibited VEGF by competing with VEGF to bind
to neuropilins. Another study reported that the transcription repressor zinc finger E-box binding
homeobox-box (ZEB)-1 was highly expressed in lung cancer after inhibiting semaphorins class
three [83]. Re-expression of semaphorins class three in the tumors results in reduced tumor hypoxia
and in vessel normalization [82].

3.4.3. Integrins

Integrins are a class of heterodimer adhesion molecules comprising of isoforms of α and β

subunits. At least eight heterodimeric integrins (α1β1, α2β1, α3β1, α6β1, α6β4, α5β1, αvβ3, αvβ5)
have been identified on ECs; each of these heterodimer recognizes specific ligands in extracellular
matrix (ECM). These transmembrane glycoproteins are highly expressed in newly-formed blood vessels
and known to play important role during cell-cell and cell-ECM interactions. Integrins are involved
in regulation of many physiologic processes, such as inflammation, immunity, hemostasis, wound
healing, tissue differentiation, regulation of cell growth, and angiogenesis. Abnormalities in integrin
signalling have been shown to promote many diseases including autoimmune diseases, thrombotic
disorders, and cancer. Many lines of evidences have shown that these integrin heterodimers act via
different mechanisms to promote angiogenesis. bFGF is required for αvβ3-mediated angiogenesis
while integrin αvβ5 requires VEGF-to induce its pro-angiogenic effects [84]. Apart from promoting
angiogenesis, these molecules are also known to suppress apoptosis in ECs [85]. When α5β1 and
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αvβ3 inhibit caspase-8 activation, the expression of Bcl-2, an anti-apoptotic protein, is upregulated,
which suppresses protein kinase A (PKA) activity, which is required for caspase-8 activation causing
cells to be deprived of integrin-mediated adhesion to the ECM, leading to the cells to rapidly undergo
apoptosis. [86]. Other integrins, such as αvβ3 and α5β1, promote cell survival by suppressing p53
activity and activation of nuclear factor κB and Shc pathways [87].

3.4.4. Vascular Endothelial (VE)-Cadherin

Also known as cadherin-5, this is an important member of the cadherin superfamily of
transmembrane molecules, which play a key role in endothelium integrity, control of vascular
permeability and in a variety of cell-cell interactions. Role of VE-cadherins in tumor-associated
angiogenesis has been highlighted by numerous studies. Earlier studies have shown that blocking
function of this cadherin by antibodies resulted in blockade of neovascularization at various primitive
stages in embryos of mice indicating that VE-cadherin is required for developmental angiogenesis [88].
It was reported that VE-cadherin disassembly and cell contractility endothelium are necessary for
barrier disruption induced by tumor cells [89].

3.4.5. Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31)

PECAM-1, also known ascluster of differentiation 31 (CD31) is a protein from immunoglobulin
(Ig) superfamily and is expressed in wide range of cells within the vascular compartment including
ECs, platelets, macrophages, Kupffer cells, granulocytes, T/NK cells, lymphocytes, megakaryocytes,
neutrophils and osteoclasts [90,91]. In ECs it is present in abundance at intracellular junctions
of adjacent cells where it serves the purpose of adhesion thus keeping cells together [92].
This cell-cell interaction has been shown to be necessary for in vitro organization of ECs into
tubular networks.Administration of antibody against PECAM-1, has been shown to block in vitro
differentiation rat capillary ECs into a tube-like network. Moreover, it also blocked bFGF-induced rat
corneal neovascularization thus preventing angiogenesis [52].

3.5. Matrix Degrading Enzyme

Matrix Metalloproteinases (MMPs)

MMPs, also known as matrixins, are a family of enzymes which have capacity to degrade various
components of extracellular matrix (ECM). However, studies have revealed that MMPs’ control
multiple phases of angiogenic cascade including release of ECM-sequestered pro-angiogenic factors,
release of ECM bound growth factors and receptors, including integrins and adhesion receptors,
and release of endogenous inhibitors of angiogenesis [93]. To thisdate, 20 members of this family have
been identified. Out of these, MMP-2 and -9 which are synthesized and secreted in large amounts by
tumor cells in a paracrine and/or autocrine manner, have been extensively studied. These enzymes
are known to play a critical role in the “angiogenic switch”, increasing release of VEGF, thus shifting
balance towards increased tumor angiogenesis. A strong positive correlation between MMP-2, -9 and
VEGF exists in majority of solid tumors leading to remodelling of ECM, increased EC proliferation,
migration and vessel sprouting [94]. Studies revealed that MMP-9 is required for shift of angiogenic
balance towards pro-angiogenic phase while MMP-2 contributes in tumor growth. Exogenous MMP-9
has been revealed to enhance EC growth in vitro, and is shown to increase VEGF releasefrom ECM.
In addition it is also involved in recruitment of pericytes to newly formed blood vessels [93].

3.6. Small Mediators

3.6.1. Histamine and Serotonin

Histamine and serotonin (5-hydroxytryptamine [5-HT]) are biogenic amines which have been
shown to play a key role in the regulation of multiple essential processes in in vivo and cultured
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cells. Histamine is mostly found in mast cells and basophils, macrophages, parietal cells of stomach,
cancer cells and mammalian tissues by neurons. Serotonin is widely expressed in dense granules
of platelets and granules of mast cells along with histamine. Studies have shown that these amines
have dual effect on angiogenesis cascade. At first exposure, these amines induce angiogenesis which
is dependent on TR3/Nur77 signalling. These amines act on HUVECs and induce proliferation,
migration, and tube formation in in vitro assays and reduce the expression of thrombspondin-1
(TSP-1), a potent angiogenesis inhibitor. However, these effects are transient which are followed by
up-regulation of TSP-1 promoter and restoration of TSP-1 levels to normal. This trigger a negative
feedback loop leading to regression of vasculature and limiting the angiogenic response induced by
histamine and serotonin [95].

3.6.2. Endostatin

Endostatin is a 20 kDa carboxyl-terminal proteolytic fragment of type XVIII collagen. It inhibits
angiogenesis under different pathological conditions distinguished by increased angiogenesis and
acts as a potent endogenous inhibitor of angiogenesis in cancer and many other experimental models.
Endostatin has been reported to interfere with VEGF/VEGFR signalling and suppresses TNF-α, FGF-2
mediated angiogenesis leading to inhibition of ECs proliferation, migration/invasion, differentiation
into tubes and increased apoptosis [96,97].

3.6.3. Angiostatin

Angiostatin, a 38 kDa amino terminal fragment of plasminogen, is another endogenous inhibitor
of angiogenesis which needs to be cleaved by various proteases to be activated. It has been shown
to have both potent antiangiogenic activity and anti-proliferative activities in both endothelial and
cancer cells. It acts on ECs and blocks multiple steps in angiogenic cascade including proliferation,
migration and differentiation into tube-like structures inin vitromodels. It also inhibits HGF stimulated
migration and proliferation of smooth muscle and ECs but has little effect on VEGF or bFGF-induced
angiogenesis cascade [98]. Adding to that, it also interrupts G2/M phase of cell cycle in these cells [99].
In vivo angiostatin has been shown to strongly block neovascularisation and tumor metastasis [100].
Mechanistically it is proposed to bind with subunits of ATP synthase in ECs thereby rendering them
out of ATP supply and thus inhibit proliferation. It also binds with integrin αγβ3 and block angiogenic
signalling through this pathway [52].

3.6.4. Thrombospondins (TSPs)

TSPs were first identified by Jack Lawler and colleagues in 1977 in platelets treated with thrombin.
Since then extensive research is being conduct on these molecules and till date five member of
this family (TSP 1–5) have been identified. TSP-1 and -2 have been shown to have anti-angiogenic
activity owing to their “type I repeats” which play a major role in anti-angiogenic properties of
TSP-1 and -2 [101]. TSP-1, has been revealed to be synthesized and secreted by a wide variety of
ECs from different sources including aortic, venous, capillary, and corneal endothelial cells as well
as from fibroblasts and smooth muscle cells. Both TSP-1 and -2 directly neutralize the activity of
VEGF on EC, arresting cell migration, proliferation, survival, and promote apoptosis [102]. CD36,
CD47, and integrins are the channel from which TSP-1 and TSP-2 exert their direct effects [103].
Other than that, these receptors appear to associate with VEGFR2 to form a platform that receives
positive and negative signals for angiogenesis [103]. Cross talk between pro- and anti-angiogenic signal
transduction pathways shows by antagonizing survival pathways while also activating apoptotic
pathways, it may enable TSP-1 and TSP-2 to inhibit angiogenesis [104].

3.6.5. Galectins (Gals)

Galectins are from the lectin family. They show high affinity for β-galactosides [105]. Gals have
been found in almost every cell and they play a fundamental role in cell signaling, proliferation,
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migration, apoptosis, and mRNA splicing. Galectins are classified intothree groups based on their
structure, the prototype galectins, chimeric galectins, and the tandem repeat galectins. Among all the
galectins, plenty of focus has been placed onto Gal-1, -3, -8, -9 [106–108]. Galectin-targeted angiostatic
therapy can be aimed at scavenging the secreted angiostimulatory galectins and thus block their
coupling with oligosaccharide chains in endothelial cells [109,110]. For instance, gal-1 was found
to be involved in VEGFR2 signalling in tumors which promoted the secretion of the growth factor
leading to angiogenesis [106,111]. Gal-3 induce the release of pro-inflammatory cytokine such as IL-6,
G-CSF, GM-CSF, and sICAM-1 from endothelial cells, increasing endothelial cell surface adhesion
molecules leading to the promotion of metastasis that improved cell tube formation which portrayed
angiogenesis [107,108]. There is limited information regarding gal-8 and gal-9, however it is understood
that gal-8 stimulated tube formation and migration of EC while gal-9 was involved in sprouting [111].
There is much research still need to be done regarding gal-8 and -9 in cancer.

3.7. MicroRNA (miRNAs)

Mounting evidence indicates that miRNAs play a key role in diverse biological processes but
in cancer particularly, miRNAs play a key role in tumorigenesis, angiogenesis and have oncogenic
or tumor suppressor roles [112,113]. miRNAs can be classified as pro-angiogenic or anti-angiogenic,
among them most are predominantly pro-angiogenic. miRNA-155 was found to be frequently
overexpressed in different types of cancer and the ectopic expression of miRNA-155 upregulated
angiogenesis in the cancer [114]. miRNA-296 is involved in regulation of PDGFR, EGFR and VEGFR
signalling pathways [115]. In vivo studies demonstrated that down-regulation of the miRNA-126
stimulates Sprouty Related EVH domain containing protein 1 (SPRED-1) and phosphoinositol-3kinase
regulatory subunit 2 (PIK3R2/p85-beta), which are both negative regulators of the VEGF/VEGFR
signalling pathway [116,117]. miRNA-7 was recently identified as an anti-angiogenic miRNA and
targets the EGFR and PI3K signalling pathways. It inhibits angiogenesis and also tumor cell
proliferation [118].

4. Future Perspectives

Pre-clinical and clinical data shows that anti-angiogenic strategy holds a promise to treat some
cancer types especially solid tumors. Although this technique still needs to optimize and study more
to make sure there is no side effect and risky using it. It is very important to understand how and
why different target genes are activated according to cell type and angiogenic tumor. Anti-angiogenic
therapies have been used as anticancer therapy and there are a number of potential anti-angiogenic
compounds that have been shown to suppress the growth of tumor and metastasis. Theses inhibitors
function by blocking the activity of growth factors either by binding to the ligands or by preventing
the interaction with the VEGF receptors and their ligands (Table 1). Therapies targeting not only tumor
cells or EC cells but also TAMs are highly demanded keeping in view the present complex scenario of
cancer progression. This idea is based on broad spectrum targeting of multiple targets in cancer thus
arresting multiple phases of tumor progression. Innovations in experimental treatment of cancers are
thanks to the advances in understanding the molecular regulation of angiogenesis. This has paved the
way for future improvements in the field of cancer treatment study and will likely continue to offer
vast avenues for discovery in other disease processes as well.
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Table 1. List of anti-angiogenic agents.

No Antiangiogenic Agent Target/Targets Cancer Type References

1 ABP 215 VEGF Metastatic non-squamous NSCLC [32,119]

2 Apatinib VEGF and VEGFR-2

Advanced or metastatic gastric cancer, advanced non-squamous non small cell
lung cancer, colorectal cancer, metastatic esophageal cancer, advanced
pancreatic cancer, advanced and metastatic breast cancer, metastatic renal cell
carcinoma, and thyroid cancer Platinum-resistant or refractory ovarian cancer

[32,33]

3 Axitinib VEGF-1, 2, and 3 Renal cell carcinoma [120,121]

4 Bevacizumab VEGF Metastatic colorectal cancer, non-squamous, non-small cell lung cancer and
metastatic breast cancer [34,122,123]

5 Bortezomib NF-κB and VEGF Multiple myeloma (MM) and mantle cell lymphoma [124,125]

6 Cabozantinib
RET, MET, VEGFR-(1,2,and 3), KIT,
TRKB, FMS-like tyrosine kinase-3(FLT3),
AXL ROS1, TYRO3, and TIE-2

Progressive, metastatic medullary thyroid cancer, Advanced renal
cell carcinoma [32,126]

7 Cediranib VEGFR1, VEGFR2 PDGFR-β,
and VEGFR-3 Prostate, pancreatic, colon, breast, neck, renal cancers, ovarian and AML [45,127]

8 Glesatinib c-MET and AXL Non-small cell lung cancer and head and neck squamous cell carcinoma [128]

9 Emibetuzumab FGF and HGF Gastric cancer [39]

10 Everolimus mTOR HER2-HR+ breast cancer Advanced renal cell carcinoma Pancreatic
GI-NETNET Lung NET Subependymal giant cell astrocytoma [32,129]

11 Lenalidomide VEGF and Interleukin-6 Multiple myeloma, primary myelofibrosis, and myeloid metastasis [130,131]

12 Imatinib VEGF, PDGF
PDGF, SCF, c-kit, and BCR-ABL

Chronic myeloid leukemia (CML), gastrointestinal stromal tumor (GIST),
and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia [123]

13 Lenvatinib VEGFR-(1, 2, and 3), FGFR-(1, 2, 3, and 4),
PDGFR-alpha, KIT, and RET Differentiated thyroid cancer renal cell cancer [32,132]

14 Lucitanib VEGFR-(1, 2, 3) and FGFR-(1, 2) Metastatic breast cancer [32,133]

15 Olaparib PARP and VEGFR ovarian cancer [134]

16 Pazopanib
VEGFR-1, -2, -3, PDGFR-alpha,
PDGFR-beta, FGFR-1, -3, KIT, LTK,
Lck, c-Fms

Advanced renal cell carcinoma Advanced soft tissue sarcoma [32,135]
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Table 1. Cont.

No Antiangiogenic Agent Target/Targets Cancer Type References

17 Ponatinib ABL, VEGFR, PDGFR, FGFR, EPH
receptors, SRC, KIT, RET, TIE2, FLT3 Chronic myeloid leukemia Acute lymphoblastic leukemia [32,136]

18 Ramucirumab VEGFR-2 Metastatic colorectal Metastatic NSCLC Advanced or metastatic gastric or
gastroesophageal junction adenocarcinoma [32,137]

19 Regorafenib

RET, VEGFR-1, -2, -3, KIT, PDGFR-alpha
and beta, FGFR-1, -2, TIE2, DDR2, TrkA,
Eph2A, RAF-1, BRAF and BRAFV600E,
SAPK2, PTK5, Abl

Metastatic colorectal cancer locally advanced, unresectable, or metastatic GIST [32,81]

20 Sorafenib
VEGFR-2 and -3, PDGFR-b, FLT3,
and c-Kit VEGFR-1, -2, -3, PDGFR-beta,
KIT, FLT3, RET, RET/PTC

Unresectable Hepatocellular carcinoma Advanced renal cell carcinoma Locally
recurrent or metastatic, progressive, and differentiated thyroid carcinoma [46]

21 Sunitinib VEGFR-1, -2, -3, PDGFR-alpha and beta,
KIT, FLT3, CSF-1R, RET Advanced and metastatic renal cell carcinoma [138]

22 SU5416 (Semaxinib) VEGFR-(1 and 2), c-kit, and FLT3 Advanced acute myeloid leukemia (AML) and myelodysplastic syndromes [139,140]

23 Temsirolimus mTOR Advanced renal cell carcinoma [141]

24 Thalidomide TNF-α synthesis AML myeloid metastasis [68]

25 Vandetanib VEGFR, EGFR, RET, BRK, TIE2, EPH
receptor, SRC kinase Symptomatic or progressive medullary thyroid cancer [142]

26 Vatalanib VEGFR and PDGFR tyrosine kinases Breast, colorectal carcinoma, liver metastasis, AML, PMF, blast phase of
chronic myelogenous leukemia, and myelodysplastic syndromes (MDS) 7374 [50,143]

27 Ziv-aflibercept VEGF-(A and B) and PIGF Metastatic non-squamous non-small cell lung cancer [144]

EGF: vascular endothelial growth factor; NSCLC: non small cell lung cancer; PDGFR: platelet-derived growth factors receptor; VEGFR: vascular endothelial growth factor receptor;
NF: necrosis factor; RET: rearrange during transfection; MET: mesenchymal-epithelial transition factor; KIT: cellular homolog of the transforming gene of a feline retrovirus;
TRKB: Tropomyosin receptor kinase B; FLT3: FMS-like tyrosine kinase-3; AXL: anexelekto; ROS: Proto-oncogene tyrosine-protein; TYRO: tyrosine kinase-binding protein; TIE: Tyrosine
Kinase With Immunoglobulin And Epidermal Growth Factor Homology Domains; FGF: fibroblast growth factor; HGF: hepatocyte growth factor; mTOR: mammalian target of rapamycin;
SCF: Stem cell factor; BCR-ABL: breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog 1; HER-2-HR+: human epidermal growth factor receptor 2-positive
breast cancer; GI-NET: Gastrointestinal neuroendocrine tumors; LTK: Leukocyte Receptor Tyrosine Kinase; Lck: lymphocyte specific protein tyrosine kinase; c-Fms: macrophage
colony-stimulating factor receptor (M-CSFR); EPH: Ephrin; SRC: Steroid Receptor Coactivator; DDR2: discoidin domain-containing receptor 2 precursor; TrkA: tropomyosin receptor
kinase A; Eph2A: ephrin type-A receptor 2; RAF-1: proto-oncogene serine/threonine-protein kinase; BRAF: serine/threonine-protein kinase B-Raf; SAPK2: Serine/threonine-protein
kinase 2; PTK5: protein tyrosine kinase 5; PTC: phenylthiocarbamide; CSF-1R: colony stimulating factor 1 receptor; PMF: primary myelofibrosis.
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5. Conclusions

Currently, with a small number of identified targets in different cell type and tissue, it is difficult
to predict a particular gene therapy to specific cell or tumor. Therefore, understanding the role of
these target genes in normal cells and tumors will allow developing drugs that specific for some target
genes. However, no definitive tumor biomarker has been identified yet. Therefore, angiogenesis
therapy would be of considerable therapeutic potential in treatment of cancer as well as it can help
to stop tumor growth and cease tumor metastasis. Such angiogenesis therapy well gives an accurate
prognostic indicator that helps to conclude which patients may need aggressive adjuvant therapy.
Anti-growth factors will probably help to treat angiogenesis tumors or disturb growing these tumors
and prevent metastasis.
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