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Abstract
Surveys of environmental microbial communities using a metagenomic approach produce 
vast volumes of multidimensional data regarding the phylogenetic and functional composi-
tion of the microbiota. Faced with such complex data, a metagenomic researcher needs to 
select the means for data analysis properly. Data visualization became an indispensable part 
of the exploratory data analysis and serves a key to the discoveries. While the molecular 
genetic analysis of even a single bacterium presents multiple layers of data to be properly 
displayed and perceived, the studies of microbiota are significantly more challenging. Here 
we present a review of the state-of-the-art methods for the visualization of metagenomic 
data in a multilevel manner: from the methods applicable to an in-depth analysis of a single 
metagenome to the techniques appropriate for large-scale studies containing hundreds of 
environmental samples.

Introduction
Metagenomics is an interdisciplinary research field combining molecular genetics, micro-
bial ecology and data analysis. Its central object of study is a metagenome, the total genomic 
content of the organisms and viruses present in an environmental sample. Metagenomics 
is based on culture-independent methods of bacterial identification, meaning that they 
allow detecting the whole totality of microbes (microbiota) even the species that cannot be 
isolated and cultivated using the existing microbiological techniques. During the last years, 
this advantage together with high throughput of the DNA-sequencing platforms opened the 
opportunity to the researchers to reveal the previously unobserved richness of microbiota in 
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various niches, from soils and oceans to urban environment and host-associated microbiota. 
Particularly, human microbiota is of high interest to the biomedical researchers: analysis of 
microbial gut community balance and dynamics allows us to discover new biomarkers of 
disease and predict more precisely the influence of diet, medical treatment and other factors 
on human organism homeostasis, as well as to design efficient predictive and therapeutic 
approaches.

Faced with the vast volumes of biological experimental data (both published and gen-
erated in-house), a researcher can only efficiently process them provided availability of 
adequate methods for visual display of these complex datasets. In this way, visualization is 
only partially concerned to graphical expression of the data; in fact, it is an essential tool of 
exploratory analysis in biology. The studies of microbiota are not an exclusion: the datasets 
obtained in such surveys are characterized by intrinsic multidimensionality, presence of 
multiple levels of hierarchy and connectivity. Even a genomic study dedicated to a single 
isolated microbial species contains multidimensional data with heterogeneous structure 
that are challenging to perceive, illustrate and navigate, and microbiota contains hundreds 
and thousands of such entities. Visualization of metagenomics is an active area of research, 
with dozens of new publications describing novel original methods every year, and bringing 
new tools for generating and testing novel biological hypotheses from the visualization.

Here we represent a comprehensive overview of the existing methods for the visualiza-
tion of metagenomic datasets. While the general graphic design guidelines of choosing the 
proper palette, illustration composition, proportions, fonts and other artistic elements are 
described elsewhere (Tufte, 1986; Steele and Iliinsky, 2010), the main focus of our review 
is on various visual techniques that prove particularly appropriate for mining the data on 
microbiota and can be easily adopted by a beginning metagenomic researcher using publicly 
available software implementations (as a Web service or a stand-alone application). We have 
illustrated applications of described implementations with figures especially constructed. 
We have also summarized the general methods for the metagenomic data visualization in 
Table 3.1.

Depending on the environmental niche in focus, microbial studies involving metagen-
omics widely range in the scale of the generated datasets: particularly, the number of 
metagenomes can vary from few (i.e. for a novel niche and/or sequenced with high cover-
age) to hundreds of samples (previously studied niches like human gut microbiota and/or 
studies performing meta-analysis of the published data). Such variation of the number of 
samples suggests that different methods should be applied in order to efficiently navigate the 
different levels of visualization. Even within a project with thousands of samples, a researcher 
can choose to examine a single sample in details or zoom out to overview the whole general 
landscape of the metagenomes in the analysis. The fact that a researcher’s success is based 
on effective navigation between different scales of visual representation for the data is neatly 
expressed by the so-called Visual Information Seeking Mantra: ‘Overview first, zoom and 
filter, then details on demand’ (Shneiderman, 1996). With this consideration in mind, we 
have divided the description of the methods for metagenomic data visualization into three 
sections: the methods that are commonly intended for the visual display of a single metage-
nome, several metagenomes (the number is about 10) and multiple metagenomes (tens to 
hundreds of metagenomes).
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Table 3.1 Methods for metagenomic data visualization, with a short description, rationality for the visualization of single, several and multiple 
metagenomes, the advantages and drawbacks of each approach and some selected tools and articles where this approach was implemented

Method
Suggested usage and 
subtypes

Single 
metagenome

Several 
metagenomes

Multiple 
metagenomes Advantages Drawbacks

Selected 
implementations

Pie charts Taxon abundance at all 
taxonomic ranks

+ + – Convenient for 
overviewing the 
community structure of 
a single metagenome

Poor comparability 
between several 
metagenomes

Krona, AmphoraVizu, 
Taxonomer

Taxon abundance at a 
fixed taxonomic rank with 
various characteristics of 
contigs

+ + – Multiple metagenomic 
can be represented as 
rings

Can be too large and 
contain too much 
information for easy 
perception

Anvi’o

Comparison of 
metagenomic features

+ + – Many metagenome 
features represented 
as rings

Can be too large and 
contain too much 
information for easy 
perception

Anvi’o

Bar charts Taxon abundance at all 
taxonomic ranks

+ + + Summarizes the 
information about all 
metagenomes

Can contain too many 
coloured bars for easy 
perception

AmphoraVizu

Taxon abundance at a fixed 
taxonomic rank

– + – Opportunities for 
the demonstrative 
comparison of several 
metagenomes

Too many taxa are 
shown

Community Analyzer, 
Phinch

Taxon abundance for 
any numerical meta-data 
category

+ + + Information about all 
samples is used

Difficult to perceive 
if the number of the 
categories is high

Phinch

Distribution of samples for 
each taxonomic rank

– + – Difficulty for 
perception if the 
number of taxa is large

Community Analyzer

Manhattan plots Metagenomic SNPs 
distribution along the 
microbial genomes

+ - – The highest values of 
each metagenomic 
SNP are clearly 
distinguishable

Too many SNPs can 
be confusing

Explicit
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Method
Suggested usage and 
subtypes

Single 
metagenome

Several 
metagenomes

Multiple 
metagenomes Advantages Drawbacks

Selected 
implementations

Bubble charts Contig graph of a single 
metagenome

+ – – Dimension reduction 
and nice representation 
in the form of densely 
concentrated contigs

Large number of 
contigs can be 
disorientating

Elviz, R package 
‘gbtools’ 

Taxonomic graph at any 
taxonomic rank

+ + + When large, the 
representation is 
chaotic

Phinch

Rarefaction 
curves

Richness of the community 
(alpha-diversity)

+ – – Shows multilevel 
information

QIIME, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Parallel 
coordinate plots

Clustering of metagenomes 
into different groups by 
their taxonomic or other 
properties

+ + + Multiple simultaneous 
groupings

Too many clusters can 
lead to disorientation

Juxter

Pathways Metabolic potential analysis + – – Detailed representation 
of the functional 
properties of microbiota

Large map does not 
allow the overall view 
of the whole pathway

iPath

Trees and 
dendrograms

Taxonomic composition – + – Taxonomic 
classification and 
abundance comparison 
of each taxon at the 
same time

Comparing only 
the same taxon in 
different samples 
(no between-taxa 
comparison)

MetaSee

Contig tree: hierarchical 
clustering of contigs 
based on their sequence 
composition and their 
distribution across the 
samples

+ + + Too difficult for 
perception when the 
number of contigs is 
high

Anvi’o

Phylogenetic tree + + + If number of taxa is not 
very large, this method 
can be representative

Too difficult for 
perception when the 
number of contigs is 
high

MetaSee, GraPhlAn, 
iTOL, MEGAN, Eren et 
al. (Pacific Symposium 
on Biocomputing, 2011)

Sample clustering tree 
(dendrogram according 
to the similarity of the 
samples’ composition)

– + + If number of taxa is not 
very large, this method 
can be representative

Too difficult for 
perception when the 
number of contigs is 
high

PanPhlAn, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Box plots Distribution of a taxon 
across the samples

– + – Visual display of the 
means and quartiles 
and their visual 
comparison

Not possible for easy 
comparison of many 
metagenomes

Anvi’o

Dot plots Dots representing the 
presence of several taxa for 
several sample categories

– + + Combination with a box 
plot results in a nice 
representation

Difficult comparison 
with the high number 
of samples

API ‘dimple’, R package 
‘rCharts’, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Heatmaps Coloured matrix of 
nucleotide positions for 
each bin in each sample

– + – Colour comparing 
of bins at the 
same positions of 
metagenomes

Many alternate bins Anvi’o

Taxa abundance in the 
samples

– + + Special areas are 
highlighted

Difficulty with 
identifying a selected 
sample or taxon

R package ‘matR’, 
Eren et al. (Pacific 
Symposium on 
Biocomputing, 2011)

Presence/absence of 
gene family profiles for the 
strains in samples

– – + Exclusive areas are 
highlighted

Difficulty with 
identifying a selected 
sample or taxon

PanPhlAn

Coloured table of taxa 
correlation

+ + + Selected correlation is 
displayed well

Too many numbers 
are not representative 
if the number of 
datasets is high

MetaFast, Community 
Analyzer

Slopegraphs Connected taxa levels in 
two metagenomes

– + – Good if the displayed 
number of the taxa is 
not high

Only two 
metagenomes, many 
taxa will lead to chaos

R package ‘ggplot2’

Layouts Bipartite graphs: graph with 
connections between the 
samples and taxa

– + – Taxa are displayed 
according to their 
co-occurrence

Edges are 
superimposed, so 
they can not be 
distinguished

Community Analyzer

Table 3.1 Continued
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Method
Suggested usage and 
subtypes

Single 
metagenome

Several 
metagenomes

Multiple 
metagenomes Advantages Drawbacks

Selected 
implementations

Bubble charts Contig graph of a single 
metagenome

+ – – Dimension reduction 
and nice representation 
in the form of densely 
concentrated contigs

Large number of 
contigs can be 
disorientating

Elviz, R package 
‘gbtools’ 

Taxonomic graph at any 
taxonomic rank

+ + + When large, the 
representation is 
chaotic

Phinch

Rarefaction 
curves

Richness of the community 
(alpha-diversity)

+ – – Shows multilevel 
information

QIIME, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Parallel 
coordinate plots

Clustering of metagenomes 
into different groups by 
their taxonomic or other 
properties

+ + + Multiple simultaneous 
groupings

Too many clusters can 
lead to disorientation

Juxter

Pathways Metabolic potential analysis + – – Detailed representation 
of the functional 
properties of microbiota

Large map does not 
allow the overall view 
of the whole pathway

iPath

Trees and 
dendrograms

Taxonomic composition – + – Taxonomic 
classification and 
abundance comparison 
of each taxon at the 
same time

Comparing only 
the same taxon in 
different samples 
(no between-taxa 
comparison)

MetaSee

Contig tree: hierarchical 
clustering of contigs 
based on their sequence 
composition and their 
distribution across the 
samples

+ + + Too difficult for 
perception when the 
number of contigs is 
high

Anvi’o

Phylogenetic tree + + + If number of taxa is not 
very large, this method 
can be representative

Too difficult for 
perception when the 
number of contigs is 
high

MetaSee, GraPhlAn, 
iTOL, MEGAN, Eren et 
al. (Pacific Symposium 
on Biocomputing, 2011)

Sample clustering tree 
(dendrogram according 
to the similarity of the 
samples’ composition)

– + + If number of taxa is not 
very large, this method 
can be representative

Too difficult for 
perception when the 
number of contigs is 
high

PanPhlAn, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Box plots Distribution of a taxon 
across the samples

– + – Visual display of the 
means and quartiles 
and their visual 
comparison

Not possible for easy 
comparison of many 
metagenomes

Anvi’o

Dot plots Dots representing the 
presence of several taxa for 
several sample categories

– + + Combination with a box 
plot results in a nice 
representation

Difficult comparison 
with the high number 
of samples

API ‘dimple’, R package 
‘rCharts’, Eren et al. 
(Pacific Symposium on 
Biocomputing, 2011)

Heatmaps Coloured matrix of 
nucleotide positions for 
each bin in each sample

– + – Colour comparing 
of bins at the 
same positions of 
metagenomes

Many alternate bins Anvi’o

Taxa abundance in the 
samples

– + + Special areas are 
highlighted

Difficulty with 
identifying a selected 
sample or taxon

R package ‘matR’, 
Eren et al. (Pacific 
Symposium on 
Biocomputing, 2011)

Presence/absence of 
gene family profiles for the 
strains in samples

– – + Exclusive areas are 
highlighted

Difficulty with 
identifying a selected 
sample or taxon

PanPhlAn

Coloured table of taxa 
correlation

+ + + Selected correlation is 
displayed well

Too many numbers 
are not representative 
if the number of 
datasets is high

MetaFast, Community 
Analyzer

Slopegraphs Connected taxa levels in 
two metagenomes

– + – Good if the displayed 
number of the taxa is 
not high

Only two 
metagenomes, many 
taxa will lead to chaos

R package ‘ggplot2’

Layouts Bipartite graphs: graph with 
connections between the 
samples and taxa

– + – Taxa are displayed 
according to their 
co-occurrence

Edges are 
superimposed, so 
they can not be 
distinguished

Community Analyzer
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Method
Suggested usage and 
subtypes

Single 
metagenome

Several 
metagenomes

Multiple 
metagenomes Advantages Drawbacks

Selected 
implementations

Bipartite graphs: graph with 
grouping of taxa near the 
samples where the taxa are 
abundant

– + – Showing similarity of 
several samples

Using information 
only about the most 
abundant taxa

Sedlar et al. 
(Evolutionary 
Bioinformatics Online, 
2016)

Spring graph layout with 
both samples and taxa

– + – Distances from sample 
to taxa are proportional 
to abundances of taxa 
in that sample

Edges are 
superimposed, so 
they can not be 
distinguished

Community Analyzer

PCA, PCoA and MDS – + + Dimension reduction Can be low-descriptive metaG, EMPeror, R 
packages ‘GrammR’ 
and ‘matR’, Arumugam 
et al. (Nature, 2011)

BCA (between-class 
analysis)

– + + Visual enhancement of 
clusters display

Arumugam et al. 
(Nature, 2011)

Sankey 
diagrams

Diagram with taxa 
abundance and 
connections between 
different taxonomic ranks

+ + + Displaying any number 
of taxonomic ranks

Sometimes the figure 
is too large and carries 
too much information 
to be perceived

Phinch

Bacterial rose 
garden

Plot showing phylogenetic 
distances from the 
selected sample to other 
metagenomes in relation a 
selected taxon

+ + + Interactive and original Alexeev et al. (BioData 
Mining, 2015)

Self-organizing 
maps

Large map that preserves 
the SOM projection 
topology

– + + Coloured clusters of 
data

Difficulty with 
identifying a selected 
sample or taxon

Laczny et al. (Scientific 
Reports, 2014)

Co-occurrence 
graphs

Links between the 
species reflecting their 
simultaneous presence in 
the same environments

+ + + Visual identification 
of the clusters of 
co-occurring taxa

Large number of taxa 
will lead to a chaotic 
picture

CoNet, MEGAN, 
Lui et al. (BioData 
Mining, 2015); Freilich 
et al. (Nucleic Acids 
Research, 2010)

Table 3.1 Continued
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Visualizing a single metagenome
On the most detailed level, visualization of a single metagenomic dataset is needed to repre-
sent clearly some taxonomic, functional or other properties of a given metagenome in order 
to understand its structure and infer biological insights. Analysis of a metagenomic dataset 
involves certain feature extraction: millions of metagenomic reads produced as the result 
of the DNA sequencing can hardly be directly visualized in a comprehensive way. One of 
the steps involved at this point is metagenomic classification of each read, either taxonomic 
(when each read is assigned to a specific microbial taxon) or functional (when it is assigned 
to genes, gene groups or metabolic pathways). The classified reads are then aggregated to 
form a relative abundance feature vector, with each position reflecting a taxon or gene group, 
respectively. This vector represents the composition of a single metagenome and its sum is 
frequently normalized to 100%. Thus, the metagenomic data are inherently compositional.

The best-known visualization of compositional data is a pie chart. It looks like a circular 
graphic divided into chunks. Each chunk is a share of group of corresponding data in per 
cent. It can also be applied to a metagenomic datasets. In the field of metagenomics, a pie 
chart can be used to visualize the community structure of an environmental sample. If the 
taxonomic rank (i.e. species, genus, family, etc.) is fixed, then each pie chunk represents a 
taxon of this rank. Usually every share is also denoted with the percentage of the respec-
tive share. The total amount of chunks equals to the total amount of taxa identified in this 
sample at the fixed taxonomic rank. This approach is common and implemented in any of 
the spreadsheet processors. For a researcher with more advanced computer skills inclined 
towards coding rather than using a graphical interface, this, as well as most of the primitive 
visualizations described in the text, can be carried out in a code-based statistical analysis 
environment, one of the most popular being R programming language (R Core Team, 
2014).

Advanced variations on the theme of a pie chart have been developed for the metagen-
omic data. Scientists often want to explore the structure of metagenomes at a deeper level, 
and interact with it. For these purposes, there exist approaches that allow visualizing the 
relative abundance of all taxonomic ranks represented in a given sample. One of such tools 
popular in the life science researchers community is Krona (Ondov et al., 2011). In this 
software, a metagenome is represented as nested concentric rings forming a circle together. 
Each of the rings corresponds to a single fixed taxonomic rank, the more distant the ring, 
the lower the rank. At each level, a taxon is shown as a part of the ring proportional to the 
abundance of the taxon in the sample. Thus, this visualization gives a multi level view of the 
community structure. Krona is distinguished by its hierarchical interactivity: when a user 
clicks a sector or a segment, another pie chart is displayed that shows the embedded taxo-
nomic hierarchy of this fragment. So it becomes possible to examine in detail each taxon in 
a metagenome and view the levels of its member taxa.

Sometimes it is necessary to display the additional properties of metagenomes beyond 
the basic composition. Quite a few of such layers of information arise when the metagen-
omic feature extraction includes assembly de novo, identifying and putting together the 
reads appearing to be overlapping to form longer sequences (contigs). When a metagenome 
is transformed into a set of contigs, each contig is being assigned various characteristics: 
GC-content (percentage of guanine plus cytosine bases in the contig sequence), length, 
number of the ORFs (open reading frames) in the contig, taxonomic annotation, etc. One 
of the tools that allow visualizing such representation comprehensively is Anvi’o (Eren 
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et al., 2015). It allows to draw a ring of the sample divided into the contigs and represent 
each one of its properties as a bar with the value for each contig. Anvi’o is a flexible tool 
applicable for comparing several metagenomes, so it will be mentioned in the next section 
also.

Another well-known representation of a data distribution is a bar chart. It produces 
rectangular colourful bars for each group of data. The length (or height) of these bars is 
proportional to the values of corresponding groups. For a single metagenome, a bar chart 
can be used for representing the abundance of taxa (or microbial genes). For each taxon 
inside the fixed taxonomic rank, there is a bar if this taxon is present in the sample. The 
height of the bar shows the proportion of the taxon normalized by the total abundance of all 
taxa. Hence, the summary length of all bars is equal. Such representation can be generated, 
for instance, with the AmphoraVizu (Kerepesi et al., 2014) tool. The R packages like ‘gplots’ 
(Warnes, 2016) and ‘metricsgraphics’ (Rudis et al., 2015) provide functions for construct-
ing bar plots.

Considering the dimensionality of the features to visualize, even a single metagenome 
can yield tens of thousands of primitive values. An example of this is the metagenomic single 
nucleotide polymorphisms (metagenomic SNPs) that can be calculated in large numbers in 
each of the most prevalent genomes in the metagenome (Luo et al., 2015). For such cases, 
an approach called Manhattan plot is especially useful. Genomic coordinates (for example, 
taxa) are displayed along the x-axis while the negative logarithm of each SNP’s P-values is 
displayed along y-axis. This approach is used in the Explicet (Robertson et al., 2013) tool 
that provides wide metagenomic analysis and visualization options.

When a metagenome is represented in the form of contigs (as a result of de novo assem-
bly), the contigs can be grouped into bins based on the similarity of their characteristics. 
This process is called binning, and one of the convenient methods for visualizing its results 
is a bubble chart. The chart consists of circles and can represent up to four dimensions of 
data by changing the values of x- and y-axis, circle size and colour. Every contig is placed on 
the grid where the two coordinates are chosen from the three following values: average fold 
coverage (a measure of contig abundance), GC-content and length of contig, and the circle 
size denotes the third remaining value. The contigs included into each bin are coloured in 
their own colour. Bubble chart method gives visual clues for discovering multiple microbial 
species (especially phylogenetically distant taxa) and detecting mobile genetic elements. 
The method is implemented, for example, in ‘gbtools’ R package (Seah and Gruber-Vodicka, 
2015). There is also an elegant tool called Elviz (Cantor et al., 2015) that allows us to con-
struct interactive versions of such illustrations. It provides means for isolating and examining 
a specific group of the contigs or to search the biological databases for any part of a contig 
sequence.

One of the basic characteristics of a single community structure is diversity (conditional 
number of various species observed in the metagenome): combined with the data on relative 
abundance of the individual species, it forms the diversity index so called alpha-diversity. 
Obviously, the more reads are sequenced (and then classified), the higher the richness is; 
when the number of the reads is increased, the diversity usually converges to certain lim-
ited value. With this in mind and given a fixed number of reads per a single metagenome, a 
common procedure is to perform random rarefactions – randomly sampling a fixed number 
of reads from the metagenome and assessing the alpha-diversity for each sampling. Such 
data can be illustrated as a rarefaction curve that shows to what extent the richness increases 

Curr. Issues Mol. Biol. Vol. 24



Visualization of Metagenomic Data | 45

when the read number is increased artificially. One of the tools providing the means for 
plotting alpha-diversity rarefaction curves for 16S rRNA datasets is QIIME (Kuczynski et 
al., 2012).

In a way similar to cutting the pie, a single metagenome, having intrinsically compo-
sitional nature, can be divided into portions in multiple ways. For instance, 100% of the 
metagenome can be divided into the relative abundance of gene groups, or into the relative 
abundance of the microbial phyla. One of the methods for visualizing multiple division of 
a single metagenome at the same time is a parallel coordinate plot: every parallel line on 
this plot corresponds a new division of the dataset data into groups. For example, in the 
case of gene composition, each curve from the top to the bottom is a gene belonging to 
one of the groups-dots at every horizontal level. The highest and the lowest levels represent 
the taxonomic assignment of the genes into the gene families, whereas the medium levels 
cluster data according to the confidence value and the phylum. In the case of taxonomic 
composition, each level represents the taxonomic division into groups at a fixed taxonomic 
rank. The means for plotting parallel coordinate plots is available in the Juxter tool (Havre et 
al., 2005) that visualizes the clusters of metagenomic data using multiple colours.

As ‘shotgun’ metagenomics allow assessing of the composition of the microbial com-
munity not only from the taxonomic, but also from the functional perspective, a researcher 
needs the appropriate visual representation for such gene-centric profile also. Genes and 
their groups are grouped into metabolic pathways that can be illustrated as a pathway map, 
a convenient representation of functional data. The maps usually consist of the nodes, 
denoting the genes encoding enzymes that are detected in the metagenome, and the edges, 
linking the genes involved in consequent biochemical reactions. The tool iPath (Yamada 
et al., 2011) allows us to explore metabolic, regulatory and biosynthetic pathway maps of 
metagenome. Each biochemical process encoded in the metagenome is highlighted on the 
map and accompanied by the relevant information from the public databases about metabo-
lism and biochemical reactions. Fig. 3.1 shows the folate biosynthesis pathway visualization 
using iPath tool.

Visualizing several metagenomes
Metagenomic scientists often want not only to explore the structure of one metagenome, 
but also to compare it across multiple metagenomes. Below is the description of the meth-
ods that were developed to represent the difference between community structures and 
functional composition of the samples clearly.

The pie chart concept was previously introduced. When applied to several metagenomes, 
pie charts can be used in two ways. The first approach shows taxonomic abundance of each 
sample at different taxonomic ranks. This method was mentioned in the single-metagenome 
analysis: each ring of the pie chart denotes one taxonomic rank (i.e. phylum, family, etc.). 
Here it is proposed to implement this idea for analysing several metagenomes. In the centre 
of the circle, all samples are placed with their shares’ size proportional to their summary 
abundance. Further, for each sample, the taxonomic abundance sectors are displayed as in 
the case of a single metagenome. It allows us to compare the shares shown in the figure that 
belong to the same taxonomic rank for different samples. Tools that could be useful there 
include Krona and Taxonomer (Flygare et al., 2016), the latter depicts taxonomic abun-
dance of metagenomic data as ring charts. Although less functional than Krona, it allows to 
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Figure 3.1 Highlighting the pathway of folate biosynthesis (important function of gut microbiota) within the global metabolic network using iPath tool, 
http://pathways.embl.de/iPath2.cgi.
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discard the low-abundance noisy taxa identifications before the display. A general word of 
caution is that common pie charts should not be abused during the comparison of several 
metagenomes, because it is difficult for an eye to compare the angular sizes of more than 
2–3 sections.

Another way in which pie charts can be used is comparing the metagenomes using their 
features like the average coverage or relative abundance of contigs in a given sample or across 
the samples. With this approach, information about every contig is shown as a bar chart and 
about all contigs as a circle. This method is implemented in Anvi’o (Eren et al., 2015). It is 
particularly clear for comparing the metadata about the samples.

Some of the commonly used methods for visualizing several metagenomes are based 
on bar charts that were presented previously. Bar charts are suitable for displaying the 
taxonomic composition of the samples. Each sample can be shown as a bar divided into 
taxa detected in the sample according to their abundance. Every taxon has a unique colour. 
Bars can be shown for any taxonomic rank. This technique is used in Community Analyser 
(Kuntal et al., 2013) and Phinch (Bik, 2014). Both are publicly available services that can 
display the information about the name, observational data and taxonomy for every sample. 
They can reflect absolute or normalized number of observations.

Phinch is a versatile tool. Particularly, if a factor from the metadata is quantitative (for 
example, pH value) then Phinch allows displaying the taxon abundance summary (about all 
samples) for each category. A bar chart shows the taxon bars (of the selected rank), where 
every bar consists of sample bars that depict abundance of the taxon in each sample. Every 
sample is coloured in a one and only colour. An example of using Phinch for taxon abun-
dance representation is presented in Fig. 3.2. This approach is mentioned in Kuntal et al. 
(2013).

When a researcher has more than one metagenome in the analysis, it is natural to state 
the question of to what extent is the content of metagenomes similar and which metage-
nomes are closer to each other by the set of their components, whether assessed from 
the taxonomic or functional perspective. In microbial ecology the respective measure of 
pairwise dissimilarity between the microbiomes is called beta-diversity. Once computed for 
all the metagenomes in the study (and represented as a pairwise dissimilarity matrix), it is 
subsequently used for the cluster analysis of the metagenomes. The obtained clusters are 
often represented using a tree diagram (or dendrogram) that shows how datasets are similar 
on different hierarchical levels.

A static taxonomic tree including all taxa detected in the samples gives detailed informa-
tion but is applicable only for a small number of samples simultaneously. For each node 
(taxon), there is a small bar chart near the taxon name that displays the abundance distribu-
tion of this taxon across all samples. Every sample has its own bar chart filled with a specific 
colour. This was implemented in MetaSee pipeline (Song et al., 2012).

Another way of implementing trees and dendrograms for the analysis of several metagen-
omes is a contig tree. It displays the hierarchical clustering of contigs based on their sequence 
composition and their distribution across samples. Anvi’o (Eren et al., 2015) includes such 
dendrogram implementation. The contigs are displayed with small bars as parts of a ring. 
Circular clustering dendrogram is placed in the centre of this ring. Metagenomic data can 
be also represented as trees with the R package ‘phyloseq’ (McMurdie and Holmes, 2013).

Along with the well-known visualization methods like pie charts and bar charts, a box 
plot is another popular technique for representing the numerical data that indicates their 
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variance. For instance, the method can be used for showing the distribution of the coverage 
of contigs in the bin. Box plots for several samples can be visually compared. These can be 
performed with R package ‘plotly’ (Ohri, 2014), as well as in the Anvi’o tool. Box plots can 
be combined with the scatter plots (dot plots) to complement the graph with additional 
information. If a box plot shows a relative abundance distribution of a taxon across all sam-
ples, then each dot represents the level of the taxon in a specific sample so that it is easier to 
spot the outliers. The dot plot is overlaid on the box plot. In a way, the samples can be com-
pared by the taxon abundances. The functionality of drawing the dot plots combined with 
the box plots is implemented in Framework (Eren et al., 2011). One of the advantages of this 
tool is that it denotes the samples divided into different groups (for example, on the basis of 
their functional properties) using different colours. Dot plots can be also constructed using 
the JavaScript charting application programming interface (API) ‘dimple’ (Kiernander et al., 
2014) or the R package ‘rCharts’ (Vaidyanathan, 2013). It is worth mentioning an advanced 
implementation of a box plot (‘violin plot’) that shows more details about the variable 

Figure 3.2 Bar chart showing taxonomic composition of microbial communities at the level 
of class. Constructed using PHINCH and the default test dataset from http://phinch.org as an 
input. The figure depicts the first 45 of 90 metagenomes.
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distribution due to the presence of a histogram (especially useful for the data distributed 
in a non-normal way); the method is available in the R package ‘vioplot’ (Adler and Adler, 
2014).

The standard way of representing the community structure inferred from metagenomic 
data is by means of an abundance table, where the rows correspond to samples and col-
umns to features (microbial taxa); the values in the cells show the relative abundance of the 
respective taxa in the sample. However, a large table with hundreds of digits is hard to grasp 
visually. A natural extension of the abundance table is a ‘heatmap’, a table where each cell is 
filled with a colour, usually a gradient, with the distinct colours corresponding to the lowest 
and the highest values. Another specific feature of the heatmap is clustering visualization: 
the rows are subject to reordering in a way that the most similar rows are put in the proximity 
(same with the columns).

In reference to metagenomics data, heatmaps usually combine the taxonomic abun-
dances with the clustering of samples. However, for a small number of samples there is 
another implementation of heatmaps. For instance, with Anvi’o it is possible to draw a 
heatmap of variable nucleotide positions. Here each column is a sample and every row is a 
nucleotide base. While each of the four nucleotide bases is displayed in a different colour, 
the cells can also be coloured using a gradient according to the normalized ratio of the two 
bases most frequently occurring at the position. The R package ‘d3heatmap’ (Cheng, 2016) 
is a multifunctional package that has many options for microbiome analysis allowing to 
construct many types of heatmaps. They are interactive and provide the information about 
any element of the heatmap table when a mouse hovers over it.

Layouts are visualization methods oriented towards the optimal location of data on the 
plane or in space. It is usually a two- or three-dimensional plot that plots dots represent-
ing the datasets according to a certain principle based on the mutual relations between 
the datasets. One of the types is a bipartite graph. These are the graphs that consist of two 
groups of nodes where the nodes within each group are not connected. Each edge of this 
graph connects a vertex from one group to a vertex from another group. Such graphs can be 
implemented for visualization of data about several metagenomes.

Metagenomic analysis involves many entities, microbial taxa of various ranks, metagen-
omic samples, relative abundance values, etc. and it is useful to represent several types of 
entities on the same figure. One of the implementations is the representation of the metage-
nomes and the taxa together to reflect the community structure and the relations between 
them. This approach was used in Community Analyser, where each sample and each taxon 
is represented as a node of the graph. From each vertex depicting a sample, there is an edge 
to the taxon contained in the samples (usually above certain threshold value). Moreover, 
the taxa that have high correlations of abundance levels are connected and set apart of the 
taxa with which the correlation is low. Although this approach can display mutually exclu-
sive relations between the taxa, the limitation is that it does not show the abundances of 
individual taxa.

One of the novel approaches for metagenomic visualization depicts taxonomic units as 
vertices (Sedlar et al., 2016). There are also vertices of a large size that represent groups of 
types or samples. Each taxon is connected to the groups that include the taxon as one of the 
most prevalent ones. The width of the edges is proportional to the abundance of taxa in the 
sample. The taxa are connected only with the groups of samples, and groups of samples are 
connected only with taxa, so the graph is bipartite. This approach allows highlighting the 
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taxa that are the most represented in samples. It is also an effective method for determining 
similarities and differences between the groups of samples, basing on commonalities and 
variations in taxonomic composition of the groups.

Besides the connectivity, the location of the vertices can also be used for the purposes 
of visually exploring the community structures. One such approach is Spring Graph Layout 
(implemented in Community Analyser), which simulates a model in which vertices are 
considered as electrically charged particles and edges as forces of attraction and repulsion. 
When processes in this system end, then the desired layout is achieved. Since the data are 
metagenomic, vertices are samples (painted in one colour) and taxa (painted in another 
colour), while edges connect taxa with all samples where they occur.

A special case of the several metagenomes analysis is the paired comparison, when the 
samples are grouped into pairs. Examples include human gut microbiota of the same patient 
before and after the antibiotic treatment. In such cases it is important to emphasize this 
twoness visually. For the display of individual taxa, there is a method of the visual repre-
sentation of data called a slopegraph. The slopegraph allows to show the abundance level of 
a taxon in the two datasets (for example, before and after the experiment). Multiple slope 
graphs help to understand the dynamics of the individual microbial members of the com-
munity. And when it is necessary to compare the overall structure of the paired samples, a 
researcher can visualize the metagenomes using the dimension reduction plot like principal 
coordinates analysis (PCoA, described in the next section) plot and subsequently connect-
ing the paired samples with arrows, using, for example, R package ‘ggplot2’ (Wickham and 
Hadley, 2009). This approach was introduced by Tufte (1986).

Overall, a network (or a graph) is a very descriptive form of metagenomic data repre-
sentation because it allows us to display the numerous interactions between the elements 
of the microbial system. Popular tools that work with graphs include Cytoscape (Smoot 
et al., 2011). It allows to work with complex molecular interaction networks providing 
their analysis and visualization. Cytoscape has a broad functionality, so recently it has also 
been often used for non-bioinformatic analyses. Many of the functions for constructing, 
arranging and drawing the graphs are also available in R, for example, in the ‘igraph’ package 
(Csárdi and Nepusz, 2006).

Visualizing multiple metagenomes
The most challenging task is to visualize the data calculated from a large number of metage-
nomes. Most methods used for the cases of single and few metagenomes are not applicable 
here because such procedures would require a vast amount of space and overwhelm the 
visual perception of the researcher.

Bubble charts are useful to display the total distribution of each taxon across the samples. 
In this case, each bubble represents a taxon filled with a specific colour, the size of which is 
proportional to the summary level of this taxon in the examined samples. This concept is 
implemented in the Phinch tool that also provides a user with the information regarding any 
taxon of interest and allows to arrange the plot at any taxonomic rank.

A very common approach for visualization in many areas of applied science is a Sankey 
diagram. In these diagrams the width of the arrows is proportional to the values that these 
arrows connect. More detailed, it can be interpreted as a ramification representation of the 
data with the arrow width depending on the quantification of the grouped data.
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It is possible to construct a ramification representing relative abundance of the taxa that 
groups metagenomic data into taxa at every taxonomic rank. Each rank is represented as 
a column bar. Its width corresponds to the number of reads assigned to each taxon. Such 
a Sankey plot can be constructed using Phinch. Additionally, it allows to use an arbitrary 
number of the taxonomic ranks. Fig. 3.3 depicts a simple Sankey diagram constructed with 
Phinch and used for the taxonomic and quantitative representation of metagenomes. How-
ever, this approach generally tends to result in large maps that are too complex for a clear 
observation of the taxa abundances and metagenomic taxonomy.

A dendrogram can be used to analyse multiple metagenomes efficiently, the researcher 
just has to be careful with the choice of text labels in the case of large trees that can be 
substituted with a colour legend. One frequent implementation of a phylogenetic tree 
represents a dendrogram of clustered microbial taxa. All taxa are clustered accordingly to 
their co-occurrence across the set of samples and can be displayed as a simple or a circular 
dendrogram. The former is used in Framework (Eren et al., 2011) in combination with a 
heatmap. The latter is presented in MetaSee and GraPhlAn (Asnicar et al., 2015). GraPhlAn 
has many additional options like drawing a bar chart for each taxon representing its abun-
dance, comparing the abundances for each group of data with drawing every group as a 
circle and marking special taxa of interest with dedicated colours. iTOL, interactive tree 
of life (Letunic and Bork, 2016) is an original tool that allows us to draw simple as well as 
circular dendrograms with bar charts of taxon abundance and colour the specific nodes. The 
most popular tool for analysis of metagenomic data, MEGAN (Huson, 2016) can visually 
represent taxonomic abundance of a given dataset using different approaches.

However, there is a more common approach to the clustering and visualizing of a given 
set of samples basing on the set of the microbial taxa detected in each of them. Here the 
samples are represented as leaves. There are many tools for such tree visualization including 
PanPhlAn (Scholz et al., 2016) and Framework (Eren et al., 2011). These tools allow to con-
struct typical dendrograms of samples located on the side of the heatmaps. The Framework 
also provides functionality to accompany each of the leaves with a pie charts representing 
the taxonomic composition of the respective sample.

A heatmap is one of the most popular ways of visualizing the quantitative compositional 
data with the information about many objects. In metagenomics, it is often taxon abundance 
in each metagenome. Although the approach is convenient for displaying few samples, when 
the number of the metagenomes becomes over 20 to 30 or the number of the features is 
high, certain limitations appear. For instance, the row-side labels and the cell colours can 
become indistinguishable. These problems can be solved by discarding the low-abundance 
species or pooling the samples into subgroups. An alternative implementation of a heatmap 
is based on binarized values and it can be used to display the presence and absence of the fea-
tures, for instance, of the gene-family profiles of strains during the analysis of pan-genome, 
as demonstrated in PanPhlAn.

A table (or matrix) representation of the data can be used not only for the heatmaps. For 
example, the correlation table reflects pairwise correlations between multiple variables. The 
correlation table filled with the colour gradient corresponding to the correlation values will 
clearly show which variables are most correlated. In metagenomics, these variables can be 
taxa, and high correlations between them could hint to potential mutualism or symbiosis 
(inferred from co-occurrence of the species). This method is applied and described in Com-
munity Analyser or, for instance, in MetaFast (Ulyantsev et al., 2016).
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Figure 3.3 Sankey Diagram displaying the composition of microbiota at the levels of kingdom 
and included phyla. Constructed using PHINCH and the default test dataset from http://
phinch.org as an input.
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As mentioned before, analysis of the ‘shotgun’ metagenomics produces not only the 
information about the taxonomic and gene composition of the microbiota, but the data 
on genomic variability of the environmental microbes. Commonly produced in the form 
of metagenomic SNPs, they require the specialized visualization methods. A novel method 
for displaying such data layer when the number of the metagenomes is high was proposed 
(Alexeev et al., 2015) and applied to visualize the SNPs for a large set of human gut metage-
nomes. For each selected microbial species, a circular chart is drawn (a ‘bacterial rose’), 
where each ray shows the presence of the SNPs in an individual metagenome. Such a typical 
‘bacterial rose’ is shown in Fig. 3.4.

Figure 3.4 ‘Bacterial rose garden’ visualization applied to display the genomic sub-species 
level diversity of a major gut species Prevotella copri in human populations of the world (shown 
at the level of all geographic regions).
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When the number of the metagenomes in the analysis reaches tens or hundreds, the 
economy of space becomes an urgent requirement for a visualization technique. One of the 
most effective ways of visualizing multidimensional data are based on dimension reduction, 
including the classical scatterplot layouts such as principal component analysis (PCA) plots 
(Vidal et al., 2016). Each metagenome described by hundreds of the features (relative abun-
dance of individual species) is subject to dimension reduction and ultimately shown as a dot 
on the scatter plot of two (or three, in the case of 3D visualization) principal components. 
The underlying statistical algorithm implies that the first principal component corre-
sponds to the direction of the highest variance in the cloud of the analysed metagenomes, 
the second component is orthogonal to the first one and corresponds to the next highest 
direction. PCA is a very common method, because it allows to evaluate quickly the overall 
distribution of the metagenomes by their composition, identify the samples with similar 
composition and detect the ‘outliers’. In the case of metagenomics, the variations usually 
used instead of the PCA are principal coordinate analysis (PCoA) and multidimensional 
scaling (MDS) because the taxa relative abundance values are distributed in a non-normal 
way and alternative metrics of pairwise dissimilarity between the samples are used, like 
UniFrac, Bray–Curtis measure, etc.

A good example of the application of PCoA to the analysis of microbiota datasets was 
demonstrated in the study of adult humans’ microbiota sampled from 18 body sites includ-
ing oral, vaginal, gut and skin from the Human Microbiome Project (HMP). The samples on 
a PCoA can be coloured by the country of origin to highlight the country-specific features 
of microbiota in the populations of the world (Tyakht et al., 2013). The approach can be 
used to track the temporal dynamics, for example, of an infant gut metagenome with respect 
to the adults’ samples: this visualization was performed using the EMPeror tool (Vázquez-
Baeza et al., 2013). A variation of PCoA – one with an inclusion of an instrumental variable 
– is called between-class analysis (BCA). It was used to visualize the enterotypes (the dis-
tinct types of human gut microbiota composition) in the original paper by Arumugam et al. 
(2011). Overall, PCoA and its versions are indispensable tools for exploratory analysis of 
metagenomic data.

Sometimes the adoption of the machine learning methods, including neural net-
works, to the field of the metagenomics is especially fruitful. One of such approaches is 
self-organizing maps (SOM). A SOM is an unsupervised neural network algorithm that 
represents multidimensional data in a two-dimensional space in a clustered way. This 
concept has an effective implementation, emergent SOM (ESOM) which is simply a 
large map that preserves the SOM projection topology. On these maps, every cell colour 
represents the quantity of certain selected feature. The ESOM approach is widely used 
in metagenomic projects for binning the data. For example, ESOM-clustering has been 
used for classifying the metagenomic sequence structures for the selected metagenomes 
(Laczny et al., 2014).

As the microbiota contains many species that are in cooperative or competitive relations 
with each other, it is especially needed to highlight the so-called co-occurrence networks 
as a visualization method. Generally, these networks show the relationships between some 
objects (organisms, social groups, words in texts) reflecting their presence in the same envi-
ronment. Every object is depicted with a node. If two objects tend to co-occur (for example, 
microbial species across multiple metagenomes) then an edge is drawn to connect them. 
The obtained network is called co-occurrence graph (or network). With this approach, the 
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size of nodes and the width of links can vary according to the object abundance and the 
co-occurrence frequency, respectively.

In the context of metagenomics, this method is usually implemented for bacterial spe-
cies co-occurrence. Every taxon is drawn as a node while a link between nodes is their 
co-occurrence (measured as the correlation between the respective levels in metagenomes). 
This approach was used for the microbial network construction where the vertices of the 
graph were selected to be individual genera, their size reflected the relevant abundance of 
the genera and the colours distincted network modules (Liu et al., 2015). Another imple-
mentation with the human microbiota example is given in the large-scale microbial network 
organization article (Freilich et al., 2010). The MEGAN tool for the deep analysis and 
visualization of metagenomic data also includes the functionality of constructing the co-
occurrence plots. Particularly, it allows changing dynamically the co-occurrence threshold 
as well as lowest abundance threshold; a similar functionality is provided by CoNet (Faust 
et al., 2012).

The number of metagenomic datasets is growing not only in number and volume but 
also in the relation to the metadata: the samples are accompanied with a description con-
taining the type of environment, date of collection and others including the geographic 
coordinates. The geographic data lead to the challenging task of visualizing the data using 
the combination of metagenomic and geovisualization approaches. One of the recent 
metagenomic visualization tools that implements such hybrid is ResistoMap (Yarygin et al., 
2016), an interactive Web-based application showing the level of the potential resistance to 
antibiotics (resistome) in human gut microbiome. This tool allows visual exploration of the 
resistome levels in more than 1600 gut metagenomes of the populations of the world for 
most known antimicrobial drug types as an interactive heatmap. The navigation and sum-
mary resistome information are implemented as a geographic map of the world, where the 
countries are filled with the colour according to the median resistome levels of their popula-
tions. A researcher can quickly switch between the two visual forms due to the application 
interactivity. The ResistoMap interface is shown in Fig. 3.5. Such tools demonstrate that the 
efficient display of metagenomic data with the external factors describing the metagenomes 
can be useful for improving the value of accumulated data and help to gain insights into the 
complex interactions between the factors.

Conclusions
Recent discoveries in molecular microbial ecology using metagenomics have revolutionized 
our understanding of the structure and functional potential of complex bacterial communi-
ties. Most of these insights would not happen without an intense and in-depth data analysis, 
an important part of which certainly belongs to visualization of metagenomic data. A bio-
informatician approaching a novel metagenomic dataset should be skilful in applying the 
basic methods described in the article, as well as the advanced novel toolkits that continue 
to appear. An additional understanding can come from adopting the known visualization 
methods previously not applied specifically in the area of metagenomics, and interactive 
tools are particularly valuable for mining such multilayered and complex data.
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