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Summary. Will, purpose, and volition have long been viewed as either causes of behavior or
of no direct consequence to behavior. In this essay, volition affects a flexible direct coupling of
participant to task, modulating the degrees of freedom for kinematics in action, a point of view
first introduced in theories of motor coordination. The consequence is an explanation consistent
with present knowledge about involuntary and voluntary sources of control in human performance,
and also the changes of the body expressed in aging and dynamical disease. Specifically, this
view explains how tradeoffs between sources of overly regular versus overly random dynamics
change the structure of variability in repeated measurements of voluntary performance.

Introduction

Voluntary control is a willful control of behavior,
distinguishing a wink from a blink, as famously
illustrated by Alicia Juarrero (1). One legacy of 20th
century cognitive and behavioral science was its
widespread failure to accommodate concepts like will-
ful control, purpose, or volition; lacking a reasonable
scientific understanding of these concepts as a basis
for control of human activities. Yet, ordinary human
experience requires these concepts to make sense of
acting with purpose, achieving one’s goals, or the
spontaneous intention to reach out and touch someone.
In addition, society at large sets these ideas in stone,
judging the intentionality of actions that may bring a
person before the law, as in a judgment of involuntary
manslaughter.

The culprits of the widespread failure are the
elaborate faux-causal methods and analyses, based on
the general linear model, that scaffold most empirical
studies of human behavior. Assuming the general
linear model, manipulations of behavior in experi-
mental factors will appear to have sufficient causal
powers to produce their reported effects — so we talk
about the effects of psychological factors. However,
this causal inference forgets a very old lesson of
psychology: first and foremost, the necessary source
of the data from a laboratory performance is a willing
participant’s intention to participate (2). Laboratory
studies of cognitive and motor activities require a
participant to take on the experimenter’s instructions
as intentions in performing the task at hand (3). So all
data speak to human intentions and initiative, originat-

ing as they do in each participant’s intentions to per-
form the task as instructed.

Consequently, the intentional nature of voluntary
performance must have been there all along, waiting
to be discovered in the details of variability of the
laboratory data. An emphasis on close examination
of the details of the data is an emphasis that all
scientists share, which is why behavioral scientists
study laboratory measurements of behavior so closely,
becoming experts in the process, in descriptive and
inferential statistics to analyze and explain the ob-
served variability in measurements. This variability
in the data is the thing explained by the theories offered
about human performance. In fact, a scientist who says
the words behavior or performance is actually talking
about changes in some particular measurements, the
details of variability in behavioral measurements.

To this center of scientific gravity came the disco-
very that the variation in repeatedly measured human
behavior is scale-free, meaning that the magnitude of
variation is proportional to the scale on which it is
measured (see Fig. 1). Scale-free variation lacks a
stable central tendency because variance grows with
sample size, bringing into question previous inferences
relying exclusively on observed means (4). Scale-free
variation is understood using fractal geometry and it
is called fractal time, fractal behavior, and fractal
noise due to that fact. I will use an equivalent term
pink noise from this point forward, however, because
it is a better fit to the upcoming illustrations. The term
pink noise comes from a resemblance between the
spectral portraits of fractal noise to those of pink light,
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How often?
(Frequency)

Fig. 1. One person’s response time data

The left side of the figure presents specific frequencies and amplitudes of the regular sine waves that approximate the irregular
aperiodic data series (in the upper right of the figure). The arrows connect the sine waves to corresponding points of the spectral plot.
Each point plotted represents a particular size or amplitude of change (power) across the data values and how often changes of that size
occur (frequency). The spectral slope =—0.94, which is approximately o=1. Note that the y-axes in the sine wave illustrations

have been adjusted to make smaller amplitude sine waves visible.

more power in the lower frequency “red” regions, less
power in the higher frequency “blue” regions.
Fractal geometry is the mathematics of heartbeats,
galaxies, trees, lightning, nervous systems, arteries and
capillaries, and it is the mathematics of variation in
the repeated measurements of human behavior. Human
performance is fractal, whether it is called cognitive
or motor, physiological or behavioral. Fractal geo-
metry is necessary to understand the variability in
fractal data, in which the “noise” is the informative
signal of human performance. A human performance
is any task-related behavior that can be measured
repeatedly; for example, the repeatedly measured step
lengths of human gait on a treadmill (5), or a repea-
tedly measured amplitude at a particular frequency in
identically repeated speech (6), or in the repeated
estimates of when a second has passed or estimates
of an inch produced in drawn line lengths (7).
Fractal behavior as a fractal pink noise is often
estimated using a spectral plot. To construct a spectral
plot, begin by decomposing a time-ordered data series
into sine waves of different amplitudes (see Fig. 1).

Slow large changes in the data series are captured by
the slow-frequency large-amplitude sine waves (top
left of Fig. 1), and fast changes are captured by fast-
frequency small-amplitude waves (bottom left of
Fig. 1). The amplitude or power (amplitude squared)
concerns the size of particular changes S(f) and
appears on the y-axis of the power spectrum. Size of
change S(f) is plotted against the frequency (f) of
changes, which is also an estimate of how often chan-
ges of that size occur (on log-log scales). The slope
of the regression line between how often (f) and how
big S(f) in the spectral plot estimates the scaling re-
lation between size and frequency of change. In Fig. 1,
the size of change S(f) is inversely proportional to its
frequency (f): S(f)=1/f*=f* with scaling exponent
o=1, the scaling exponent of pink noise.

The first reports of the fractal patterns in human
performance, in the United States at least, came to be
known as Bills” Blocks after the psychologist, Arthur
Bills, from the University of Cincinnati (see Fig. 2).
Professor Bills could not have known what he had
discovered; fractal geometry did not exist then as a
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Prate 4—Showing the increase in length and frequency of blocks
as the oxygen supply is reduced. Each vertical line represents the tume
taken for one response. The long vertical lines are blocks. The short
horizontal line at the bottom, showing almost continuous blocking, was
terminated by loss of consciousness. (From an unpublished study by
Geldreich and Bills.)

Fig. 2. Bills’ Blocks are illustrated in this Plate 4 from (8)
portraying data from a color-naming task as the oxygen
supplied to a participant is reduced

By the term blocks, Bills meant extreme response times, which he
imagined to imply that the capacity of the participant to respond
was prevented, or blocked, as though by a barrier to responding.
In the Plate, the blocks are vertical lines that correspond to extreme
response times, rising from the horizontal lines as though on a
graph with a y-axis of response time. The numbers on the x-axes
refer to the number of minutes into the recording of color naming
performance. The illegible numbers in the text box labeled: Scale:
Time Length are 1000 and 3000 on the left and 350, 2000, and
4000 on the right, which presumably correspond to milliseconds.

frame of reference. Nonetheless, the pattern he des-
cribed was notably intermittent, and he described a
nested wavy pattern of waxing and waning perfor-
mance in the repeatedly measured task performances.
Bills and his contemporaries also noticed several facts
about the pattern that remain patently counterintuitive,
such as that larger samples amplify the wavy pattern
and variance, which is the basis of the fractal pro-
perties (8).

Bills’ interpretation of the pattern was understan-
dably incorrect relying as he did on the intuitive sums
of waxing and waning processes of the body and mind,
which he believed would “block” or delay a laboratory
response (8, 9). Yet, similar interpretations of this
fractal behavior have been offered at some point in
every contemporary discipline that has confronted this
fractal behavior. For instance, a few years ago, | saw
Benoit Mandelbrot’s speak about fractal behavior at
the U.S. National Science Foundation. The first ques-
tion from the audience was whether the fractal patterns
could not be captured by simple sums of component
patterns! My anecdote is only noteworthy in this

context because Mandelbrot (10, 11) had much earlier
spelled out the paradoxes that inevitably follows on
this kind of solution; some examples of these para-
doxes, as they appear in human performance data, are
illustrated in Van Orden et al. (12).

Arthur Bills made his discovery in the early de-
cades of the 20th century, and in the final decades of
that century, the reports of fractal patterns began to
trickle in. Presently, the fractal pattern of pink noise
has been observed in virtually every kind of conven-
tional laboratory performance prompting some scien-
tists to put forward the idea of universality (13—17).
The reviews cited in this essay span classic human
performances including almost all of, or at least a
representative sample of, the 150 years of textbook
response-time tasks inherited by cognitive psycholo-
gy — any task that has presented a stimulus to which
participants responded, consistent with task instruc-
tions, yielding a “trial” response time, the outermost
estimate of the duration in time of response processes.
However, there are conceptual difficulties to overcome
before a widespread acceptance that human behavior
is fundamentally fractal behavior.

The conceptual dilemma, at the heart of the diffi-
culties, is that pink noise is simultaneously a regular
and irregular pattern, which is a recently introduced
concept for science at large and an entirely novel
concept for the behavioral sciences, so novel that it
even contradicts the conventional statistical axioms
(17, 18) — in other words, a tough pill to swallow for
any scientist. On one horn of the conceptual dilemma
is the highly regular spectral slope of a power spec-
trum, characterizing the scaling relation. It is tempting,
and consistent with a long tradition, to imagine that
the separate points that compose the slope of the power
spectrum, in fact, correspond to separate processes,
differing in their amplitude and frequency of variation.
This common mistake ignores the fact of the regular
spectral slope itself; however, a slope that changes in
a coherent unity, keeping its component points in line,
even as a manipulation causes it to get steeper or to
become shallower (19). On the other horn of the di-
lemma, pink noise as it appears in a time-ordered data
series is an aperiodic, highly irregular waveform, the
product of complexity and nonlinear dynamics. In
truth, though pink noise is neither regular nor irregular,
and it is both extremes simultaneously. This conun-
drum exists because pink noise is a third kind of
phenomenon, different from both regular and random
(12, 20-22).

Yet, what does pink noise say about voluntary
control of behavior? For one thing, the universality
of fractal behavior in human performance and other
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system behaviors gives credence to the complexity
thesis that common dynamical organizations will
appear in systems of different material construction,
in living as well as nonliving matter. Even if true
though the complexity thesis does little to satisfy cu-
riosity about how pink noise figures in voluntary
control of human behavior. To satisfy this curiosity,
Geoff Hollis, Heidi Kloos, Sebastian Wallot, and me
attempted to synthesize the previous reports of fractal
behavior in human performance within a single control
parameter of voluntary performance. This essay des-
cribes the resulting synthesis and the data that mo-
tivated it (see also 12, 23, 24).

A control parameter of variation

The observed noise is not identical in every human
performance. In more difficult or less familiar tasks,
the variation in the data can depart from the pink noise
complexity, sometimes toward a random pattern of
white noise with a flat spectral slope and a scaling
exponent =0 (e.g., 25-30). Difficulty and novelty
may, in this instance, be two ways (among others) of
injecting unsystematic change into human perfor-
mance, from one trial to the next. Unsystematic chan-
ges in trial-to-trial task demands are sources of unsys-
tematic perturbations to measurements. Unsystematic
perturbations change a spectral analysis in the direc-
tion of random noise (19). However, not all examples
of the effects of task demands are so intuitive, as
scaling exponent ¢’s can range between the =0, flat,
spectral slope of white noise and the =2 steeper
spectral slope of Brownian noise, at least (see Fig. 3).

These reliable changes are powerfully constraining
how to think about pink noise behavior, greatly re-
ducing the wiggle room for a theory of fractal behavior
in voluntary performance. In addition, it has long been
a dream to tell the same story for all kinds of behavior,
whether the changes in the fractal pattern come from
changes in motor coordination or cognitive activity.
Our goal is such a unifying principle, a universal prin-
ciple, bridging the dualist convention of distinctions
between the body and the mind in task performances.

For instance, motor task performance is often dis-
cussed as though it refers primarily or even exclusively
to the more material aspects of the mind-body inter-
action, and cognitive activity as though it refers to
mental aspects alone. The distinction has for a long
time appeared arbitrary however. All human perfor-
mances are the intentional actions of participating
human beings, as when a participant takes on the ex-
perimenter’s instructions as his/her mental intentions
about how to perform a “motor” task, for instance,

—0o=—2 Brownian noise
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Fig. 3. Nllustrations of overly regular variation in behavior as
Brownian noise, overly random variation in behavior as white
noise, and the third kind of variation, pink noise

and all laboratory performances require motor coor-
dination of measurable behavior to produce “mental”
data. Consequently, unless body and mind are strictly
independent in how they interact, which they are not,
how could we get the mind out of the motor or the
motor out of the mind?

Concerning the control parameter, though, after
several false starts, it appeared that tradeoffs within a
kind of ratio between voluntary and involuntary con-
trol could give an adequate account of the available
data (12). Sources of voluntary control became a de-
nominator of sorts, and sources of involuntary control
became a numerator, and all sources of control were
evaluated with respect to the degrees of freedom (DoF)
afforded by a task environment. In this idealized ratio,
voluntary and involuntary constraints reduce the DoF
available for behavior to complement the controllable
DoF of the task environment, insuring that behavioral
kinematics successfully performs the task (31).

The idea for a ratio did not come out of the blue. It
was inspired by work in physics on self-organized
criticality. The guiding metaphor in physics came from
intuitions of Per Bak and his colleagues about sand
piles that self-organize critical behavior in the size
and timing of avalanches (32, 33). A critical state is
something like an up-coming choice not yet made, an
unbroken symmetry among poised options, a limbo
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of potentialities. Critical behavior is predicted near
critical states of the sand pile, in which critical beha-
vior is seen in the time between the occurrences (the
frequency of occurrences) of large and small ava-
lanches, portrayed in a spectral plot, yielding a scaling
relation like the =1 scaling relation visible in Fig. 1.

The theoretical work concerning self-organized cri-
ticality was done imagining avalanches of sand, but
the first successful recipe for observing the predicted
critical behavior included rice kernels, chosen to have
an aspect ratio favoring length over width (34). In the
model system of the rice pile, extra long kernels of
rice created extra friction between kernels, allowing
the slowly growing rice pile to build up elaborate struc-
ture — one kernel added at a time.

Small local piles of rice within the growing pile
would each build up to a point that one more fortuitous
kernel would topple the small pile in a small local
avalanche. The extra friction between extra long ker-
nels of rice made these local tipping-points common,
building local piles throughout the rice pile all poised
at thresholds to topple. Once enough local piles beca-
me poised together at threshold, rare and extremely
large landslides became possible, as predicted for cri-
tical behavior (i.e., corresponding to points in a spec-
tral plot like those in the upper left quadrant of the
spectral plot in Fig. 1).

A ratio was inspired by the Reynolds numbers of
fluid dynamics and heat transfer that plus a contrast
between the rice pile successes and the reported sand
pile failures (35). In the failed attempts, sand piles
did not build sufficiently structured local piles, and
avalanches never became of sufficient magnitude to
include extreme avalanches and satisfy the scaling
relation. The aspect ratio of grains of sand yielded
too little friction to compensate for the inertia of grains
falling to the pile. Consequently sand pile avalanche
behavior was overly random, dominated by the inertial
behavior of grains of sand.

Reynolds numbers are a ratio of inertia over visco-
sity/friction (36), and we proposed that the control
parameter of avalanche behavior is also a ratio of iner-
tia over friction, illustrated in Formula (1). Too much
inertia yielded overly random sand pile avalanches,
while too much friction would yield overly regular
avalanches (as in mudslides perhaps). Only a proper
balance of inertia to friction yielded the fractal ava-
lanche behavior of the rice pile, predicted by the hypo-
thesis of self-organized criticality.

Variation in avalanche behavior:

Inertia

= )

Friction

Overly random

Overly regular

The extended analogy between the control para-
meters of fluid dynamics, avalanche behavior, and
human performance is represented by Formula (2).
The respective numerators are equated as sources of
overly random variation and denominators are equated
as sources of overly regular variation. For human per-
formance, overly random variation is further equated
with fractional Gaussian noise and scaling exponents
between 0 and 1. Likewise, overly regular variation
is equated with fractional Brownian motion and
scaling exponents between 1 and 2 (compare Fig. 3).

Variation in human performance:

Overly random Involuntary control

= )

Voluntary control

Overly regular

As the source of overly random variation, a task
environment supplies the overall available DoF, which
will be independent of and more numerous than the
available DoF that the movements of the body can
exploit. Consider the task of tapping a key to match a
metronome beat; the DoF that the task makes available
are indifferent to the participant unless by design. It
matters not at all to the task environment whether the
tap that presses a key to match a metronome beat
comes from a person’s finger or from a mindless
pebble bounced off a passing truck. The measurement
outcomes will be the same, so long as successive taps
or passing trucks are spaced the same in time.

Embodied control and fractal behavior

In human performance, embodied control divides
between voluntary or involuntary sources, both of
which reduce the task environment DoF to the avai-
lable DoF for possible motor kinematics. Some em-
bodied constraints reflect lasting relationships among
the body’s components. For example, lasting cons-
traints insure that a finger cannot take an excursion,
by itself and separate from the hand, up around the
head and down the spine along its pathway to tap a
key. The range of motion for tapping is limited by the
relation between finger and hand, and among finger
joints, muscles, fasciae, and the nervous system, li-
miting each finger to a range of motion to move in
some ways but not in others. The DoF of muscles are
also linked such that the force that a given muscle
length will generate depends on the muscle position
within the context of neighboring muscles and
connective tissues (37).

Synergies are temporary couplings among these
constraints across the tensegrity structure of the body.
Like the cytoarchitecture of a cell (38, 39), the human
body is an integrated tensegrity structure (37). In the
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body, skeletal struts coupled tautly by muscle and
fascia cables allow force transmission at the speed of
sound to tell each component of the body what the
other components are doing. Zero-delay transmission
of'this information is manifest in “large and immediate
restoring forces... by mechanical impedances from a...
moving limb’s stiffness and viscosity” (37, p. 686).
Fluid performance by highly skilled actors requires
synergies that are perpetually integrated tailor-made
suits, so to speak, with respect to how well the kine-
matics of the body will exploit available DoF to meet
the flow of changes in task demands.

Synergies transform the high-dimension noise of
the task environment into low-dimension white noise,
also limited in dimension by measurement itself. In
the tapping task, for instance, embodied synergies limit
the DoF to become the kinematics that keeps the beat.
Residual sources of variation and perturbation, present
in the task environment, fluctuate across measurement
trials as random variables. These sources of overly
random control are sources of involuntary control,
although embodied sources of involuntary control
reduce (but cannot eliminate) the DoF of random
variation in behavioral measurements.

Sources of voluntary control are different. Volun-
tary control tightens or loosens the coupling between
task and participant (beyond mindless entrainment).
Voluntary control is also a temporary and flexible
source of control, bringing constraints into and out of
existence, as task performance requires. However, the
changes in voluntary control unfold more slowly than
the kinematics of measured behavior, so sources of
voluntary control can exaggerate overly regular,
slower oscillations of variation across the measured
trial values. The slower timescales of voluntary control
amplify more slowly changing variation to the data,
which on that basis can sometimes resemble Brownian
noise with ¢=2 in the spectral portrait.

In this view of human performance, the pink noise
scaling relation comes about because changes in any
part of the mind and body are coupled to changes in
every other part. The components of mind and body
are coupled in interaction-dominant dynamics via
positive feedback loops, insuring that the changes of
each component are reflected throughout and insuring
that every component knows at the same time how
the others are changing (17, 37, 40—43). Fractal
behavior emerges in the frustrated compromise among
the coupled components. Compromise is perpetually
frustrated by components’ tendencies to change
independently of one another — the tendency toward
overly random behavior — and each component’s

tendency to dominate the dynamics of the system as a
whole — the tendency toward overly regular behavior.
Statistically self-similar, aperiodic, fractal, pink noise
falls out of this stream of frustrated compromises due
to the overly random and overly regular nature of
interaction-dominant dynamics.

The ratio that defines the value of a control
parameter implies that any single spectral plot or
scaling exponent will be ambiguous, due to the simple
fact of it being the value of a ratio. The ratio of
voluntary and involuntary constraints makes this
ambiguity explicit because summary changes in
uncontrolled DoF could be due to specific changes in
either the numerator or the denominator. Specific
changes in the numerator alone or specific changes in
the denominator alone, either one, can move the
observed variation away from pink noise or toward
pink noise. For instance, all other things equal, adding
uncontrolled DoF to a numerator increases disorder
in the coordination and moves the scaling exponent
toward o=0, but so does decreasing the controllable
DoF of a denominator.

Variation in scaling exponents

Positive feedback and interaction-dominant dyna-
mics also dictate the recipes for laboratory methods
to produce pristine examples of pink noise. The best
empirical demonstrations (¢=1) have used repeated
measures of simple task performances — repeated
estimates of time intervals or spatial quantities, or the
repeated articulation of the same word — otherwise
holding constant the stimulus, the response, and other
trial factors across all the measurement trials (28).
Systematic or unsystematic differences among trials
would otherwise be amplified in positive feedback.
Amplified differences from trial to trial are trial-to-
trial changes in the numerator of involuntary control,
and perturbations to measured values. A method that
purposefully builds in unsystematic perturbations, for
instance, increases uncontrolled DoF and moves the
scaling exponent toward random white noise and =0
(19).

The several decades of reports of scaling exponents
in human performance have produced enough exam-
ples of changes in scaling exponents to provide a first
glimpse of task and participant differences in fractal
behavior. Unfortunately, only a few reports correspond
to exaggerated voluntary control, as when a toddler
locks out DoF in knees, hips, and torso to avoid falling
while taking his/her first steps, and only gradually
relaxes rigid voluntary control with age and experien-
ce (5), or as when a Parkinson’s sufferer must exert
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voluntary control to sustain upright posture (44). In
these few cases, though, exaggerated voluntary control
yielded scaling exponents different from the typical
scaling exponents of gait or posture, changing in the
predicted direction toward the o=2 of over regular
Brownian noise.

Willful control of eye movements also produces
scaling exponents closer to =2 and Brownian noise.
In this eye-movement task, participants moved their
eyes from the center of a display to its periphery and
back again, systematically moving their gaze around
the display. Imagine moving your eyes around a clock
face, returning the eyes back to the clock center after
each hour on the clock —back and forth, hour to center,
next hour to center, and so on. When the participants
controlled the timing of their eye movements, the task
emphasized voluntary control and produced overly
regular variation in the participants’ eye movements
and scaling exponents nearer to o=2. In another
condition, voluntary control was reduced as the
experimenter controlled the timing of eye movements,
which yielded scaling exponents closer to o=1 and
pink noise (Sebastian Wallot and Charles Coey, per-
sonal communication, July 27, 2010).

Tradeoffs between voluntary control and involun-
tary control are also observed using manipulations of
involuntary control, which are much more common.
Laboratory experiments usually manipulate sources
of'involuntary control. In the example of a finger, tapp-
ing to a beat, the audible beat of the metronome is an
exogenous task constraint that can entrain behavior,
reducing task DoF and the need for voluntary control.
Like all constraints, entrainment is defined in a rela-
tion, this time between a task demand (metronome
beat) and a task participant (entrainable actor). En-
trainment reduces the need for voluntary control, in
turn, and increases the presence of overly random
variation in tapping performance, which departs to-
ward white noise with a=0. Variation moves back
again toward pink noise and o=1 (45), if voluntary
control is reintroduced, by tapping to a remembered
beat without a metronome.

A different way to reintroduce voluntary control
is to require syncopated tapping between the beats of
the metronome. Syncopated tapping requires more
voluntary control than synchronized tapping to resist
the pull of the entrainment by the metronome beats,
to keep the taps between the beats. Reintroducing the
need for voluntary control increases the prominence
of overly regular against overly random control.
Correspondingly, instead of scaling exponents closer
to o=0 and white noise, as in synchronized tapping to

the beat, the scaling exponents move back in the
direction of o=1 and pink noise (45, 46).

The prominence of voluntary control can be
changed in the same way in human gait. A metronome
entrains gait and reduces the need for voluntary
control, so the scaling exponent of step frequency
changes in the direction of white noise with o=0 (47).
Step length is unaffected by the metronome however
(48). The reduction in voluntary control is specific to
frequency of gait, because the metronome constrains
frequency directly, impacting step length only indi-
rectly, although one can imagine manipulations to
entrain step length (49).

Even without a metronome, the preferred pace of
adults on a treadmill is a pace indicating less voluntary
control, compared to the pace of walking across or-
dinary terrain for instance. A scaling exponent closer
to white noise indicates less voluntary control, and
adult participants’ treadmill gaits yield scaling expo-
nents centered on a value closer to whiter variation
than the scaling exponents for their nonpreferred gaits.
Gaits slightly faster or slower than a preferred pace
induce more voluntary control and move scaling ex-
ponents toward pink noise with =1 (47). This is true
for wide ranging deviations from the preferred tread-
mill pace, in both walking and running, and across a
variety of measurements (stride interval, stride length,
step interval, step length, and impulse; impulse =
force x change in time), measured first at the preferred
pace (50, 51).

Accuracy feedback is another way to reduce the
demands of voluntary control. Task feedback is a
source of involuntary control — like a metronome
beat — reducing the need for voluntary control. In line
with this fact, accuracy feedback provided in a time
estimation task following each trial’s time-estimate
yielded scaling exponents closer to the =0 of white
noise, compared to time estimation without feedback
(Nikita Kuznetsov and Sebastian Wallot, personal
communication, December 15, 2009). Time estimation
without feedback typically yields scaling exponents
close to the =1 of pink noise.

Over-training can enhance involuntary control. An
elite ballerina over-trains to insure her torso to remain
upright over her body’s center of balance, creating
the appearance in motion of gliding across the stage.
Torso posture has a trainable basis in the endogenous
constraints of the body and enhanced involuntary con-
trol from overtraining reduces the need for voluntary
control. Variation in a dancer’s posture is measured
by deviations around a center-of-pressure on a force
plate. Scaling exponents of elite dancers’ posture
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express reduced voluntary control with values closer
to the a=0 of random white noise, when compared to
the values of scaling exponents produced by ordinary
adults or elite athletes who are not dancers (52).

Self-organized criticality

So far, I have described an ad hoc account of
otherwise baffling results from the literature on fractal
human performance (24). The previous data had
stopped all the false starts we had made early on, in
our attempt to formulate a control parameter. It is a
fair question to ask of an ad hoc account how can we
know with greater confidence that a task performance
is the product of emergent coordination and the critical
states of a complex system?

For instance, how would we recognize an instance
of self-organized criticality? Self-organized criticality
prominently features positive feedback, allowing
minuscule changes to be amplified in their effects (53).
This prominent role of positive feedback also tells us
what kind of evidence should be present when a
system is near criticality. In particular, the interde-
pendence created by positive feedback in systems near
to their critical states predicted explicitly the coherent
fractal pattern of pink noise that has been observed so
widely in human behavior.

Self-organized criticality predicts other phenomena
as well. As discussed, critical states exist in symmetry
(as unmade choices or potentialities). Symmetry im-
plies that critical states are by nature unstable; the
smallest relevant contingency will collapse the sym-
metry into one or another option. Unstable critical sta-
tes are comparable to the repellers in chaos theory,
which are impossible states. Yet, fractal behavior is
common in nature. How can critical states be impos-
sible and at the same time be so commonly observed
in evidence as pink noise? The solution is that living
systems actively acquire constraints and it is a balance
among conflicting constraints that gives the appea-
rance of being attracted toward an otherwise, repellant,
critical state (32, 33).

Indirect evidence suggesting attraction to critical
states was found in an experiment in which parti-
cipants repeated the English word “bucket” aloud very
many times (6). Each successive pronunciation of
“bucket” was recorded, and each recording was parsed
identically into dozens of frequency bins. The ampli-
tude of each frequency bin could then be tracked ac-
ross a participant’s series of recorded pronunciations.
This resulted in dozens of separate data series per par-
ticipant, each with a spectral slope and scaling expo-
nent. Aggregating the resulting scaling exponents in

a histogram revealed a normal Gaussian distribution
around the scaling exponent value of a=1 (shifted
slightly toward white noise). In other words, the
“attractive” central tendency of variation in scaling
exponents in a repetitive speech task was very close
to pink noise.

Direct evidence of attraction to criticality came
from an experiment that trained adult performance
and from two cross-sectional studies of development.
The training study observed adult performance in a
Fitt’s tracing task. In thousands of trials, participants
traced a stylus between two dots on an electronic
tablet, and the time required to trace from dot to dot
was repeatedly measured. In the earliest practice
block, the scaling exponents of the trace times were
reliably below oa=1, closer to a=0, but across the
training blocks, the pattern of variation in performance
showed the predicted attraction toward the scaling
exponent o=1. Across five practice blocks, 5500 trace
trials total, the central tendency for the participants’
scaling exponents approached o=1 (54).

Evidence of self-organized criticality was also ob-
served across a cross-section of ages of children who
performed a temporal estimation task. In the task, a
child pressed a button to estimate when a designated
time interval had passed, yielding a data series of times
between button presses. Scaling exponents of the data
series showed a progression with age, from scaling
exponents of overly random control in younger chil-
dren, closer to o=0, and toward scaling exponents
closer to pink noise and o=1 in older children and
adults (55).

Human gait develops toward pink noise from the
other direction. Young children produce scaling ex-
ponents for treadmill gait dispersed widely and in-
cluding overly regular behavior, encroaching on o=2.
Older children produce scaling exponents less widely
dispersed, and teenage children and adults produce
scaling exponents that are narrowly dispersed around
the values observed in the preferred treadmill gaits of
adults (5).

These studies of human development provide the
necessary evidence to motivate a hypothesis of self-
organized criticality. The observed attraction to critical
states is attraction to the best of both kinds of control,
combining stability and flexibility to accommodate
both familiar and surprising changes in our relation
to the world around us. Compare this to the fact that
overly rigid control will produce stable behavior in a
highly predictable environment but will perseverate,
pathologically, as the environment becomes less
predictable. Or that overly random control will make

Medicina (Kaunas) 2010; 46(9)



Voluntary performance

589

flexible changes in a less predictable environment but
will fail to track predictable regularities.

Parkinson’s and other dynamical diseases

Development and training reveal human perfor-
mance attracted over time toward criticality, some-
times resulting in more constrained and skilled volun-
tary control and sometimes resulting in accrued con-
straints that relax over-zealous voluntary control. En-
hanced voluntary control emerges at the scale of will-
ful organisms interacting with each other and with
the objects of their worlds, within the contexts and
events composing lifetimes. Overly willful control of
task performances in healthy participants produces
overly regular variation and scaling exponents near
o=2. Generally, the o=2 of Brownian noise coincides
with a loss of flexibility in dynamics, an emerging
dominance of system dynamics by more slowly chang-
ing constraints. Congestive heart disease is an exam-
ple, as congested arteries rigidly constrain the dyna-
mics of blood flow and heartbeats (see Fig. 4).

Parkinson’s disease is also a loss of flexibility in
overly regular control. Equating voluntary control with
constraints that reduce DoF in behavior explains the

Timescale of Constraint

Ordered Schematic of Progressive
Dysfunction in Parkinson’s Disease

Fig. 4. Approximate progression of Parkinson’s disease estimated

from the cited descriptions of patients with pink noise and brown

noise scaling relations as a backdrop. Parkinson’s first erodes the

capacity for change on the fastest timescales and then intermediate

and slow changing timescales. Eventually sufferers appear frozen

in time although they continue to move on the timescales of very
slowly changing constraints

widely observed Parkinson’s symptom in which palsy
tremor is visibly dampened by voluntary control,
eliminating the tremor early in Parkinson’s disease
and at least partly damping the tremor oscillations in
later stages. The bodies of Parkinson’s patients no
longer produce smooth kinematics, and patients have
difficulty initiating and controlling motion. I mention
the Parkinson’s symptoms in particular because a com-
plexity account of Parkinson’s symptoms is plausible
and because the conventional story of Parkinson’s is
riddled with gaps, originating as it does in the gradual
decline of areas of the brain that produce the neuro-
transmitter dopamine (4, 12).

For instance, why are fine-grain capacities most
vulnerable early in Parkinson’s disease? The essential
neural conduction among modules is intact in Par-
kinson’s disease, and the conduction rate across neu-
rons is plenty fast to move fast-changing information
throughout the nervous system. Why then do the early
Parkinson’s symptoms include the disruption of the
faster and finer aspects of perception and action? On
top of that, how do the gradual changes in dopamine
availability produce the qualitative changes in mobility
and perception? Moreover, why does Parkinson’s
disease erode cognition along with mobility and why
do the cognitive symptoms appear to be idiopathic?
Conventional stories uncritically blame the missing
“functions” on the missing dopamine (78), appealing
to the superficial faux-causal logic that failed to re-
cognize intentionality (79).

The complexity explanation is subtle and compell-
ing. The emphasis shifts from a “faulty isolated com-
ponent” (such as a faulty dopamine-uptake system)
to the reduced coupling among the components and
the erosion of the system-wide capacities to flexibly
coordinate the mind and the body with the environ-
ment (80-82). Like any neurotransmitter, dopamine
bridges the synaptic gaps between the neurons to
perpetuate the electrochemical waves of action poten-
tials. Action potentials create feedback loops of neu-
ronal activity and larger traveling waves. Traveling
waves self-organize across the cortex; they are an ob-
servable realization in the brain of the emergent motor
coordination, perception, and cognition (23, 83-86).

Damage that reduces the dopamine in the brain
reduces the capacity to coordinate the traveling waves
reflecting a broader deficit in coordinating cognitive
and motor activities as well as the dynamics of phy-
siology. However, Parkinson’s disease is systemati-
cally progressive, as Fig. 5 illustrates. The most vul-
nerable constraints early on are those that change on
the fastest timescales, the dynamical range expressing
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Fig. 5. Departures from complexity and a=1
due to advanced age

the smallest amplitude and least power in the spectral
portrait. If the amplitude of dynamics gauges the resi-
lience of dynamics as the capacity for coordination
unravels, then it gauges the vulnerability of fast-chang-
ing constraints as well. Fast-changing constraints are
the constraints that come from small and subtle chan-
ges in an emotional tone or in social alliances, the
constraints that support fine-grained perceptual dis-
tinctions, and the constraints that are necessary to
initiate sudden or rapid movements. In other words,
Parkinson’s disease first destabilizes the capacity for
subtle, fine-grain, and fast-moving self-organization
of perception, action, and cognition.

Erosion of constraints on fast timescales also ex-
plains the unwelcome palsy in Parkinson’s disease.
The palsy symbolizes a less refined, less precise
coordination in control. The eroded capacity to simply
bring the hands to rest is due to a lack of the fine-
grain, fast changing, involuntary, “dithering” control
that would ordinarily insure a stable resting point. Par-
kinson’s disease eventually erodes intermediate and
slow timescale capacities for change as well, such that

the late-stage Parkinson’s sufferers can appear to be
frozen in place. In truth, they are moving still, on the
glacial timescale of their remaining capacity to change
behavior.

The coarser-grain of slower timescale willful con-
trol is thus revealed in Parkinson’s coarse-graining of
relevant constraints. With the increased needs for
voluntary control, the variation and scaling exponents
of gait, arm movements, and speech all depart from
healthy complexity toward the o=2 of Brownian noise
and overly regular control. A ranked distance from
o=1 and toward a=2 predicts very well the severity
of all other Parkinson’s symptoms (62).

Lost cognitive capacities appear idiopathic, which
is the fancy way a scientist says, “I do not know why.”
Yet, cognition, more than perception-action, expresses
idiosyncratic contingencies of a person’s history. Con-
tingencies of history, education, language, work, hob-
bies, travel, and health shape the strengths and sta-
bilities of cognitive capacities well before Parkinson’s
disease begins. Parkinson’s disease dissects this maze
of'idiosyncratic strengths and stabilities of history and
interest, with its scalpel of instability and frequency
of change. Slower timescales of cognition, including
volition, are relatively preserved throughout, while
faster timescale cognition, including the subtler shades
of interpersonal dynamics, are more vulnerable. The
protracted unraveling of timescales eventually erodes
altogether the coordination among the brain, the body,
and the world, eroding the mind as collateral damage.

Advanced age and its associated dynamical disea-
ses exaggerate involuntary control and overly random
behavior. Involuntary control, as the name suggests,
is defined by default, inclusive of all sources of control
except voluntary control. This includes sources of
control within the systems of the body that, taken on
their own terms and on their own timescales retell the
present fractal story of tradeoffs between overly re-
gular and overly random behavior. In atrial fibrillation,
a rare form of heart disease, the scaling exponents of
heartbeats depart toward a=0 and the overly random
behavior of white noise (4). With ordinary advanced
age, the scaling exponents of posture and gait also
depart toward o=0, as does gait in Huntington’s di-
sease. In addition, as was the case for Parkinson’s
disease, the ranked distance from o=1 toward o=0
predicts as well the severity of all other Huntington’s
symptoms (94). These departures from complexity are
summarized in Fig. 4.

Overly random white noise suggests loss of struc-
ture in dynamics, the presence of unsystematic per-
turbations among the organ systems, and a reduced
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capacity for coupling among the organ systems. The
extreme failure of coupling dynamics may explain the
catastrophic cascade of failing organ systems in mul-
tiple-organ dysfunction syndrome — the usual cause
of death in a hospital’s intensive care unit. In multiple-
organ dysfunction syndrome, the organs of the body
seem to separate from each other in the sense that
they no longer support each other’s functions. An
overly random perturbation of a system’s interaction-
dominant dynamics among its component processes
would also collapse the interdependence among the
component systems, compromising “the well-being
of the body’s system-of-systems” (4, p. 311).

Summary conclusions

Vast sums in many currencies have been spent in
recent years to finance a quest for reliable correlates
of mental functions in the images of brain activity.
Success in this quest would require straightforwardly
that the basis functions of behavior also exist in the
brain (79, 95). And yet, the methods to parse behavior
and brain piecewise, into commensurate basis func-
tions, stem from the same faux-causal logic that pre-
viously closed the door to the willful control that dis-
tinguishes winks from blinks (1). And in any case,
“Which parts of the brain correlate with what kinds
of behavior?” is the wrong question to start with.

In a system analysis, the first question to ask is,
“How do the components of the system interact?” (86,
96-98). The answer to this question decides what kind
of research efforts will be appropriate from there on
out, everything from the designs of experiments to
the tools of the data analyses (19, 40, 96, 99). Fractal
behavior provides a conclusive answer to how the
components of a system interact. They change each
other’s dynamics in their interaction, while respecting
the constraints available to their interaction.

It is a good bet then that the brain and the body
coalesce in interaction-dominant dynamics, given the
ubiquity of fractal dynamics in human performance.
Ergo a person allowed willful control over what to
think, while his or her brain is imaged, shows a brain
busy in fractal activity. Brain activity flickers with
the same pink noise signal as behavior. And task
demands push the signal toward overly random acti-
vity or in the opposite direction toward overly regular
activity, just as they do in behavior (100, 101).

And yet most brain science still clings to a logic
of piecewise functional decomposition — even work
in neurodynamics — failing to fully respond to the
meaning of the fractal behavior for the system’s dy-
namics. In addition, most brain and behavioral scien-

tists remain ignorant of reported multifractal dynam-
ics, which will assuredly be widely explored (102,
103). Multifractal dynamics could even turn out to be
the decisive counter-evidence to the 20th century faux-
causal logic. Thlen and Vereijken explain that multi-
fractal dynamics supplies the conclusive evidence for
interaction-dominant dynamics, which requires a gen-
eralization of causal logic to include interdependence
and emergence (103).

Lastly, a contrast between the timescales of beha-
vior versus the timescales of the brain upends the too
long unexamined idea that the brain causes behavior.
For the most part, brains change on timescales orders-
of-magnitude faster than the timescales of behavior.
In a control hierarchy, the components that change on
the slower timescales supply the constraints to control
the components changing on faster timescales (104—
106). For example, the relatively slowly changing
BOLD signal represents the relatively slowly changing
metabolic constraints, which supply limits to possible
brain activity on faster changing timescales (83).

Pursuing this idea, behavior must in some sense
control the brain, which is not a too far-fetched notion.
On-going behaviors have inertial properties, which
supply constraints and stability to the fractal activity
of the nervous system (107). And I noted already that
brain activity is skewed toward overly regular or over-
ly random activity by slower timescale changes in task
demands, i.e., task behavior. Perhaps, then, the
“functions” of behaviors are not inherited from the
brain activity; it is the other way around. “Functions”
emerge in the fine-grain details of the kinematics of
the brain and behavior (37, 108—110), while coarser-
grain brain functions do not exist. The so-called brain
functions exist only fleetingly in the flow of behavior’s
entailments at the fractal interface of the nervous
system and world.

Behave as instructed encapsulates the single uni-
versal competence of voluntary performance. Fractal
behavior is the performance universal that results.
Scaling exponents of fractal behavior range widely
nevertheless, spanning fractional Brownian motion
and fractional Gaussian noise, at least. The directions
of change that are observed inform us about tradeoffs
between overly regular and overly random control,
which reveal how development, skills, health, and
wellness affect the coupling between task and person.
Altogether, this essay has laid out a fresh wager on
the tired question of how the mind and body interact.
If the answer is to be found in human performance —
if the question can be answered in the dynamics of
the brain and body — then the answer is interaction-
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dominant dynamics. Interaction-dominant dynamics
unites body and mind, and mind and body.
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Valingi judesiai
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Raktazodziai: tikslingumas, fraktaliné elgsena, dinaminé liga, protas ir kiinas, savikontrolé.

Santrauka. Valia, tikslas ir ketinimas ilgai buvo vertinami arba kaip elgsenos priezastis, arba kaip netie-
sioginiai elgsenos veiksniai. Pozitiris, kad valia pasireiskia kaip adaptatyvi tiesioginé jungtis tarp subjekto ir
uzduoties, moduliuojanti laisvés laipsnius kinematingje veikloje, pirma karta buvo pasiiilytas motorinio koor-
dinavimo teorijose. Pasekmé yra paaiskinimas, apimantis turimas zinias apie valingus ir nevalingus zmogaus
judesio kontrolés Saltinius, taip pat apie kiino pokycius, atsirandancius senéjimo ir ligos dinaminiuose pro-
cesuose. Tiksliau $is poziris paaiskinamas kompromisu tarp pernelyg reguliariy ir pernelyg atsitiktiniy Saltiniy
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