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Abstract: Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been
observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord
injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has
demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it
remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to
investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered:
(1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and
(4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6–8 weeks were intraperitoneally adminis-
tered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a
significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the
SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leuko-
cytes, leading to reduced levels of inflammatory factors such as IL-1β, TNF-α, and IL-22 in the injured
area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within
the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research
findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis,
anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI,
thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after
SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.
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1. Introduction

Traumatic spinal cord injury (SCI) is a common traumatic disease worldwide, in-
cluding permanent disability of the motor, sensory and autonomic nervous system [1].
The global incidence rate is 10.4 to 83 cases per million people per year, representing an
enormous economic burden for society and families [2]. For many years, the repair of
SCI has been considered a global medical challenge. The pathophysiological process is
mainly divided into primary and secondary injuries [3]. As primary injury is difficult to
prevent, interventions for SCI mainly focus on how to effectively reduce secondary injury.
Secondary injury refers to a process of active regulation at the cellular and molecular level
caused by a series of biochemical mechanisms after injury [1,4], which cause the intact
tissue around the lesion to develop destructive lesions, further deepening the degree of
injury and expanding the area of damage. There is increasing evidence that effectively
improving the spinal cord regeneration micro-environment and increasing the number and
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survival rate of neurons in the injured area have become important interventions for nerve
repair after SCI [5–7].

Neural tissues have extremely high metabolic demands. Severe metabolic damage
is evident in the injured tissue following SCI, exacerbating axonal degeneration and neu-
ronal death [8]. Nicotinamide adenine dinucleotide (NAD+) is an important co-factor for
metabolic energy and a substrate for a wide range of enzymes [9], and plays a key role in the
regulation of virtually all major biological processes [10]. Multiple pathways are involved
in the synthesis and catabolism of NAD+ [11–13], and alterations in NAD+ homeostasis
have emerged as a common feature of a wide range of disease states [14]. NAD+ has a
role in calcium regulation, and in mitochondrial and immune functions [15]. Exogenous
administration of NAD+ reduces oxidative stress-induced neuronal apoptosis to protect
against ischemic spinal cord injury [16]. Studies have shown that NAD+ levels in neurons
decrease after axonal injury or neurodegenerative diseases [17,18], suggesting that NAD+

plays a key role in the underlying process of axonal degeneration. Therefore, effectively
increasing/maintaining NAD+ levels may become an important strategy for the treatment
of SCI.

Nicotinamide riboside (NR) is a new NAD+ precursor found in milk that restores the
bioavailability of NAD+ in vivo [19]. When NR enters the cell, it is catalyzed by nicoti-
namide riboside kinases (NRKs) and metabolized directly to nicotinamide mononucleotide
(NMN), which increases the body’s NAD+ levels [20]. Alternatively, NR can be converted
to NAM via purine nucleoside phosphorylase (NP) and then to NAD+ via NMNAT and
NMN [12,20]. Numerous beneficial effects of NR have been reported in neurological
disorders. For instance, NR has been shown to increase NAD+, reduce DNA damage,
ameliorate neuroinflammation, attenuate cellular apoptosis, and improve hippocampal
synaptic plasticity in diabetic mice and mouse models of Alzheimer’s disease [21,22]. The
administration of NR increased NAD+ levels and significantly suppressed inflammation
in the brain [23,24]. Encouragingly, Mariajose reported beneficial effects of NR after SCI
in rats, and supplementation of NR to increase NAD+ protected spinal cord tissues from
injury and promoted motor recovery [25]. However, the role of NR in mice after SCI is not
fully understood and the specific mechanisms remain to be further explored.

Here, we performed in vitro and in vivo studies to elucidate the effects of NR supple-
mentation in mice after SCI. Firstly, we confirmed the effect of NR supplementation on
increasing NAD+ levels in mice after SCI and improving the behavioral functions of SCI
mice. We also examined the effect of NR supplementation on the survival of neurons in
the injured area using immunohistochemistry. Transcriptome sequencing was performed
to uncover the potential mechanism. Additionally, we studied and discussed the impact
effect of NR supplementation on the micro-environment after SCI in mice by semiquantita-
tive cytokine array and qRT-PCR. Furthermore, in vitro experiments validated the effect
of NR supplementation on neuronal survival under oxidative stress and inflammation
models. Our results showed that NR supplementation might be an important strategy for
the treatment of SCI.

2. Materials and Methods
2.1. Animals

Sixty-three adult female C57BL/6N (6–8 weeks old, 18–22 g) mice were purchased
from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). Mice
were kept under standard conditions (temperature, 22 ± 2 ◦C; humidity, 55 ± 10%) with a
12:12 light/dark cycle. Food and water were available ad libitum. All animal protocols are
approved and strictly follow the regulations of the Experimental Animal Center of Capital
Medical University and the Beijing Experimental Animal Association (ethical approve No.
AEEI-2023-104).
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2.2. Spinal Cord Injury

General anesthesia was initiated with isoflurane (2 vol.%) in an anesthetic chamber.
During surgery, isoflurane (1.5 vol.%) was further administered via a face mask. The T10
spinal cord was exposed by laminectomy, followed by a 70-kilodyne contusion using the
Infinite Horizons Impactor (Precision Systems & Instrumentation, Lexington, KY, USA).
During the surgery, body temperature was maintained at 37 ◦C. The animals were then
taken out of anesthesia and given 0.5 mL isotonic saline and antibiotic treatment via
subcutaneous injection. Bladder evacuation was manually applied twice daily until the
mice could urinate spontaneously.

2.3. Experimental Protocol

The mice were randomly divided into four groups: (1) non-SCI without NR (sham),
(2) non-SCI with NR (sham + NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR).
The sham group underwent laminectomy without contusion of the spinal cord. The SCI
group received laminectomy with a 70-kilodyne contusion. Mice in the SCI + NR group
underwent the same surgical procedure as those in the SCI group and received NR intraperi-
toneal injection immediately after surgery for 7 consecutive days. The sham + NR group
was also established by only NR intraperitoneal injection immediately after laminectomy
for 7 consecutive days without contusion.

2.4. NR Preparation and Treatment

NR (HY-123033A, Med Chem Express, New Jersey, NJ, USA) was dissolved in PBS
solution and injected intraperitoneally. To investigate whether NR has protective effects in
SCI, mice were treated with 500 mg/kg intraperitoneally [25–27]. The sham + NR group
was treated with equivalent volume of NR intraperitoneally. The sham and SCI groups
were treated with equivalent volume of PBS solution.

2.5. Tissue Preparation

To obtain samples for molecular biology and transcriptome sequencing, mice were
deeply anesthetized and transcardially perfused with ice cold 0.9% isotonic saline solution,
the epicenter part of spinal cord was quickly dissected, snap-frozen in liquid nitrogen, and
stored at −80 ◦C until further experiments. For immunohistochemistry, mice were transcar-
dially perfused with ice cold 0.9% isotonic saline solution followed by a 4% paraformalde-
hyde solution (PFA, pH 7.4) at 8 weeks after SCI. Tissue specimens were embedded in
paraffin (Leica, Wetzlar, Germany) and 5 µm paraffin sections were cut.

2.6. Determination of NAD+ Content in Spinal cord Tissue

NAD+ levels were measured using a NAD/NADH Assay kit (Cat# ab65348,Abcam,
Cambridge, UK). All procedures were conducted strictly according to the manufacturers’ in-
structions. Approximately 20 mg of spinal cord tissue was digested in 400 µL NADH/NAD
Extraction Buffer. After centrifuging in a 10 kD Spin Column (Cat# ab93349, Abcam) at
10,000× g for 10 min at 4 ◦C, half of the sample was transferred to a new tube and incubated
at 60 ◦C for 30 min to decompose NAD+, while the remaining half was used as NADtotal
(NADH plus NAD+). 20 µL of the NADtotal and 20 µL of the decomposed NAD+ sample
were mixed with 30 µL Extraction Buffer and then incubated with 100 µL of Reaction Mix
at RT for 5 min to convert NAD+ to NADH. After adding 10 µL of NADH Developer into
each well, it was mixed. The reaction was allowed to cycle at room temperature for 20 min.
The sample outputs were measured at OD 450 nm on a microplate reader in a kinetic mode.

2.7. Hematoxylin-Eosin (HE) Staining

For HE staining, the sections were deparaffinized and rehydrated. After staining with
hematoxylin for 1 min, the sections were washed three times in double distilled water.
Then, the sections were incubated in the 1% hydrochloric alcohol differentiation for 30 s,
stained with eosin for 50 s, followed by 75% ethanol, 80% ethanol, 95% ethanol, 100%
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ethanol, and finally cleared in xylene, and mounted by neutral resins. The image was
analyzed by light microscope (Tissue Gnostics, Vienna, Austria) at 20× magnification, and
the injured area was measured using three sections per mouse by Image J (version 1.53e;
National Institutes of Health, Bethesda, MD, USA).

2.8. Immunohistochemistry

For immunohistochemistry, sections were deparaffinized, rehydrated, and antigens
were unmasked by heating in Tris/EDTA (pH 9.0) buffer for 20 min. After blocking with
5% normal goat serum and 0.3% Triton X-100 in PBS, the sections were incubated overnight
at 4 ◦C with the primary antibody diluted in blocking solution. Primary antibodies and
dilutions used in the study are given in Table 1. The sections were then incubated at room
temperature for 2 h with fluorescent-labeled secondary antibodies and washed with PBS
before being observed under a Tissue FAXS system (Tissue Gnostics, Austria).

Table 1. List of antibodies used for immunohistochemical staining.

Antibody Host Dilution Manufacturer Catalog

NeuN Rabbit 1:500 Abcam ab177487
Synaptophysin Rabbit 1:400 Abcam ab32127

NF Mouse 1:400 Cell Signaling Technology,
Boston, MA, USA 2836s

2.9. RNA Sequencing

A total amount of 1–3 µg RNA per sample was used as input material for the RNA
sample preparations. Sequencing libraries were generated using VAHTS Universal V6
RNA-seq Library Prep Kit for Illumina® (NR604-01/02) following the manufacturer’s
recommendations and index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads.
Then, we added fragmentation buffer to break the mRNA into short fragments. First
strand cDNA was synthesized using random hexamer primer and RNase H. Second strand
cDNA synthesis was subsequently performed using buffer, dNTPs, DNA polymerase I
and RNase H. And then, the double stranded cDNA was purified by AMPure P beads or
QiaQuick PCR kit. The purified double stranded cDNA was repaired at the end, adding
a tail and connected to the sequencing connector, then the fragment size was selected,
and finally the final cDNA library was obtained using PCR enrichment. The clustering
of the index-coded samples was performed on a cBot cluster generation system using
HiSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the manufacturer’s instructions.
After cluster generation, the libraries were sequenced on an Illumina platform and 150 bp
paired-end reads were generated. The cluster generation and sequencing were performed
on Novaseq 6000 S4 platform, using NovaSeq 6000 S4 Reagent kit V1.5. Transcriptome data
analysis was performed via R language (4.2.3). Specifically, differential genes (DEGs) with
|log2(fold change)| > 0.5 and p-value < 0.05 were identified by DESeq2 (1.38.3), and by
ggplot2 (3.4.1) and pheatmap (1.0.12) Display. Gene Ontology (GO) is completed through
the R package ClusterProfiler (4.7.1).

2.10. Semiquantitative Cytokine Array

The cytokines in mouse spinal cord were measured with a Mouse Cytokine Array
GS4000 (Cat# GSM-CAA-4000, Ray Biotech, Atlanta, GA, USA) according to the manufac-
turer’s instructions. Protein extraction of spinal cord tissue, and the protein concentration
of the samples were calculated based on the standard curve. The slide chip was removed
and equilibrated to room temperature for 20–30 min and dried in a vacuum desiccator or
at room temperature for 1–2 h. A sample diluent of 100 µL was added to each well and
incubated in a shaker at room temperature for 1h to seal the quantitative antibody chip.
The buffer was removed from each hole, a 100 µL sample was added to the hole (diluted
at 500 µg/mL), and incubated overnight at 4 ◦C on a shaker. Then, the Wellwash Versa
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chip washer (Thermo Scientific, Waltham, MA, USA) was ued to clean the slides. The
antibody mixture tubules were centrifuged, then 1.4 mL of sample diluent was added, and
centrifuged again quickly. A total of 80 µL of detection antibody was added to each well
and incubated in a room temperature shaker for 2 h. The slides were washed as described
above. A total of 80 µL of Cy3-streptavidin was added to each well, and incubated away
from light at room temperature for 1 h, and washed again. The fluorescein-labeled array
was visualized using an InnoScan 300 Microarray Scanner. Data were extracted by GenePix
Pro 5.1 software and analyzed with RayBiotech Q-Analyzer software (SA52).

2.11. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA and DNA were isolated using Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and a DNeasy Tissue Kit (Qiagen, Valencia, CA, USA), respectively. All primers used
are shown in Table 2. The mRNA expression levels of genes were detected. For the qPCR
of mRNA expression levels of genes, reverse transcription was carried out, followed by
real-time PCR amplification. mRNA expression levels were normalized against reference
gene GAPDH and measured using the ∆∆CT method.

Table 2. Primer sequences of qRT-PCR.

Items Primer (5′→3′) Primer (3′→5′)

Cxcl2 TGAACAAAGGCAAGGCTAACTGA TAACAACATCTGGGCAATGGAAT
Cxcr2 ATGCCCTCTATTCTGCCAGAT GTGCTCCGGTTGTATAAGATGAC
Cxcl10 CCAAGTGCTGCCGTCATTTTC GGCTCGCAGGGATGATTTCAA

L-Selection TACATTGCCCAAAAGCCCTTAT CATCGTTCCATTTCCCAGAGTC
IL-22 ACATTATCTGCTATTGATATTTAGT CATGTGTTTATTAAAGCCTAAGA

TNF-α CCTCTTCTCATTCCTGCTTGTG GGTCTGGGCCATAGAACTGAT
IL-1β GCCACCTTTTGACAGTGATG CCACAGCCACAATGAGTGATA

GAPDH CCTCGTCCCGTAGACAAAATG TGAGGTCAATGAAGGGGTCGT

2.12. Cell Cultures and Treatment

The HT-22 cell lines were obtained from Biological Medicine Cell Resource (BMCR,
Beijing, China). The cell lines were cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM, Gibco, New York, NY, USA) supplemented with 10% foetal bovine serum (FBS,
Gibco), penicillin and streptomycin (100 U/mL, Gibco, Waltham, MA, USA) in a humidified
incubator with 5% CO2 at 37 ◦C. The cells were pretreated with NR (0.5 µM) for 1 h followed
by post-incubation with LPS (1 µg/mL) or H2O2 (100 µM) for 24 h. The concentration of NR
was selected by the CKK8 assay, and the concentration of LPS and H2O2 was considered
according to previously described studies [28,29].

2.13. CCK8 Assay

Cell viability was analyzed by Cell Counting Kit-8 (CCK8, Beyotime, Shanghai, China)
according to the manufacturer’s protocols. Cells were seeded and cultured at a density of
5 × 103/well in 100 µL of medium into 96-well microplates (Corning, New York, NY, USA).
Then, the cells were treated with various treatments. After 24 h, 10 µL of CCK-8 reagent
was added to each well and then cultured for 2 h. All experiments were performed in
triplicate. The absorbance was analyzed at 450 nm using a microplate reader (PerkinElmer,
EnSpire, Waltham, MA, USA) using wells without cells as blanks. The proliferation of cells
was expressed by the absorbance.

2.14. Behavior Evaluation
2.14.1. Basso Mouse Scale

Hind limb locomotor function in an open field was assessed with the Basso Mouse
Scale (BMS) [30], using a 0 to 9-point scale (complete paralysis to normal hind limb func-
tion), by two experienced investigators who were blinded to experimental treatment and
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observed open-field locomotion for over 4 min on days 1, 3, and 7 post injury, then once
weekly thereafter for next 7 weeks.

2.14.2. Grip Strength Test

A grip strength meter (Chatillon force measurement, Ametek, New York, NY, USA)
was used to assess the forelimb and hindlimb grip strength of the mice. Mice were lifted by
the tail and induced to grasp a rigid grid attached to a digital force gauge. The tail of each
mouse was gently pulled backwards and the tension reading of the digital force gauge was
defined as the grip strength before the mouse released the net. Five consecutive tests were
performed on each mouse and the mean maximum limb muscle strength value (grams) (g)
was calculated.

2.14.3. Open Field Test

To further assess the locomotion capabilities of the mice, we conducted open field tests
using TopScan software (version 2.00, Clever Systems, Reston, VA, USA). It was performed
in this study based on our previous descriptions [31]. Briefly, mice were exposed to an
open arena (50 cm × 50 cm × 50 cm, length × width × height) under dimmed lighting
(20 lx). The inner wall and bottom surface of the open field test box were cleaned with 70%
ethanol. A mounted camera was used to record each trial and analyzed the total distance
travelled in the open arena for 5 min.

2.15. Statistical Analysis

The data were analyzed by GraphPad Prim (8.0). All values are presented as the
mean ± standard error of the mean (SEM). Two groups of data were analyzed by Student’s
t tests. One-way ANOVA with Tukey’s multiple comparisons posttest or two-way ANOVA-
RM with Bonferroni’s post hoc correction were used when comparing multiple groups. A
p value of less than 0.05 was considered statistically significant.

3. Results
3.1. NR Supplementation Significantly Improved Motor Function in Mice after SCI

To investigate the role of NR in vivo, we used a contusive SCI mouse model. After con-
tusive SCI in mice, NR was administered via intraperitoneal administration at 500 mg/kg
for 1 week (Figure 1A). An open field test was used to measure spontaneous locomotor
activity at 56 days post-injury. The data showed that the total distance traveled between
the SCI group and SCI + NR group were significantly different (Figure 1B). Commenc-
ing at three weeks post-injury and persisting throughout the experimental period, NR
treatment exhibited notable efficacy in enhancing hindlimb behavior (as measured by
BMS main scores) in SCI mice (Figure 1C). Specifically, a significant improvement in BMS
sub-scores was observed at one week post-injury in comparison to the SCI group, and this
improvement was sustained throughout the post-injury period (Figure 1D). Importantly,
the administration of NR at a safe dosage had minimal impact on the body weight of mice
following SCI (Figure 1E). At 8 weeks postoperatively, treatment with NR demonstrated
a significant enhancement in the grip strength of the hind limbs in mice with SCI, while
no significant effect was observed on the grip strength of the forelimbs (Figure 1F). These
results indicated that the supplementation of NR significantly improved the motor function
of the hind limbs in mice after SCI.
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Figure 1. NR supplementation promoted recovery of motor function in mice after SCI. (A) Schematic
representation of the experiments. (B) Distance traveled during the open-field test. (C,D) Motor
function score over time after SCI as assessed by BMS. (E) Changes in body weight over time in
the four groups. (F) Experimental animal grip strength assessment of the SCI groups and SCI + NR
groups at 56 days after SCI (*** p < 0.001 compared with the sham group; # p < 0.05, ## p < 0.01, and
### p < 0.001 compared with the SCI group, n = 5 mice/group).

3.2. Supplementation of NR Significantly Increased the Level of NAD+ in the Injured Spinal Cord
of SCI Mice and Promoted Cell Survival

NAD+ is an essential coenzyme for energy metabolism and plays a crucial role in
various biological processes including metabolism, aging, cell death, DNA repair, and
gene expression [13]. NR, as one of the NAD+ precursors, can be metabolized to nicoti-
namide mononucleotide (NMN) through the catalysis of nicotinamide ribonucleotide ki-
nases (NRKs) and subsequently be synthesized into NAD+ by nicotinamide/nicotinamide
mononucleotide adenylyltransferase (NMNAT) for the synthesis of NAD+ [12,20]. To
observe the effect of NR supplementation on NAD+ levels in spinal cord tissues of mice
after SCI, we assessed NAD+ levels using the NAD/NADH Assay kit 7 days after SCI
(Figure 2A). The results showed a significant decrease in NAD+ levels in the spinal cord
tissues of SCI mice compared to the sham group (Figure 2B), which was consistent with pre-
vious reports of decreased NAD+ levels following organismal injury [32,33]. Following the
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administration of NR, the decrease in NAD+ levels within the spinal cord tissue of SCI mice
was reversed and could be significantly increased by nearly 5-fold (Figure 2B). Figure 2C
showed the formation of a localized cavity in the SCI lesion 56 days after SCI, while the
administration of NR reduced the damage range at the lesion site and the extent of the
injury. Hematoxylin-eosin (HE) staining revealed that the extent of damage at the injury site
in SCI mice administered with NR was lower than that in the SCI group mice (Figure 2D,E).
In this study, HT22 cells were stimulated with LPS to simulate an in vitro inflammation
model. The administration of NR significantly rescued the inflammation-induced decrease
in neuronal cell viability, with HT22 cell survival rates increasing from 52.48% to 69.72%
(Figure 2F). Additionally, we stimulated HT22 cells with H2O2 to simulate oxidative stress
in vitro. Subsequently, NR was administered, which rescued the oxidative stress-induced
decrease in neuronal cell viability. As a result, HT22 cell viability increased from 46.04% to
65.67% (Figure 2G). These results confirmed that NR supplementation promoted neuronal
survival after injury. The above data demonstrated that NR supplementation protected
injured spinal cord tissue and promoted cell survival by increasing NAD+ levels, both
in vitro and in vivo.
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NAD+ in spinal cord tissue of each group after SCI. (C) Organizational visualization of each group
after SCI. The red dotted circles show the injured area. (D,E) Representative images of hematoxylin-
eosin (HE) staining of spinal cord and quantitative analysis of injured area between the groups of SCI
and SCI + NR. The black solid dots indicate the boundary between the host spinal cord and the injured
area. (F) Quantitative analysis of cell viability in each group after LPS stimulation. (G) Quantitative
analysis of cell viability in each group after H2O2 stimulation. One-way ANOVA and Tukey’s post
hoc test for multiple comparisons; * p < 0.05, ** p < 0.01, *** p < 0.001; Mean ± S.E.M. (n = 3 mice or
triple repetition/group).

3.3. Supplementing NR Promoted Neuronal Survival and Axonal Growth in the Injured Area of
Mice after SCI

NR has been shown to be a superior neuroprotective agent to NAD+ in excitotoxicity-
induced axonal degeneration [34] and can effectively promote neuronal survival [35].
Synapses are fundamental to neuronal activity [36]. We investigated the effects of NR
supplementation on neuronal and synaptic survival in the injured area after SCI by means
of NeuN/synaptophysin. The number of neurons (NeuN) and synapses (synaptophysin)
in the injured area were significantly decreased after SCI. Compared with the SCI group,
NR supplementation significantly increased the number of NeuN+ neurons in the injured
area (Figure 3A,C). Additionally, the amount of NeuN/synaptophysin double positivity
was significantly increased (Figure 3A,E), suggesting that NR supplementation promoted
the survival of neurons and synapses in the injured area of mice after SCI. To observe the
effect of NR supplementation on axonal regeneration in mice after SCI, we quantified the
fluorescence density of NF by immunofluorescence staining. The results confirmed that NR
supplementation significantly promoted axonal regeneration in the injury area compared
with the SCI group (Figure 3B,E). The above results suggested that NR supplementation
promoted neuronal survival and axonal growth in the injured area of mice after SCI. These
data together suggested that NR supplementation promoted neuronal survival and axonal
growth in the injured area of mice after SCI.
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mice after SCI. (A) Immunofluorescent staining of NeuN (green), synaptophysin (red), and DAPI
(blue). Scale bars, 500 µm and 100 µm. (B) Representation images of axons immunostained with NF
(red) and DAPI (blue) in the injured epicenter or corresponding location. Scale bars, 100 µm. (C) and
(D) Quantification of the number of NeuN and NeuN/synaptophysin of each group in injured area.
(E) Quantification of the density of NF of each group in the injured area. Data was presented as
Mean ± S.E.M. * p < 0.05; ** p < 0.01; *** p < 0.001; n = 3 mice/group.

3.4. Supplementation of NR Regulates Chemotaxis in Early SCI

To investigate the mechanism by which NR supplementation exerts its beneficial
effects after SCI, we performed RNA-seq analyses of spinal cord tissues in the injured area
of each group following one week of NR administration. As shown in the heat and volcano
plots, 342 DEGs were identified in the injured spinal cord tissues of SCI mice after NR
treatment, as compared to the SCI group (Figure 4A,B). The GO enrichment analysis results
indicated enrichment for various processes, including cell adhesion molecule binding,
cytokine activity, growth factor binding, neurotransmitter receptor activity, postsynaptic
neurotransmitter receptor activity, chemokine activity, CXCR chemokine receptor binding,
and NAD(P) activity, among other important processes (Figure 4C). In the GO enrichment
analysis above, we focused on the CXCR chemokine receptor binding process. The gene
expression of Cxcl2, Cxcr2, and Cxcl10 was significantly down-regulated in the spinal
cord lesion area of SCI mice after NR supplementation compared to the SCI group. The
up-regulation of Cxcl2, Cxcr2, and Cxcl10 mRNA expression after SCI was further verified
by qRT-PCR. The expression of these three chemokines was significantly down-regulated
by NR supplementation (Figure 4D–F). The results indicated that NR supplementation
might have a protective effect on the focal spinal cord of SCI mice by reducing the early
chemotaxis effect of SCI.
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3.5. NR Supplementation Attenuates the Immune Inflammatory Response after SCI

The anti-inflammatory effect of NR in AD mouse models [37] and oral NR supple-
mentation in the elderly increased the NAD+ metabolome of skeletal muscle and induced
anti-inflammatory characteristics [38], which led us to notice the potential of NR improving
the immune micro-environment to the injured area after SCI. To investigate the potential of
NR supplementation in improving the immune micro-environment through chemotaxis
in SCI mice, we conducted a study using Mouse Cytokine Array GS4000. We analyzed
the changes in cytokines in the injured area of mice from each group 7 days after SCI.



Curr. Issues Mol. Biol. 2024, 46 1302

The results from the volcano plot indicated that there were 15 differential proteins in the
SCI + NR group compared to the SCI group (Figure 5A). Notably, NR supplementation
significantly down-regulates the expression of C5a, L-selection, CD36, TACI, and other
proteins (Figure 5A,B). Consistent with the RNA-seq results, the GO terms: biological
process revealed enrichment in the regulation of chemotaxis, lymphocyte proliferation, and
migration (Figure 5C). This suggested that NR supplementation might be involved in regu-
lating immune cell proliferation and chemotaxis. L-selection, a major regulator of leukocyte
adhesion, migration, and signal transduction [39], was found to be up-regulated after SCI
(Figure 5D). However, it was down-regulated by NR supplementation, as confirmed by
qRT-PCR (Figure 5D). Additionally, we investigated the changes in inflammation-related
cytokines in the injured area using qRT-PCR. The expression of IL-1β, TNF-α, and IL-22 in
the injured area of mice in the SCI group was significantly increased compared to the sham
group. NR supplementation led to a significant down-regulation of the relative expression
of IL-1β, TNF-α, and IL-22 in SCI mice (Figure 5E–G). These findings suggest that NR
supplementation might reduce the chemotaxis/recruitment of immune cells and attenuate
the local immune inflammatory response in the injured area after SCI.
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between SCI group and SCI + NR group (SCI group: X25/X32/X26; SCI + NR group: X12/X15/X17).
(C) Associated GO terms: biological process changed in injured spinal cord after NR treatment.
(D) Relative mRNA levels of L-selection normalized to GAPDH transcript in each group of injured
spinal cord. (E–G) Relative mRNA levels of IL-1β (E), TNF-α (F) and IL-22 (G) normalized to GAPDH
transcript in each group of injured spinal cord. Data was presented as Mean ± S.E.M. * p < 0.05,
** p < 0.01, *** p < 0.0001, n = 3/group.

4. Discussion

In this study, we revealed a new mechanism by which NR supplementation exerts
anti-inflammatory effects by attenuating leukocyte chemotaxis after SCI, thereby promoting
neuroprotection. We confirmed that the administration of NR to SCI mice could effectively
increase NAD+ levels in spinal cord tissue and promote the recovery of motor function.
Through in vivo and in vitro evidence, we showed that NR could promote the survival
of neurons after injury, increase the number of synapses, and regenerate axons. This
protective effect might be exerted through the mechanism of regulating the local immune
micro-environment of SCI by reducing leukocytes chemotaxis/recruitment in the early
stages of SCI. Our data showed for the first time that NR supplementation exerted anti-
inflammatory effects in mice after SCI in a manner that alleviated leukocyte chemotaxis.

NR, as an effective NAD+ precursor, has a two-step or three-step pathway to form
NAD+ and its precursors, which must be converted into NR or NAM before entering
cells [40]. Currently, NR is emerging as a leading drug candidate compared to other
precursors (NAM/NMN) due to its high bioavailability, safety, and strong ability to increase
NAD+ levels [41,42]. Therapeutic strategies to maintain or increase NAD+ early after injury
may reduce the progression of secondary injury and tissue damage [24,34]. This study
showed that in mice after SCI, there was a depletion of NAD+ in the lesional spinal cord
tissue. NR as a dietary supplement had been shown to safely increase NAD+ levels in
humans [43]. To get closer to clinical research, we provided NR supplements to mice
immediately after SCI for 7 days, which confirmed that it was indeed effective in increasing
NAD+ levels in the spinal cord tissue of mice in the acute phase of SCI.

It has been confirmed in in vivo and in vitro models that NAD+ is crucial for energy
metabolism, oxidative stress, DNA damage repair, lifespan regulation, and some signaling
processes, and can prevent neurodegeneration [24] and enhance axonal protection [34]. In
the spinal cord ischemia-reperfusion injury model, Xie et al. confirmed that supplementing
NAD+ reduce oxidative stress and neuronal apoptosis [16,44]. NR is an effective precursor
supplement for NAD+. NR supplementation has been shown multiple times to increase
NAD+ levels and a range of its related metabolites. In mice models, NR increased NAD+

metabolism, which improved glucose tolerance, reduced weight gain, and exhibited neu-
roprotective effects against diabetic neuropathy and hepatic steatosis [45]. NR preserves
cardiac function in a mouse model of dilated cardiomyopathy by stabilizing myocardial
NAD+ levels in the failing heart [46]. Long-term NR supplementation improved muscle mi-
tochondrial biogenesis, satellite cell differentiation, gut microbiota, and DNA methylation
in humans [47]. NR protected against ethanol induced liver injuries via replenishing NAD+,
reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis [48].
Although the specific mechanisms have not been thoroughly investigated, NR treatment
could promote the preservation of neurons after SCI in rats [25], which is also consistent
with our results. NR promoted oxidation resistance and upregulated biological pathways
associated with synaptic transmission and PPAR signaling, which protect the synapse and
prevent hearing loss [49,50]. Our study found that NR supplementation significantly in-
creased the number of synapses in the spinal cord tissue of SCI lesions. Furthermore, NAD+

displayed significant neuroprotective properties in cultured neurons [51]. Our in vitro cell
experiments also confirmed that NR could increase the survival of neuronal cells under LPS
inflammatory stimulation and the H2O2 oxidative stress model. Supplementation of NAD+

with NR slowed axon degeneration and demyelination in a mouse facial nerve axotomy
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model [52]. We found that supplementing NR enhanced the protective effect of axons in
mice after SCI.

NR improved neuroinflammation [37] and had anti-inflammatory effects in clinical
studies [38], which provided evidence to support our research on supplementing NR
to improve the immune micro-environment of the injured area after SCI. In this study,
supplementing NR could down-regulate the levels of TNF-α, IL-1β, and IL-22 in the
spinal cord lesion tissues of SCI mice and improve the inflammatory micro-environment.
Supplementing with NR might reduce inflammatory cytokine secretion by inhibiting
leukocyte proliferation and migration. Both the Mouse Cytokine Array GS4000 and qRT-
PCR confirmed that NR supplementation could inhibit the expression level of L-selection
in mouse lesion tissue after SCI. L-selection was a major regulator related to leukocyte
adhesion, migration, and signal transduction. At the same time, both RNA-seq and Mouse
Cytokine Array GS4000 results indicated that supplementing NR could regulate important
biological processes related to leukocyte chemotaxis.

Studies had shown that NR could reverse the progressive atrophy syndrome of skeletal
muscles in mice lacking Nampt while restoring endurance within 1 week of treatment [53].
NR significantly increased the content of NAD+ in muscles [41], which could effectively
delay the progression of muscle atrophy and degeneration by improving muscle strength,
restoring aging muscle stem cells, reducing inflammation and fibrosis levels [20]. Our re-
sults showed that supplementing NR could improve BMS scores, improve motor function,
and increase the grip strength level of injured hind limbs in mice. The neuroprotective
effects of NR supplementation may be related to improved neuronal survival and axon
regeneration after SCI. This study provided new evidence supporting the understand-
ing of neuroprotection and improved immune micro-environment after SCI through NR
supplementation.

5. Conclusions

NR, as a safe precursor to increase NAD+ levels, could be used as an effective strategy
to reduce secondary damage. Our research showed that NR treatment improved the local
inflammatory micro-environment of the lesion by reducing the chemotaxis of leukocytes,
enhanced tissue preservation after SCI, and ultimately promoted the recovery of motor
functions. Further studies in appropriate in vivo and in vitro models are still needed to
study these effects in the future. In summary, this study provided new data to explore
the relationship between NAD+ levels and the regulation and functional recovery of the
damaged immune micro-environment in mice after SCI.
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