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Abstract: NGF plays a crucial immunomodulatory role and increased levels are found in numerous
tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of
B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune
system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of
numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis,
systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as
NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to
identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules
function and which cells they interact with, future studies can devise targeted therapies to address
various neurological, immunological, and other disorders more effectively. This knowledge may
pave the way for innovative treatments based on NGF manipulation aimed at improving the quality
of life for individuals affected by diseases involving neurotrophins.

Keywords: arthritis; autoimmunity; mastocytosis; multiple sclerosis; neurotrophins; autoimmune
thyroiditis; NGF; systemic lupus erythematosus

1. Introduction

The pathogenic process of autoimmune diseases is intricate and not yet fully under-
stood, and still remains a dearth of research on the involvement of nervous system-mediated
immunoregulation [1,2]. Neurotrophins (NTs) represent distinct particles known for their
critical function in regulating neuronal development, function and survival [3,4]. Given the
diverse functions of NTs in various contexts, any changes or alterations in these molecules
can give rise to a range of pathological manifestations associated with different diseases.
Nerve growth factor (NGF) stands as the foremost and extensively researched among the
NTs, exhibiting activity in a broad array of nervous and non-nervous cell systems. Addi-
tionally, NGF is synthesized by various cell types not necessarily linked to NGF-dependent
neurons [2,5]. Specifically, NGF plays a vital role in interacting with the immune hematopoi-
etic cell line and assumes an immunomodulatory function primarily by controlling thymic
organogenesis and microenvironment [6]. NGF may be also associated with the thymic
pathology found in some subtypes of Myasthenia Gravis (MG) as studies have demon-
strated that NGF and its receptors are overexpressed in thymic cells of patients affected by
MG [7,8]. Moreover, NGF regulates the differentiation and survival of T and B cells [6,9–12].
The blood levels of NGF have been found to be higher in various conditions, including
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multiple sclerosis, chronic granulomatous disease, systemic lupus erythematosus, chronic
arthritis and mastocytosis [13–15]. Comprehending the role of NTs holds the potential to
develop effective and efficient treatment strategies.

The primary objective of this study is to provide a comprehensive summary of the
existing literature regarding the involvement of NGF in autoimmune diseases.

2. Neurotrophins

The NTs are a family of trophic factors which, despite being initially considered simply
survival agents for sympathetic and sensory neurons, have proven to play a major role in
controlling crucial traits of development, survival, and the function of neurons in both the
central and the peripheral nervous systems [16,17]. NGF is the first NT discovered and
analyzed by Rita Levi-Montalcini, Viktor Hamburger and Stanley Cohen more than half
a century ago in the early 1950s [18–21]. Other proteins belonging to this family are the
brain-derived neurotrophic factor (BDNF) and NTs 3, 4 and 5 [4,22]. NTs are synthesized as
pro-NTs with an N-terminal pro-domain and a C-terminal mature domain that subsequently
undertake proteolytic cleavage and post-translational changes [23,24]. These premature
molecules actually play an active role in being able to complement or alter the function
of the complete forms [25]. The final form of NTs binds to high-affinity tropomyosin-
related kinase (Trk) A, B or C receptors or the low-affinity p75 pan-neurotrophin receptor
(p75NTR), also referred to as CD271 in immune cells [17,26,27]. The TrkA receptor is
characterized by the highest affinity for NGF, the TrkB receptor for BDNF and NTs-4/5, the
TrkC for NT-3 [28–31]. The NT-3 may link the other Trk receptors with less efficacy. The Trk
receptors share a similar structural organization and highly homologous sequence where
each Trk receptor extracellular domain consists of a cysteine-rich cluster (C1) followed by
three leucine-rich repeats (LRR1–3), two immunoglobulin-like domains (Ig1 and Ig2) and
another cysteine-rich cluster (C2) [32–34]. The major site of interaction between NTs and
their receptors is the membrane-proximal immunoglobulin-like domain (Ig2). Each Trk
receptor crosses the membrane once and ends with a cytoplasmic domain involving of a
tyrosine kinase domain enfolded by several tyrosines with the function of phosphorylation-
dependent docking sites for cytoplasmic enzymes and adaptors [17].

The p75NTR is a type I transmembrane protein consisting of a transmembrane do-
main, an extracellular domain, and an intracellular domain. As a member of the tumor
necrosis factor receptor superfamily, the p75NTR is able to trigger cell death through the
Jun kinase pathways and nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) [35]. Actually, p75NTR promotes cell death or survival and modulates neurite
outgrowth depending on the operative ligands and co-receptors, so it has been identified
as a possible therapeutic target for various diseases [36].

Changes in NTs are associated with a variety of para-physiological states and dis-
eases, including stress situations [37,38], cardiovascular impairments [39,40], cognitive and
neurodegenerative disorders [41–44] and pediatric diseases [45,46]. The immunological
behavior of diseases associated with NT alteration is often attested by inflammation and
organic dysfunction, which could include changes in the LRRK2 gene [47–49].

Interestingly, Trk receptors and p75NTR can either compete for NGF binding or
work together in a cooperative manner, depending on the cellular context [50,51]. The
specific combination and balance of these receptors can vary, as the expression of Trk
receptors and p75NTR depends on the cell type and the stage of development. For example,
during neuronal development, different neurons may express different combinations of Trk
receptors and p75NTR based on their specific requirements [3]. In some cases, neurons may
co-express both Trk receptors and p75NTR to enable a range of responses to NGF and other
NTs. Trk receptors and p75NTR can have both cooperative and competitive interactions in
the context of NGF binding [51,52]. When NGF binds to its high-affinity receptor TrkA, it
triggers signaling pathways that promote neuronal survival and growth. In some situations,
especially during neuronal development or in response to nerve injury, TrkA competes with
p75NTR for NGF binding [50,53]. This competitive interaction can influence the balance of
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signaling pathways activated by NGF, as p75NTR can mediate signaling pathways distinct
from TrkA and may be involved in processes like neuronal apoptosis. On the other hand,
in many cells and under certain conditions, both Trk receptors and p75NTR can be present
and work concurrently [54,55]. In this cooperative scenario, p75NTR may act to enhance the
affinity of Trk receptors for NGF, thus potentiating Trk receptor signaling. This cooperative
interaction can adjust the responsiveness of neurons to NGF and other NTs, allowing for
more precise control over neuronal development, plasticity, and survival [55].

3. Neurotrophins and the Immune System

Figure 1 and Table 1 show the most important evidence for the role of NGF as an
immune regulator [2]. NGF expression is increased in inflamed organs, leading to the
release of immune-active neuropeptides and neurotransmitters [13].
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Figure 1. Role of NGF as an immune system modulator. Through different pathways (i) high-affinity
Trk A, B, and/or C receptors trigger Ras, PI3-kinase, phospholipase C-gamma1 signaling pathways,
while (ii) low-affinity p75NTR triggers many paths including those associated with NF-kappaB
and Jun kinase. NTs play a major role in many physiological activities including neuroregulation,
angiogenesis, immunomodulation, reproduction, and bone tissue regulation. NGF released from
tissue mast cells because of nervous, immune, or endocrine stimuli cause innate and adaptive immune
responses: mast cells maturation, survival and degranulation; neutrophils chemotaxis, survival,
proliferation, phagocytosis; thymic organogenesis, stromal cells, and microenvironment regulation;
T-lymphocyte differentiation and survival; B-cell proliferation, memory B-cell survival, antibody
production, and CD40 expression; monocytes increased respiratory burst expression of Bcl-2, Bcl-XL,
and Bfl-1; eosinophils peroxidase and interleukin-4 secretion; basophil activation and interleukin-
13 secretion. NF-kappaB, nuclear factor-kappaB; NGF, nerve growth factor; NTs, neurotrophins;
p75NTR, p75 neurotrophin receptor; Trk, tropomyosin-related kinase; PI3, phosphatidyl inositol-3.
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Table 1. Role of NGF receptor pathways as immune system modulators. Through different pathways
activated by its high-affinity (Trk) and low-affinity (p75NTR) receptors, NGF plays a pivotal role
in regulating intracellular signaling in various immune cell types. This regulation influences their
activation, differentiation, and effector functions depending on the cell type and the context of
the immune response. NF-kappaB, nuclear factor-kappaB; NGF, nerve growth factor; p75NTR,
p75 neurotrophin receptor; PI3, phosphatidyl inositol-3; Trk, tropomyosin-related kinase; PLC-γ1,
phospholipase C-gamma1.

Receptor Pathway Effect on Immune Cells Ref.

p75NTR NF-kappaB

1. B-lymphocytes: B-cell activation and differentiation, regulation of B-cell
receptor signaling, antibody production, and B-cell survival.

2. T-lymphocytes: activation and proliferation, regulation of cytokine
production, immune response, and T-cell survival.

3. Mast Cells: release of inflammatory mediators.
4. Monocytes: differentiation into macrophages, regulation of production of

inflammatory cytokines.
5. Basophils: activation and release of proinflammatory molecules.
6. Eosinophils: recruitment, activation and production of various cytokines

and chemokines.
7. Polymorphonuclear Neutrophils: neutrophil chemotaxis, phagocytosis, and

production of reactive oxygen species.

[56–66]

p75NTR Jun kinase

1. B-lymphocytes: B-cell activation, differentiation, and antibody production.
2. T-lymphocytes: T-cell receptor signaling and activation, regulation of

proliferation, differentiation, and cytokine production.
3. Mast Cells: activation and degranulation.
4. Monocytes: differentiation into macrophages and their

inflammatory responses.
5. Basophils: limited role in activation.
6. Eosinophils: activation, migration and apoptosis.
7. Polymorphonuclear Neutrophils: activation, chemotaxis, phagocytosis and

release of reactive oxygen species.

[67–79]

Trk Ras

1. B-lymphocytes: B-cell receptor signaling and activation, regulation of B-cell
proliferation, differentiation, and antibody production.

2. T-lymphocytes: T-cell receptor signaling and T-cell activation, proliferation,
differentiation and cytokine production.

3. Mast Cells: activation and degranulation, release of inflammatory mediators.
4. Monocytes: differentiation into macrophages.
5. Basophils: activation and the release of inflammatory mediators.
6. Eosinophils: activation and survival, chemotaxis, degranulation.
7. Polymorphonuclear Neutrophils: chemotaxis, activation, phagocytosis,

oxidative burst, and the release of enzymes and antimicrobial proteins.

[80–90]

Trk PI3-kinase

1. B-lymphocytes: B-cell activation and survival, proliferation and
differentiation into antibody-producing plasma cells.

2. T-lymphocytes: T-cell activation and survival, proliferation, differentiation
into effector subsets, and cytokine production.

3. Mast Cells: activation and degranulation.
4. Monocytes: activation, migration, and phagocytosis, differentiation into

macrophages.
5. Basophils: activation, survival, and the release of inflammatory mediators.
6. Eosinophils: activation, chemotaxis, degranulation and the release of

proinflammatory factors.
7. Polymorphonuclear Neutrophils: activation, chemotaxis, and the

oxidative burst.

[91–98]
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Table 1. Cont.

Receptor Pathway Effect on Immune Cells Ref.

Trk PLC-γ1

1. B-lymphocytes: role in triggering calcium mobilization and activation of
downstream signaling pathways, leading to B-cell proliferation and
antibody production.

2. T-lymphocytes: crucial for the production of IP3, which leads to calcium
release and activation of protein kinase C, promoting T-cell activation and
cytokine production.

3. Mast Cells: activation and degranulation.
4. Monocytes: activation, release of inflammatory cytokines and chemokines.
5. Basophils: possible activation and release of inflammatory mediators.
6. Eosinophils: possible activation and release of proinflammatory factors.
7. Polymorphonuclear Neutrophils: PLC-γ1 is not as prominent in neutrophils

as in other immune cells. It may play a role in chemotaxis.

[95,99–
103]

Additionally, NGF can directly influence adaptive and innate immune responses.
The impact of NTs on immune cells is tightly regulated and may be influenced by other
signals [104]. NTs play crucial roles in the microenvironment, stromal cells, thymic organo-
genesis, and T-cell survival and differentiation [105,106].

NGF is produced, in acquired immunity, not only by the thymus but also by CD4+
T-cell clones [6]. This production induces a cascade of T cell maturation during infection.
NTs and their receptors also have significant functions in B cells: NGF may stimulate B-cell
proliferation, antibody production, memory B-cell survival, and CD40 expression; BDNF
contributes to B-cell maturation in the bone marrow through TrkB95, which is expressed
on activated B-cells, and memory B-cells express both TrkA and p75NTR [107]. NTs have
also a role in various immunological tumors, particularly B-cell malignancies like acute
lymphoblastic leukemia, Burkitt’s lymphoma, diffuse large B-cell lymphoma, and multiple
myeloma [107–110]. Interestingly, the balance between mature and pro-neurotrophin
signaling similarly affects immune function. In fact, increased proNGF/p75NTR signaling
in macrophages and glia can alter the functional characteristics of these cells, promoting
inflammation and the release of neurotoxic substances [111,112].

During inflammation, mast cells release NGF in high concentrations, leading to ax-
onal outgrowth in nearby nociceptive neurons, resulting in elevated pain perception in
inflamed areas. NGF exhibits diverse effects that can be either pro-inflammatory or anti-
inflammatory, while the expression of its receptors, TrkA and p75NTR, is dynamically
regulated in immune cells, suggesting a variable request for NGF depending on their
differentiation and functional activity. This contradictory activity may be explained by the
need to limit tissue damage and excessive inflammatory responses: NGF participates in an
endogenous mechanism that, while activating immune responses, also triggers pathways
necessary to attenuate the inflammatory response and restrain tissue damage [13,47]. Con-
sequently, in patients with inflammatory diseases like those affected by chronic arthritis,
reduced immune cell expression of TrkA might lead to a diminished activation of regulatory
feedback mechanisms by NGF, thereby contributing to the development and maintenance of
persistent inflammation. NGF production is actually stimulated by inflammatory cytokines
such as IL-1 and IL-6 in various tissues. Among the numerous cells that produce NGF,
T-lymphocytes can be either inhibited or stimulated by this neurotrophic factor, depending
on the receptors involved [11,113]. Therefore, it appears plausible that NGF plays a role
in finely regulating cellular functions. Furthermore, CD4+ T cells producing NGF might
be involved in processes related to neural protection and repair [114]. Although T-cells,
including CD4+ T cells, are integral components of the peripheral immune system, it is not
common to associate NGF production with peripheral T cell functions. It is worth noting
that it remains unclear whether, under certain conditions, peripheral T-cells might also
produce NGF if prompted to do so by the local microenvironment or immune signals [6].
However, the production of NGF by T cells appears to be clearly more prominent within
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the brain or in specific neurological contexts. Also, B cells autocrinally produce NG which
seems to directly impact the synthesis of calcitonin-gene related peptide (CGRP) in B cells,
thereby influencing the intensity and duration of the immune response [115].

NTs are naturally produced by our bodies. However, in certain circumstances, antibod-
ies against these molecules may be produced. For example, antibodies against NGF have
been discovered in the sera of herpes simplex virus (HSV) patients, suggesting a possible
role in modulating NGF’s cytokine function during viral infection [116]. In particular, in
this study the authors used enzyme-linked immunosorbent assays (ELISA) and immunoad-
sorbent columns, to detect the presence of NGF-specific autoantibodies that could bind to
and immunoprecipitate mouse NGF [116]. Then, the researchers observed higher levels of
these anti-NGF antibodies in the blood of patients who were infected with HSV suggesting
that the presence of HSV infection is associated with an increase in anti-NGF antibodies in
the blood. In contrast to infected patients, rabbits that were intentionally inoculated with
HSV did not show an increase in anti-NGF antibodies implying that the immune response
to HSV infection in animals may be different from that in humans [116]. Finally, as NGF is
known to be involved in promoting HSV latency in vitro, it was suggested that these anti-
bodies could potentially modulate the function of NGF as a cytokine and impact the course
of HSV infection [117,118]. It has also been suggested that natural autoantibodies may
play a key function as carriers of specific cytokines to target cells. On the other hand, this
could also be a case of molecular mimicry where it is possible that the anti-NGF antibodies
detected in HSV-infected patients may be the result of the immune system recognizing
similar epitopes between HSV and NGF, leading to the production of antibodies that target
both the virus and the host protein [117,118].

In fetal animal models, exposure to NGF antibodies leads to significant neuroendocrine
impairment, with postnatal manifestations such as atrophied sympathetic and sensory
ganglia, smaller thyroid glands, reduced body weight, and sensory deficits [119–121].
Moreover, exposure to NGF antibodies during this developmental period can neutralize
NGF in neuroendocrine structures, causing neuroendocrine immunodeficiency syndrome.
Autoantibodies to NGF have also been found in the sera of some patients with autoimmune
diseases such as systemic lupus erythematosus, autoimmune thyroiditis, and rheumatoid
arthritis [122]. Autoantibodies from these pathological cases displayed higher avidity for
NGF and a higher poly-reactivity with certain cytoskeletal proteins and DNA compared to
those from control human subjects [122].

4. Autoimmune Diseases
4.1. NGF and Autoimmune Diseases

Table 2 shows the role of NGF in autoimmune diseases. Indeed, evidence indicates that
NGF may play a role in the pathogenesis of autoimmune diseases. Studies have revealed
elevated levels of NGF in the blood and tissues of individuals affected by autoimmune
diseases (thyroiditis, rheumatoid arthritis, and multiple sclerosis). Furthermore, NGF has
been shown to modulate immune cell activity and has significant involvement in inflam-
matory conditions, wherein an increase in NGF, induced by inflammation or stress, might
stimulate immune cells and other biological mediators during immunologic insults [15].

A notable aspect is an interaction between NGF and tumor necrosis factor (TNF-α),
which holds valuable insights into the mechanisms underlying autoimmune inflammatory
diseases [14]. Nevertheless, the precise role of NGF in autoimmune diseases remains
incompletely understood, necessitating further research to establish the exact relationship
between NGF and these conditions. It is important to recognize that NGF is just one of
numerous factors that may contribute to the development and progression of autoimmune
diseases, as these conditions are intricate and multifactorial. A comprehensive understand-
ing of these factors could potentially lead to novel and effective approaches for managing
and treating autoimmune diseases.
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Table 2. NGF roles in autoimmune diseases.

Disease Clinical Manifestations Role of NGF Ref.

Autoimmune thyroiditis

Hyperthyroidism (e.g., Graves’
Disease) and hypothyroidism

(e.g., Hashimoto Thyroiditis) with
a variety of associated symptoms

such as humoral psychotic
symptoms, intolerance to

cold/hot temperature, weight
changes, difficulty in

concentration, and eye disorders.

• Role in T cell population homeostasis regulation.
• Increased levels of NGF and NGF autoantibodies

in the blood and tissues of Autoimmune
thyroiditis patients.

• NGF may contribute to inflammation and tissue
damage stimulating pro-inflammatory cytokines
production and activating mast cells.

• Anti-inflammatory treatments, able to reduce
NGF levels in tears, are able to increase tear film
stability and production and decrease eye
congestive symptoms.

[122–127]

Chronic arthritis

Chronic inflammation and
damage to joints and surrounding
tissues, chronic pain and reduced

quality of life, asthenia,
psychological and social

symptoms

• NGF overexpression in synovial fluid, serum,
cerebrospinal fluid, and tissue specimens.

• NGF concentrations are correlated with the
extent of inflammation and clinical
disease activity.

• Rapid activation of NF-kB and MAP kinases
regulates the bioavailability of aggrecanase and
of NGF causing pain.

• Decreased TrkA expression in immune cells of
arthritis patients may contribute to chronic
inflammation development and maintenance by
preventing NGF regulatory feed-back
mechanisms.

• An active proNGF/p75NTR axis promotes
chronic synovial inflammation.

• Antibodies directed against NGF (NGF-Abs)
have been successfully tested for the treatment of
chronic pain in both animals and humans with
some concerns about side effects.

[13,47,128–137]

Multiple sclerosis

Periods of relative well-being
alternate with episodes of

symptom deterioration with
gradual worsening over time.

Tingling, numbness, pain,
burning, itching, reduced sense of
touch, loss of strength or dexterity

in a limb, vision disorders.

• Increased cerebrospinal fluid and cerebral
NGF levels.

• Enhanced expression of NGF receptors in
multiple sclerosis lesions.

• NGF seems to produce anti-inflammatory effects
so the induction of NGF probably represents an
adaptive response against immune-mediated
neuroinflammation.

• The release of this neurotrophic factor by brain
mast cells could be a key element.

• Autocrine and paracrine factor in
TrkA-expressing reactive and neoplastic
glial cells.

• p75NTR plays an important role in
leukocyte-endothelial cell interactions and in the
maintenance of Purkinje cells survival as well as
their upregulation of sodium channel Na(v)1.8.

• In animal studies altered NGF levels represent
one of the early manifestations of these
demyelinating diseases.

• Higher levels of NGF correlate with disease
phase, duration, age of patients, cognitive
performance and disease progression.

• Potential therapeutic role as NGF showed
neuroprotective activity and
immunomodulatory effects.

• NGF may be useful as a marker of
successful treatment.

[86,89–113]
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Table 2. Cont.

Disease Clinical Manifestations Role of NGF Ref.

Chronic granulomatous
disease

Recurrent infections, multiorgan
granulomatous lesions, abscesses,

lymphadenitis,
hypergammaglobulinemia,

anemia.

• The NOX2 deficiency in animal models is linked
to a reduced expression of NGF and a decreased
generation of mature neurons.

• NGF may play a key role in the development of
effective therapeutic genetic
modification strategies.

[46,138–142]

Systemic lupus
erythematosus

Fever, fatigue, butterfly rash on
the face, erythematous lesions in

areas exposed to the sun, hair loss,
purple-red lesions of the hard and
nasal palate, cutaneous vasculitis,

and multiorgan involvement.

• Increased B cells and serum NGF levels.
• Major role in the inflammatory phase being

closely correlated with disease activity.
• Higher NGF concentrations related to

subcortical atrophy.
• NGF may have a prognostic value.
• p75NTR is increased on CD16+ and CD56+

leucocytes of affected patients.

[143–151]

Mastocytosis
Itching, dyspnea, urticaria,
dizziness, sense of fainting,
multi-organ dysfunctions.

• Mast cells are involved in neuroimmune
interactions related to tissue inflammation.

• NGF promotes mast cell differentiation and
survival while mast cells produce NGF and other
neurotrophins.

• Elevated serum levels of NGF are related to mast
cells load.

• Increased expression of modified Trk receptors
on mast cells may contribute to the
pathophysiology of mastocytosis in paracrine
and autocrine loops.

[2,152–154]

4.2. Autoimmune Thyroiditis

Autoimmune thyroid diseases (AITDs) affect approximately 5% of the population and
are the most prevalent organ-specific autoimmune conditions [155,156]. These diseases are
more common in women, with a prevalence of 5–15%, compared to men with a prevalence
of 1–5%. The two most frequent AITDs are Graves’ Disease (GD) and Hashimoto Thyroiditis
(HT), which are the major causes of hyperthyroidism and hypothyroidism, respectively.
Their pathologic features involve reactive T-cells infiltration (predominant in HT) and B cells
(predominant in GD), leading to follicular destruction, gradual atrophy, and fibrosis [157].

The etiology of AITDs is multifactorial and involves various factors, including genes
like HLA and CTLA4, as well as smoking, stress, alcohol, and iodine consumption. The onset
of injury occurs when autoantibodies and/or sensitized T-cells respond against thyroid
cells, causing an inflammatory reaction and cell lysis [158–160]. About 20% of patients with
AITDs also have other organ-specific or systemic autoimmune disorders. In the immune
system, death receptors from the TNF/NGF receptor superfamily play a crucial role in
regulating the adaptive immune response [123]. During the adaptive immune response to
antigens, after the peak of the immune response, most activated antigen-specific T cells are
eliminated to maintain T cell population homeostasis. This elimination occurs either by
death caused by cytokine withdrawal or by activation-induced cell death, through death
receptor engagement.

Numerous studies have reported increased levels of NGF and NGF autoantibodies
in the blood and tissues of individuals with AITDs [122,124,125]. Additionally, NGF is
believed to contribute to inflammation and tissue damage associated with these diseases.
It has been found that NGF stimulates the production of pro-inflammatory cytokines
and may activate mast cells, which release inflammatory mediators, further contributing
to the inflammatory status and tissue damage observed in AITDs. Studies on AITDs-
associated ophthalmopathy have emphasized the importance of NGF in the neuroprotection
of orbital tissues. This suggests that anti-inflammatory treatments aimed at reducing NGF
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levels in tears could enhance tear film stability and production while reducing congestive
symptoms [126,127].

Despite these findings, further research is necessary to completely understand the
exact association between NGF and autoimmune thyroiditis and its potential implications.

4.3. Chronic Arthritis

NGF is overexpressed in numerous inflammatory and degenerative rheumatic dis-
eases [128]. Its presence can be detected in synovial fluid, serum, cerebrospinal fluid, and
tissue specimens, with NGF concentrations often correlating with the degree of inflamma-
tion and/or clinical activities in various circumstances.

Chronic arthritis is a significant contributor to joint and surrounding tissue inflamma-
tion and damage, resulting in chronic pain and reduced quality of life [48]. The upstream
mechanism that activates mechanoflammation in chronic arthritis remains unidentified.
However, it leads to the rapid activation of NFkB and inflammatory mitogen-activated
protein (MAP) kinases, controlling aggrecanase bioavailability and NGF regulation, which
in turn causes pain [129]. Numerous studies have demonstrated altered levels of NGF and
its receptors in the sera and tissues of patients with chronic arthritis [125,130,131]. The
reduced expression of TrkA in the immune cells of arthritis patients may hinder the activa-
tion of regulatory feedback mechanisms by NGF, thereby contributing to the development
and maintenance of chronic inflammation [13].

Additionally, recent evidence indicates a role for the p75NTR receptor and its preferen-
tial ligand proNGF in potentiating inflammatory responses in synovial mononuclear cells
of patients affected by chronic arthritis [47]. This suggests that an active proNGF/p75NTR
axis may promote pro-inflammatory responses in synovial fibroblasts, further contributing
to chronic synovial inflammation. Consequently, p75NTR inhibitors could represent a po-
tential novel therapeutic approach for chronic arthritis. Despite the availability of various
non-pharmacologic and pharmacologic treatment options, chronic pain continues to be a
significant global burden, affecting approximately 30% of the adult population. Therefore,
the development of new analgesics with novel mechanisms of action is of utmost impor-
tance. Antibodies targeting NGF (NGF-Abs) have been developed for treating chronic
pain conditions such as osteoarthritis and chronic low-back pain, as NGF contributes to
peripheral and central sensitization through the activation of TrkA and stimulation of local
neuronal sprouting [132,133].

These NGF-Abs have demonstrated significant pain relief and functional improve-
ment in both animal models and clinical patients affected by knee and/or hip osteoarthri-
tis [134,135]. However, their efficacy in non-specific lower back pain has yielded mixed
results. Unfortunately, studies have raised safety concerns regarding NGF-Abs, as they may
potentially cause or worsen peripheral neuropathies and lead to rapid joint destruction
necessitating joint replacement surgery [136,137]. The underlying causes of these side
effects have been widely debated, and their pathophysiology remains poorly understood,
limiting the practical use of these compounds. Nevertheless, most subjects have shown
acceptable tolerability to NGF-Abs, with low rates of discontinuation reported in clinical
trials to date [161,162]. Interestingly, research has demonstrated that pretreatment with
NGF-Abs reduces or prevents arthritis induced by carrageenan, indicating a functional role
of NGF in this type of peripheral inflammation [163].

Similar results have been observed in arthritic transgenic mice expressing high levels
of TNF-α in knee joints. Additionally, recent studies on murine models have shown that
selective inhibition of TrkA may reduce pain behavior induced by carrageenan or collagen-
induced arthritis by inhibiting synovial inflammation. This suggests that NGF blockade
is crucial for the beneficial effects (reduction in pain and pathology) in the presence of
inflammation [164].



Curr. Issues Mol. Biol. 2023, 45 8959

4.4. Multiple Sclerosis

Multiple sclerosis is a chronic, predominantly immune-mediated, disease of the central
nervous system (CNS) and one of the most common reasons of neurological disability in
young adults, characterized by inflammation, demyelination and axonal loss leading to loss
of vision in an eye and loss of power or sensibility in an arm or leg [165]. The onset usually
begins in young adulthood (between 20 and 40 years of age), and it is more common in
women (the female to male ratio is 3 to 1) especially in Europe and North America [166,167].
The etiology is complex and mostly unclear, amongst the environmental factors evidence
supports an increased risk in patients with Epstein–Barr virus infection, cigarette smoking,
low levels of vitamin D, and an increased BMI during adolescence [168].

In particular, multiple sclerosis is an autoimmune demyelinating disease that pro-
duces brain plaques containing mast cells and areas of demyelination demarcated by
T-lymphocytes and monocytes in cellular infiltrates [2,169]. NGF seems to produce anti-
inflammatory effects by upregulating the production of interleukin 10 by glial cells, T cells
infiltrating the CNS, and downregulating the production of interferon-gamma [170]. The
major suspected immunogen in multiple sclerosis is the myelin basic protein (MBP) which
stimulates mast cell secretion of pro-inflammatory mediators, capable of causing periph-
eral and central demyelination, and of cytokines that can induce astrocyte production of
neurotoxic amounts of nitric oxide (NO) [171]. See Figure 2 for further information.
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Early release of mast cell mediators may influence a delayed T-cell response, whereas
T-cell products can cause mast cell activation [172]. Since both lymphocytes and monocytes
respond to NGF, the release of this neurotrophic factor by brain mast cells could be a key
element in such a cycle. It has been suggested that the reactivation of CNS autoimmune
T cells by locally presented antigens to which they are specific (e.g., MBP) can lead to
enhanced secretion of NTs [173]. So, the induction of NGF probably represents an adap-
tive response against immune-mediated neuroinflammation [174,175]. There are various
reports of increased cerebrospinal fluid and cerebral NGF levels in patients with multiple
sclerosis [176–180]. Furthermore, enhanced expression of NGF receptors has also been
demonstrated in multiple sclerosis lesions [181,182].

These receptors play important and different roles in multiple sclerosis, for example,
NGF acts as an autocrine or paracrine factor in TrkA-expressing reactive and neoplastic glial
cells, while p75NTR plays an important role in leukocyte-endothelial cell interactions and in
the maintenance of Purkinje cell survival [183,184]. As studies have highlighted, in addition
to demyelination and axonal degeneration, dysregulated ion channel expression also
contributes to the pathophysiology of multiple sclerosis; moreover, it has been suggested
that NGF acts via p75 to contribute to the upregulation of sodium channel Na(v)1.8 in
Purkinje cells [185].

In animal studies altered NGF levels represent one of the early manifestations of
these demyelinating diseases [186]. Interestingly, a recent article suggested a correlation
between higher cerebrospinal fluid levels of iodothyronines, nerve growth factor and
multiple sclerosis [187]. This is in line with the evidence suggesting that thyroid hormones
activate oligodendrocyte precursors (OPs) and increase myelin-forming protein and NGF
content [188]. During the acute phase of the disease, there is an increase of BDNF, TNF-
alpha and IFN-gamma synthesis and release, while significantly higher levels of NGF,
GDNF, NT3 and NT4 can be found in the post-relapse phase, with the neuroprotective
potential of immune cells being inversely related to disease duration and with the age of
patients [189]. Interestingly, cognitive performance and disease progression, especially
in the case of relapsing-remitting multiple sclerosis patients, are strongly linked to NGF,
which might play a neuroprotective role [190,191].

On the other hand, the use of NTs as therapeutic agents has been suggested as a
novel option for restoring and maintaining neuronal function during neurodegenerative
diseases such as multiple sclerosis. NGF induces axonal regeneration, protection, survival,
and differentiation of oligodendrocytes (OGs), it facilitates migration and proliferation
of OPs to the sites of myelin damage [192]. NGF also directly regulates key structural
proteins that comprise myelin and induces the production of BDNF which is also involved
in myelination [192].

As NGF showed neuroprotective activity and immunomodulatory effects, it has been
suggested that new therapeutic approaches for the treatment of numerous brain disorders,
including multiple sclerosis should focus on NGF and NTs [193,194]. Furthermore, au-
toimmune and mesenchymal stem cells may protect neuronal populations and suppress
the formation of new lesions by the release of NTs, suggesting that these cells could be an
alternative source for delivering NTs into the CNS [195].

The NGF and NTs levels are often used as markers of successful treatment in neu-
rodegenerative and autoimmune diseases [196,197]. Interferon beta (INF-β) therapy, which
reduces the rate of clinical relapse and the frequency of lesions in patients with multiple
sclerosis, has been shown to promote NGF and NT secretion early in the course of this dis-
ease, leading to better clinical effects in those patients who presented a significant increase
in NTs [198–200].

A recent study demonstrated that six months of probiotic supplementation results
in greater improvement in mental health parameters significantly increasing BDNF (but
not NGF) levels and reducing the IL-6 levels [201]. Other interesting articles found that
moderate exercise training may alter markers of blood-brain barrier (BBB) permeability
and neurotrophic factor status, especially in normal-weight persons with multiple sclerosis
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influencing the health-related quality of life, while overweight participants may be more re-
sistant to these effects. However, there is still a need for more high-quality studies to clarify
the impact of exercise on chronic levels of NTs and long-term health of patients [202–207].

New evidence on the murine model of multiple sclerosis suggests that metformin-
induced AMP-activated protein kinase (AMPK) pathway activation stimulates remyeli-
nation through induction of neurotrophic factors (NGF, BDNF and ciliary neurotrophic
factor), downregulation of neurite outgrowth inhibitor (NogoA) and recruitment of Olig2+
precursor cells opening the way for new therapeutic strategies based on AMPK activa-
tion [208].

The anti-inflammatory effects of new drugs and molecules for treating experimental
autoimmune encephalomyelitis may provide further insights into the understanding of
their neuroprotective activities in multiple sclerosis [209–214]. Unfortunately, most of the
evidence on these compounds has not reached the clinical level so their effectiveness on
human disease is still unclear.

Finally, it has been highlighted that the importance of NTs and NGF as targets for
autoimmune neuroprotection, represents a novel therapeutic approach aimed at shifting
the balance between the immune and neuronal cells towards survival pathways in a variety
of CNS injuries including multiple sclerosis [215]. These findings are in line with animal
evidence that NGF prevents demyelination, cell death, and progression of the disease
in experimental allergic encephalomyelitis murine models [216,217]. During the acute
phase of the disease, the glial cells become more receptive to NGF, pointing to the glia
as an important target for possible pharmacological manipulations such as exogenously
administered NGF [218]. In fact, new drugs have been developed that may serve as
lead molecules to develop protective agents for oligodendrocyte populations and myelin
(NT-like compounds) permeable to the BBB [219].

4.5. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a rheumatic autoimmune disorder affecting
multiple systems, characterized by connective tissue damage due to B-cell hyperactivity
and abnormal immune regulation [143]. It is more prevalent in women aged 15 to 40 years,
initially manifesting as cutaneous and mucosal erythematous symptoms and photosen-
sitivity. Subsequently, the disease can involve almost all organs and systems, including
the kidneys, joints, central nervous system, serous membranes, and hematopoietic system,
due to the deposition of immune complexes and complement activation. Patients with SLE
have shown increased B cells and higher serum levels of both NGF and BDNF [125,144,145].
Elevated concentrations of NGF and BDNF have been associated with subcortical atrophy
in neuropsychiatric SLE patients [146]. NGF also plays a significant role in the inflammatory
phase of the disease, and studies have suggested its involvement, along with interleukin-13
(IL-13), in the pathogenesis of SLE, is closely correlated with disease activity [147–149].

Notably, NGF levels have been found to be elevated in childhood SLE, with a correla-
tion to disease activity, indicating its potential role in SLE pathogenesis and its usefulness
as a prognostic marker for evaluating disease progression and guiding clinical manage-
ment [150]. Additionally, higher levels of these factors in SLE patients may be associated
with epigenetic changes due to DNA hypomethylation [220]. Interestingly, IL-34, strongly
related to myeloid cell subsets (e.g., brain microglia), appears to be associated with disease
progression, severity, and chronicity [221,222]. Therefore, blocking NGF, IL-13, and/or
IL-34 might be considered to suppress the expression of proinflammatory cytokines in the
blood of SLE patients, potentially benefiting the patient’s condition.

Despite the valuable evidence in the literature, the role of NGF and its receptors in
SLE is still under investigation. Recently, for the first time, the expression of the NGF
high-affinity receptor (TrkA) and low-affinity receptor (p75) has been analyzed on all major
leukocyte subsets of patients with SLE. When comparing SLE patients with healthy control
subjects, TrkA expression was not found to be differentially expressed, while p75 expression
was increased on CD16+ and CD56+ leukocytes of patients [151].
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4.6. Mastocytosis

Mastocytosis is a rare and heterogeneous disease characterized by an increased num-
ber of mast cells (MCs) in various body tissues. Two main types of mastocytosis can be
distinguished based on their distribution: cutaneous mastocytosis, which is more common
in children, and systemic mastocytosis, which primarily affects adults [223]. The clinical
features of mastocytosis include flushing, pruritus, abdominal aching, looseness, hypoten-
sion, syncope, and musculoskeletal pain [224]. MCs and NGF play a role in neuroimmune
interactions associated with tissue inflammation. MCs may produce and respond to NGF,
and changes in MCs behavior may lead to altered neuroimmune responses, including
autoimmune responses [2,152]. Neurotrophins (NTs) have been found to promote the
differentiation and survival of MCs, making them a significant source of NTs [153,154].

Patients with mastocytosis exhibit elevated serum levels of NGF and NT-4, which
are related to the load of MCs [2]. Additionally, it has been suggested that the increased
expression of modified Trk receptors (TrkA and TrkC) on skin and gut MCs may contribute
to the pathophysiology of mastocytosis through autocrine and paracrine loops [153]. Al-
though the precise impact of NGF and its receptors on mastocytosis pathogenesis is not
entirely clear, murine models have shown that TrkA activation leads to mastocytosis and
is involved in the development of resistance to the receptor tyrosine kinase KIT-targeted
therapy, which targets the mast/stem cell growth factor receptor KIT. This suggests that
a combined approach targeting both KIT and TrkA might enhance the efficacy of molec-
ular therapy in systemic mastocytosis patients with KIT mutations [225]. These findings
partially explain why treatment with KIT inhibitors alone has been disappointing in most
published clinical trials for mastocytosis.

4.7. Chronic Granulomatous Disease

Chronic granulomatous disease (CGD) is a rare disorder causing loss-of-function in the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) complex, leading
to diminished phagocyte capability in killing microorganisms [138]. Individuals affected by
CGD are more vulnerable to infections, excessive inflammation, and autoimmune diseases,
as well as experiencing intellectual and cognitive impairment [139,140]. In CGD models
with NOX2 deficiency, there is a reduced expression of NTs and a decrease in the generation
of mature neurons [138]. NGF plays a significant role in developing effective therapeutic
strategies for genetic modification [46].

Most CGD patients are males with hemizygous mutations in the X-linked CYBB gene
coding for gp91-phox (X-CGD). These patients have significantly low levels of superox-
ide, as only 5 to 10% of neutrophils producing superoxide are enough to protect X-CGD
heterozygotes from severe infections. Recently a promising approach using a bicistronic
retroviral vector to modify genetic defects and restore superoxide production in phagocytes
of CGD patients has been experimented with offering hope for improving the condition
of X-linked CGD individuals. In particular, a potential therapeutic approach for X-CGD
involves the development of a retroviral vector containing both the coding sequences of
gp91-phox and a cytoplasmically truncated version of human p75NTR [141,142]. Under
optimal conditions, this strategy allows 80% of the CD34+ cells to be transduced, resulting
in 70% of normal levels of superoxide synthesis and release in phagocytes derived from
transduced cells.

5. Therapeutic Prospective of Neurotrophins and Their Receptors

Recently, NTs have shown great relevance for their potential role in the therapeutic
management of various diseases (immunological disease, neurodegenerative disease, can-
cer, etc.) [226,227]. The expression of NGF is known to increase in the tissues of patients with
immunological diseases and it has been related to severity and treatment efficacy [228,229].
Therefore, NGF normalization has been identified as an optimal target to discriminate
therapeutic efficacy in these pathologies [230]. On the other hand, depletion of NGF has
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been linked with neurodegenerative disease pathology and symptoms, so replacement
strategies have been considered as potential therapeutics [231–233].

Unfortunately, the administration of a therapy involving proteins in the brain has
inherent problems because of the blood-brain barrier and many solutions are under
study [232,234,235]. Since alterations of NGF and its receptors are common oncogenic
drivers stimulating tumor cell survival, migration, proliferation, and invasion, many in-
hibitors have been produced showing promising therapeutic results [236–238]. These
treatments are well tolerated, but some tumors become refractory to this inhibition, so
new generations of these therapeutic drugs are being studied [239,240]. Recent evidence
suggests that therapies targeting NTs and their receptors may have a major role in various
diseases including immunological diseases associated with changes in NGF pathways.

It should be noted that although both autoantibodies against NGF and anti-NGF anti-
bodies involve interactions with NGF, their mechanisms of action and effects differ. The key
differences lie in the specificity and purpose of the antibodies. Autoantibodies against NGF
are produced by the body’s immune system as part of an autoimmune response, and they
can disrupt NGF’s normal function, potentially leading to neurological and autoimmune
conditions [241]. In contrast, anti-NGF antibodies are therapeutic agents designed to block
NGF’s effects in a controlled manner, without inducing autoimmune reactions, providing
relief from pain and inflammation in conditions like arthritis [124,242,243].

The epitopes for these antibodies are indeed different [244]. Autoantibodies against
NGF target NGF itself, whereas anti-NGF antibodies are engineered to bind to specific sites
on NGF, preventing it from interacting with its receptors. This targeted binding allows anti-
NGF antibodies to reduce pain and inflammation while minimizing the risk of autoimmune
complications for conditions associated with excessive pain, such as osteoarthritis and
rheumatoid arthritis [245].

6. Discussion

In this narrative review, we discuss scientific evidence on the role of NGF in autoim-
mune diseases. Under the influence of various signals, NTs, and in particular NGF, play a
crucial immunomodulatory role in mediating the release of immune-active neuropeptides
and neurotransmitters, also directly influencing innate and adaptive immune responses [13].
NGF plays a major role in both T- and B-cell differentiation and survival [105,106]. In partic-
ular, NGF stimulates B-cell proliferation and antibody production so that its upregulation
in inflammatory and immune diseases has been linked to more severe clinical presenta-
tion [107]. Furthermore, NGF normalization has been identified as an optimal index to
evaluate therapeutic efficacy in immune and inflammatory diseases [230].

The higher levels of NGF in patients with inflammatory diseases have been partially
linked to decreased immune cell expression of TrkA which might reduce the activation
of regulatory feedback mechanisms by NGF, thus contributing to the development and
maintenance of persistent inflammation. Evidence suggests that NGF is involved in the
pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic
arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis and chronic gran-
ulomatous disease. Genetic mutations affecting the production of NGF, or mutations in the
receptors Trk and p75NTR, may potentially play a role in autoimmune diseases, particularly
through their impact on the immune system and inflammation. Unfortunately, further
research is required to elucidate specific mutations and their mechanisms, as well as the
finer details of the role of NTs in autoimmune diseases.

7. Conclusions

Extensive research conducted over the past decades has revealed the crucial role of
NGF in maintaining immune homeostasis, with its activities deeply interconnected across
various systems. As we move forward, it becomes imperative for further studies to encom-
pass the intricate and interactive aspects of NGF physiology. By deciphering the specific
signaling cascades in which NGF is involved and understanding its precise pathological
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contributions, we can pave the way for innovative therapeutic approaches. Manipulating
NGF’s intracellular pathways holds promise for developing targeted interventions that
could revolutionize the treatment of various conditions. In this pursuit, a comprehensive
understanding of NGF’s multifaceted functions will be instrumental in unlocking its full
potential as a therapeutic target.
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