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Abstract 
Culture-independent methods, employed to study the 
diversity and complexity of microbial communities that are 
based on amplification of rRNA genes with universal 
primers, include gradient gel electrophoresis (denaturing or 
temperature), single-strand-conformation polymorphism, 
restriction fragment length polymorphism, qPCR and high-
throughput DNA sequencing. Substituting one or more 
base(s) within or at the 3’-termi of the universal primers by 
inosine can overcome some of their shortcomings 
improving amplification capacity. Universal primer sets do 
not usually amplify sequences with nucleotide mismatch to 
the templates, particularly in the last three bases, whereas 
inosine-modified primers anneal and amplify a variety of 
rRNA gene sequences. Inosine-containing primers are 
therefore might be useful to detect more species in diverse 
prokaryotic populations. The article summarizes the pros 
and cons of using inosine especially at the 3' termini of 
universal primers in nucleic acid amplification for the study 
of microbial diversity. 

Introduction 
Phylogenetic analysis and study of prokaryotic diversity 
based on 16S rRNA gene comparison (Woese and Fox, 
1977) was enhanced by discovery of the PCR (Weisburg, 
et al., 1991). Culture-independent methods are 
advantageous to investigate the occurrence and distribution 
of bacteria in nature, providing direct information on 
community structure (Daly et al., 2000; Steven et al., 2007; 
Su et al., 2012). Most of these studies require extraction of 
total bacterial DNA from the sample and PCR amplification 
of one of the rRNA genes using universal primers designed 
according to their conserved sequences. This approach is 
straightforward, but biased at almost all steps: DNA 
extraction, primers selection and amplification (Bru et al., 
2008; Fujiwara et al., 1995; Hansen et al., 1998; Martin-
Laurent et al., 2001; Polz and Cavanaugh, 1998; Suzuki 
and Giovanni, 1996; Wu et al., 2009), producing an 
incomplete and often distorted view (Forney et al., 2004) of 
the community structure.  

The choice of universal 16S rRNA gene primers used 
in studies to assess the diversity of prokaryotes is not trivial 
becouse (Baker et al., 2003; Forney et al., 2004): (a) 
complementarity to a large fraction of the sequences in 
databases such as the ribosomal database project [RDP; 
(Cole et al., 2009)] are not necessarily optimal; (b) 
sequences in the database may be incomplete or 
ambiguous; (c) no current data base faithfully represents 
the estimated total number of over 10 million bacterial 
species, with possible high sequence divergence (Curtis et 
al., 2002; Winsley et al., 2012). Efforts are therefore being 
made to improve universality of the primers. 

Substituting canonical bases by inosine 
Inosine is identical to guanine lacking the N2 amino group. 
It is found in the 5'-nucleotide of tRNA anticodons of 
mRNA, known as Watson–Crick wobble position, when 
different triplets encode the same amino acid (Crick, 1966), 
and loosely pairs to either cytosine, adenosine or uridine. 
Inosine's annealing intensities to the four nucleotides 
depends on the thermodynamic stabilities of the pairings 
(Martin et al., 1985; Watkins and SantaLucia, 2005). 
Nevertheless, it is successfully used in a variety of PCR 
primers and probes that require degeneracy such as at the 
wobble position, to permit annealing to different but closely 
related sequences (Candrian et al., 1991; Ohtsuka et al., 
1985). The annealing temperature and the composition of 
reaction mixtures can be manipulated to achieve better 
universality of such inosine containing primers. The 
presence of inosine in an oligonucleotide seems to neither 
disturb nor destabilize DNA duplex formation (Ohtsuka et 
al., 1985). Replacing inosine (I) in degenerate primers 
often yields amplification results superior than of the mixed-
base degenerate primers (Liu and Nichols, 1994). In 
internal positions of synthetic oligonucleotides, pairing of I 
to thymine (T) or guanine (G) reduces the hybrid yield 
10-30 fold and to a lesser extent to adenine (A) over its 
pairing to cytosine (C) (Case-Green and Southern, 1994). 
The order of stabilities of paired-inosine is: I·C > I·A > I·T ≈ 
I·G > I·I (Martin et al., 1985); it is thus the favorite base to 
replace two (G/T, G/A, T/A), three or four base ambiguities. 
At the 3'-end, I pairs preferentially in the same order, albeit 
with reduced discrimination between the four bases, but at 
the 5'-end, it shows the same signal strength when paired 
against each of them (Case-Green and Southern, 1994).  

The hierarchy of hybridization yields of an octamer 
with two adjacent I's in the center is CC > CA > AA > AC > 
GC> GA > CG > TA > TC > CT = AG > AT > GT > TT 
(Case-Green and Southern, 1994). A neighboring pair has 
large influence on the stability of I·N base pair at the 5'- or 
3'-end of an oligonucleotide with the following tendency's 
hierarchy: G·C > C·G > A·T > T·A, reflecting a complex 
interplay between H-bonding, nearest-neighbor stacking 
and mismatch geometry (Watkins and SantaLucia, 2005). 
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This information may be useful in designing a primer/probe 
of optimal stability (Martin et al., 1985; Watkins and 
SantaLucia, 2005) to enhance primer universality while 
retaining specificity. While these parameters can be 
modulated in an attempt to increase universality, it is likely 
to be accompanied by a tradeoff in specificity so that non-
target sequences are also amplified (Forney et al., 2004). 

Utility of inosine in culture-independent methods 
Inosine at internal primer positions  
Two types of primers are used to enhance their universality 
for amplification of related sequences from different 
species having more than one nucleotide at a given 
location: degenerate primers or those containing I 
(Kilpatrick et al., 1996; Rossolini et al., 1994; Wu et al., 
2009). Replacing a wobble-position base by I substantially 
reduces unspecific annealing of degenerate primer sets 
commonly used for amplification of protein-coding or of 
highly-conserved (e.g., of rRNA) genes.  
 Introducing residues of I into the core of universal 
primers homologous to conserved regions in the 16S rRNA 
genes, for example, enabled amplification and detection of 
phylotypes that were not detected using the original, 
unmodified primers (Watanabe et al., 2001). Such primers 
were used in analyses of microbial diversity of oil palm 
rhizosphere (Acevedo et al., 2014), cattle manure and 
anode biofilms (Inoue et al., 2013). I-containing primers for 
different types of human papillomavirus yield higher 
amounts and more specific amplicons than the 
corresponding degenerate primers (Rossolini et al., 1994). 
Internally-placed I in primers for 16S rRNA were recently 
used in next-generation DNA sequencing to catalog 
bacterial reads within complex, polymicrobial specimens 
(Salipante et al., 2013). 

A large proportion of commonly used universal 
primers for 16S rRNA genes lack sequence homology to 
many of the “candidate” divisions, severely limiting 
bacterial variety assessments (Winsley et al., 2012) and 
thus display diverse coverage rates (Wang and Qian, 
2009). So-called “conserved regions” in the 16S rDNA used 
as universal primers include many mismatches in the core 
(Watanabe et al., 2001; Thomas et al., 2011) and less in 
their 3'-end (Ben-Dov et al., 2011; Brands et al., 2010). 

Inosine at the 3'-end of primers 
Inclusion of degenerate bases or I at the 3´-end is usually 
considered undesirable because incompatible annealing of 
the ultimate or penultimate base(s) can suffice to initiate 
PCR at wrong sites (White, 1993). On the other hand, 
mismatched nucleotides at these positions may be 
detrimental to the amplification process (Kwok et al., 1990; 
Sarkar et al., 1990; Wu et al., 2009) because loose primer 
hybridization affects binding stability of the DNA 
polymerase to a primer-template terminus (Detera et al., 
1981; Huang et al., 1992; Kamtekar et al., 2006). This is 
primarily due to a need for a perfect 3'-end base pair to 
allow enzymatic synthesis (Batzer et al., 1991). A point 
mutation at this position in the template will therefore have 
a much greater effect than mutations in neighboring bases. 

Inclusion of I at the 3'-end position in PCR primers of 
the Alu family, seminally performed by Batzer at al. (1991), 
resulted in a 150 bp amplicon from green monkey DNA, 

which was not amplified using identical primers without I. 
Using I at the 3'-termini of universal primers for 16S rDNA 
to study microbial diversity discovered 7 bacterial phyla 
whereas the original set amplified sequences belonging 
almost exclusively to Proteobacteria (Ben-Dov et al., 2006). 
I-substituted universal primers for 16S rDNA at the 3'-
termini were used successfully in analyses of microbial 
diversity from different environmental niches such as 
industrial wastewater (Shapiro et al., 2009), coral black 
band diseases microbial mats (Barneah et al., 2007), 
desert soil (Angel et al., 2009), grapevine leaves (Bulgari et 
al., 2009), human feces (Patil et al., 2012; Zheng et al., 
2009), oral plaque biofilms (Brands et al., 2010), hot spring 
ecosystems (Valverde et al., 2012) and gut flora of sand 
flies (Mukhopadhyay et al., 2012). This increased diversity 
confirms the usefulness of I-containing 3'-termini primer-
pairs to expand the observed diversity of microbial 
communities but is not guaranteed to amplify all species 
existing in the examined sample. 

An additional approach to obtain expanded microbial 
diversity uses substitutions of the two last bases at the 3′-
end of each of the primers by two inosines (Ben-Dov et al., 
2011). This primer-pair expands somewhat the observed 
diversity of a bacterial community at the family/class level, 
but significantly shifts the composition of the resulting 16S 
rDNA libraries from that obtained by two other primer-pairs, 
one with a single I substitution at the 3'-end and the other 
with no substitution. The most obvious shift in composition 
came with the detection of a higher abundance of 
sequences related to the class Clostridia. When two I's 
substituted AG in the two last 3′-end bases of the forward 
primer, the resulting hybridization (I·T-I·C) apparently 
destabilized primer-template-polymerase complex, and 
since the base adjacent to the 3'-end in the 16S rDNA of 
Clostridia's template contains a high frequency of G's 
(98.8%) the formation of first pairing (C·G) by Taq 
polymerase stabilized the initial amplification efficiency and 
thus biased it toward this class (Ben-Dov et al., 2011).  

The base adjacent to the 3′-end of universal PCR 
primers targeting 16S rDNA is variable and thus impacts 
the initial phase of PCR amplification: A or T decrease PCR 
efficiency whereas G or C stabilize primer-template-
enzyme-nucleot ide complex and thus increase 
amplification rates (Ben-Dov et al., 2012). I-modified 
primers preferentially (but not exclusively) amplify 
sequences containing G or C next to the 3′-end of the 
primer over sequences containing A or T (Brands et al., 
2010). Such next-base effects can distort data used to 
draw conclusions about structures of microbial 
communities in a PCR-based approach, due to bias in 
estimating the relative ratios between phylotypes having 
different template-contiguous bases to the 3′ end primers 
(Ben-Dov et al., 2012). 

Concluding remarks 
High-throughput or 'next generation' DNA sequencing 
platforms dramatically increase sequencing depth of 
phylogenetic analyses of explored microbial communities, 
but limitation in universality of commonly used primers can 
still provide only a narrow view of these communities. PCR 
amplification of DNA is a key preliminary step in many 
applications of high-throughput sequencing technologies, 
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yet design and taxonomic analysis of novel universal or 
near-universal primers remains a challenging task (Walters 
et al., 2011). Universal primers containing inosine can 
reveal more varied templates and thus expand the 
observed diversity of microbial communities, but does not 
necessarily amplify all heterologous sequences of different 
species existing in explored niches. The importance of 
adopting multiple approaches to design universal primers 
for PCR analyses to assess microbial biota in complex 
environments is emphasized and substantiated. 
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