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Abstract: Prodrugs are chemistry-enabled drug delivery modifications of active molecules 

designed to enhance their pharmacokinetic, pharmacodynamic and/or biopharmaceutical 

properties. Ideally, prodrugs are efficiently converted in vivo, through chemical or enzymatic 

transformations, to the active parent molecule. The goal of this work is to enhance the 

colonic absorption of a drug molecule with a short half-life via a prodrug approach to deliver 

sustained plasma exposure and enable once daily (QD) dosing. The compound has poor 

absorption in the colon and by the addition of a promoiety to block the ionization of the 

molecule as well as increase lipophilicity, the relative colonic absorption increased from 9% 

to 40% in the retrograde dog colonic model. A combination of acceptable solubility and 

stability in the gastrointestinal tract (GI) as well as permeability was used to select suitable 

prodrugs to optimize colonic absorption. 

Keywords: prodrugs; colonic absorption; dog colonic studies; enabling QD dosing; 

chemistry-enabled drug delivery; enhancing lipophilicity 

 

1. Introduction 

Prodrugs are bioreversible chemistry-enabled modifications of active drugs designed to enhance the 

pharmacokinetic, pharmacodynamic or pharmaceutical properties of molecules. These chemical 

modifications improve the drug’s characteristics such as permeability, solubility, chemical or metabolic 

stability, thus typically enhancing its absorption and bioavailability [1–7]. A prodrug is ideally 

pharmacologically inactive and efficiently converted to the active parent through in vivo enzymatic 

and/or chemical transformations. The bioconversion of the prodrug releases the active drug and a 

promoiety which is preferably physiologically inert and readily eliminated. 

For many otherwise efficacious drugs, a short half-life requires more than once daily administration, 

which increases the probability of non-compliance and therefore less than optimal efficacy. In such 

cases, strategies employing controlled release or sustained release formulations are used to provide 

prolonged exposures by delivering a controlled amount of the drug to both the small and large intestine. 

However, this strategy cannot be used for molecules which do not have the permeability and/or 

solubility suitable to leverage absorption in the large intestine and thus reduction of the dosing frequency 

to once a day. 

In designing a prodrug that will enhance the absorption of a molecule in the colon, the physiological 

differences between the large and small intestines must be taken into consideration. Relative to the small 

intestine, the colon is characterized by low surface area and low aqueous volume. It also presents 

differences in pH, mucosa, bacteria, and length [8]. Table 1 summarizes some of the differences between 

the small intestine (the predominant site of absorption of oral drugs) and the colon. Transit time and 

motility in the colon differ from that in the small intestine and are significantly longer. These are also 
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highly variable, dependent on age, posture, disease, stress, drugs and presence of food. Importantly, 

colonic fluid volume, which may be 2.5 to 5 fold less than in the small intestine, has a significant impact 

on colonic absorption. This requires that the compounds have sufficient solubility in the low colonic 

fluid volume to enable colonic absorption. The longer residence time does provide an opportunity for 

enhanced absorption should the drug be sufficiently stable, soluble and permeable in the colonic 

environment. It should be pointed out, however, that the absorption properties of the colon vary along its 

length from the proximal to the distal colon adding to the complexity of increasing the absorptive 

properties of molecules. In addition, the main role of the colon is to remove water from the solid matter. 

The increased solids, low fluid volume, and bacteria in the colon can have a major impact on the colonic 

absorption of compounds. 

Table 1. Comparison of the properties of the small and large intestines in humans and dogs [8–11]. 

Species Position pH Fluid Volume (mL) Transit Time (h) 

Human 
Small intestine (fasted) 6.4–7.5 250 3–4 

Colon 5.5–7.5 50–100 8–24 

Dog 
Small intestine (fasted) 6.2–6.7 35 2 

Colon 6.4–6.7 0.5 3–12 

The pH of the different segments of the gastrointestinal (GI) tract varies, which can also have a 

significant effect on absorption. From the acidic pH of the stomach (1.5–2 fasted, 2–6 fed) to pH 7.5 in 

the ileum, the pH generally decreases again to 6.6 in the proximal colon. Vadlamudi et al., report that in 

humans the pH drops to 6.4 in the ascending colon, 6.6 in the mid-colon and finally to 7.0 in the 

descending colon [8]. Others indicate that the pH varies from 5.5 to 7.0 in the cecum and colon and is 7.0 

in the rectum [12–14]. The pH of the GI tract is also dependent on disease and the presence of food 

resulting in potential inter- and intra-subject variability. Compounds that have a pKa in the physiological 

pH range of 6 to 8 generally prove to be challenging to develop as they are ionic in the GI tract. 

Ionization usually leads to poorly permeation as the compounds cannot be absorbed through the 

intestinal wall without the use of active transport mechanisms [15]. 

An added challenge for colonically-absorbed compounds is that the colonic environment becomes 

increasingly more viscous and the dissolution rate is significantly reduced leading to inherently slow 

diffusion through the mucosa. Often when trying to enhance colonic absorption for local colonic 

delivery, prodrugs use modifications that target the colon’s microbial reductive enzymes, such as 

sulfasalazine, which undergoes azo-reductive cleavage in the colon [16,17]. Another similar strategy 

uses glucuronidases, such as with dexamethasone [12,17,18]. Alternatively, gabapentin enacarbil was 

designed to improve the permeability of gabapentin with addition of a lipophilic promoiety [19]. 

Gabapentin itself has variable exposure and dose-dependent pharmacokinetics attributed, in part, to its 

ionization in the GI tract and limited colonic absorption. The gabapentin enacarbil prodrug was designed 

to block one of the ionization sites of the molecule through the addition of a carbonate lipophilic 

promoiety [19]. The monocarbonate prodrug is rapidly converted to the active parent in the enterocytes 
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after absorption and enables once-daily dosing where the dosing paradigm was originally restricted to a 

twice-daily dosing with gabapentin itself. 

The goal of this study is to use a similar prodrug strategy as gabapentin and increase colonic 

absorption of a test drug by increasing lipophilicity. The compound contains a phenolic functional group 

with pKa of 6.7 and is well absorbed in the small intestine, approximately 80%, but requires twice a day 

dosing due to its very short half-life and limited colonic bioavailability. Given the physiological pH of 

the GI tract, it is likely that ionization of the functional group is affecting the permeation and solubility of 

the compound through-out the GI tract [15,20,21]. An additional challenge is that the dose of the active 

molecule is significantly higher than for gabapentin, and a prodrug would require optimal solubility 

while also being more permeable in the colon. However, given the low colonic absorption of the 

compound, increases in colonic permeation were considered paramount. A preclinical dog colonic 

absorption model was used to initially evaluate the enhancement of colonic permeation of the prodrugs. 

Published literature indicates that, in general, the dog model is a good model to predict human colonic 

absorption [22–24]. Sutton et al., shows a good relationship of relative bioavailability in dogs and 

human following oral and colonic administration for a relatively large number of compounds [24]. 

Overall dogs can be considered reasonable predictors of colonic absorption in humans. 

2. Experimental 

2.1. Materials 

The prodrugs were provided by Merck & Co., Ltd. (West Point, PA, USA) and used as received  

(>95% purity). Captisol® was purchased from Ligand (La Jolla, CA, USA). Tween 80 (Polysorbate 80) 

and solvents [high-performance liquid chromatography (HPLC) grade] were obtained from Fisher 

Scientific (Pittsburgh, PA, USA). Simulated Gastric Fluid (SGF) or Fasted State Simulated Intestinal 

Fluid (FaSSIF) was made from SIF powder (Biorelevant, Cryodon, Surrey, UK). 

2.2. Physicochemical Characterization 

2.2.1. Solubility in Biorelevant Media 

Solubility measurements were carried out by suspending excess solids (up to 1 mg/mL) in SGF or 

FaSSIF [25] and stirred at room temperature (22 °C). The excess solids were isolated by centrifugation at 

10,000 relative centrifugal force at 37 °C for 10 min. The solubility and stability of the prodrug in the 

supernatant was determined by reverse-phase HPLC using an Ascentis Fused-Core C-18 column  

(4.6 × 100 mm, 2.7 µm particle) at 40 °C (Sigma-Aldrich, St. Louis, MO, USA). With a gradient mobile 

phase of 10%–95% acetonitrile in 6 min in 0.1% phosphoric acid in water followed by a hold at 95% 

acetonitrile for 2 min. The flow rate was 1.8 mL/min and run times were 8 min with 2 min for 

re-equilibration. Injection volumes were 2–5 μL and detection was at 210 nm. 

2.2.2. Stability in Biorelevant Media 

The compounds were suspended in SGF or FaSSIF for 1 or 5 h, then dissolved in 50/50 acetonitrile/water 

and analyzed by reverse-phase HPLC using the method described above. 
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2.3. In Vitro Permeability 

The in vitro permeation studies are similar to those described elsewhere [26]. Briefly, LLC-PK1 cells 

were cultured in 96-well transwell culture plates. The area of membrane was 0.11 cm2. The prodrugs 

(final concentration 1 μM) were prepared in Hank’s Balanced Salt Solution (HBSS) with 10 mM 

HEPES. Substrate solution (150 μL) was added to either the apical (A) or the basolateral (B) 

compartment of the culture plate, and buffer (150 μL; +10 mM HEPES) was added to the compartment 

opposite to that containing the compound. At t = 3 h, 50 μL of sample was taken out from both sides and 

analyzed by LC-MS/MS for both parent drug and prodrug. Verapamil (1 μM) was used as the positive 

control. The experiment was performed in triplicate. The reported apparent permeation (Papp) is the 

average of the Papp for transport from A to B and Papp for transport from B to A at t = 3 h and is expressed 

as 10−6 cm/s. 

2.4. Pharmacokinetic Procedures 

Male Beagle Dogs (Marshall Farms, North Rose, NY, USA) weighing between 8.0–13 kg were used 

for the in vivo studies. Merck is dedicated to the ethical and responsible treatment of all animals used in 

the development of medicines and vaccines. All animal procedures were done in accordance with 

guidelines from the Institutional Animal Care and Use Committee at Merck. Following overnight-fasting, 

dogs were dosed either orally or colonically via a retrograde catheter method with drug solution 

formulation at doses between 0.5 to 4 mpk of compound with a dosing volume of 1 ml/kg. Oral dosing 

was accomplished via oral gavage immediately followed by 5 mL rinse via the same 18 French oral 

gavage tube (Tyco Healthcare Group LP, Mansfield, MA, USA). Colonic dosing was achieved with a 

lubricated 7French catheter (Covidien, LLC, Mansfield, MA, USA) that was inserted through the anal 

sphincter and carefully advanced to a distance of 20 cm (descending colon). Dogs were repositioned if 

needed to aid in catheter advancement. Once the catheter was positioned, the formulation was 

administered as a bolus dose via a 20 mL syringe attached to the catheter via 2-way valve which was 

turned post-dose allowing the catheter to be flushed with 5 mL of water delivered via another syringe. 

This ensured complete delivery of the formulation. Water was restricted for 1 h post dose. Food was 

returned at 4 h after dosing. Blood (1 mL) was drawn at pre-dose, 0.25, 0.5, 1, 2, 4, 6, 8 and 24 h 

post-dosing. The plasma was separated by centrifugation (10 minat 2,500 g) and kept frozen at –70 °C 

until analysis by LC-MS/MS. LC-MS/MS analysis was done using a Transcend LX2 Multiplexed UPLC 

with Rheos Allegro quaternary pumps (Thermo, CTC, Pittsburgh, PA, USA) interfaced to the API-4000 

or API-5000 mass spectrometer (Life Technologies, Carlsbad, CA, USA) utilizing the turbo ion spray 

interface and a Waters XSELECT HSS T3 XP column (50 × 2.1 × 2.5 µm) (Milford, MA, USA). The 

concentrations of the drug and prodrugs in dog plasma were determined using a non-validated 

LC-MS/MS assay following a protein precipitation extraction and addition of an appropriate internal 

standard. Quantification was done by monitoring transitions specific for each molecule. The methods 

were linear across a concentration range of 2 or 5 to 5,000 nM. 
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3. Results and Discussion 

The active parent compound consists of a phenolic functional group with a pKa of 6.7. Due to the 

ionization of the functional group, the permeability and solubility are affected through-out the GI tract. 

From Table 2 it can be seen that the parent compound has poor colonic absorption which could be,  

in part, attributed to its pKa and ionization in the colon. The current prodrug effort was initiated to evaluate 

the feasibility of increasing the absorption window of the parent compound. The strategy used to 

enhance colonic absorption and potentially enable QD dosing was to select promoieties that would block 

the ionization and increase the lipophilicity of the compound. The initial screening for prodrug viability 

was based on solubility, stability and prodrug permeation. If the prodrug met the minimum requirements 

on solubility and stability and showed bioconversion to parent in vivo (i.e., via rat and/or dog) the 

compound was advanced to a dog colonic absorption study in which the colonic absorption/permeation 

of the prodrug was determined. Each iteration of prodrug design was aimed to probe one of the various 

physicochemical aspects that could potentially affect colonic absorption (e.g., solubility, permeability, 

stability, etc.). 

Initially, more than 60 prodrugs were synthesized and screened for stability in biorelevant media 

(SGF and FaSSIF). Those with chemical stability greater than 90% were selected for further evaluation 

of solubility in biorelevant media, in vitro permeability and colonic absorption. As seen in Table 2, 

evaluation of the physicochemical properties of the prodrugs alone did not immediately indicate a 

best-in-class molecule, rather the physicochemical properties of the prodrugs need to be considered in 

conjunction with the colonic absorption data. In the dog colonic absorption studies the prodrug was 

dosed and the absorption of both the prodrug and parent were evaluated. The absorption is reported in 

terms of parent exposure unless otherwise indicated. 

Prodrug A had one of the highest solubilities of the prodrugs in both SGF and FaSSIF, however slight 

degradation of prodrug A was seen in these media. In vivo dog studies did show efficient prodrug 

conversion (>80%) with less than 2% prodrug circulating in plasma after oral or colonic administration 

(Figure 1). Prodrug A showed an increased lipophilicity compared to the parent but was similar to the 

other prodrugs (Table 2). Given the increase in lipophilicity it was surprising to see a lower LLC-PK1 

permeation for prodrug A. Despite the lower permeation predicted via the LLC-PK1 cell assay, 

administration of a solution of prodrug A resulted in a 40% relative colonic bioavailability. This 

represented a 4-fold improvement in relative colonic bioavailability compared to the parent, which 

gave only 9% relative colonic bioavailability. However prodrug A also showed a decrease in oral 

absorption compared to the parent, so while the colonic absorption was increased 2.5-fold, the oral 

absorption was decreased by 1.5-fold leading to a potentially inflated relative colonic absorption value. 

This suggests that while the colonic absorption was increased for prodrug A, compared to parent the 

overall oral absorption of prodrug A seems to be lower than desired. Given the lower stability  

in biorelevant media of prodrug A compared to the other prodrugs, the importance of stability  

was considered. 
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Table 2. Physicochemical properties of the prodrug molecules compared to that of the parent drug molecule in terms of solubility in simulated 

gastric fluid (SGF), simulated fasted state intestinal fluid (FaSSIF), permeation values from LLC-PK1 assay (with cyclosporine A), calculated 

partition coefficient (ALogP 98) and dog colonic absorption. 

Compound 
LLC-PK1 Papp 

(×10-6 cm/s) 
Stability in SGF 1 

(1 h)% Claim 
Stability in FaSSIF 2 

(5 h)% Claim 
Solubility in SGF 

(mg/mL) 1 h 
Solubility FaSSIF 

(mg/mL) 1h 
ALogP 

98 3 

Percent Relative 
Dog Colonic 
Absorption 4 

Parent 11.6 98.36% 99.40% 0.01 0.50 −0.7 9% 

Prodrug A 

5.8 93.80% 90.97% 0.37 0.33 0.9 40% 

Prodrug B 

8.9 100.02% 99.92% 0.02 0.03 1.3 43% 

Prodrug C 

11.9 99.32% 98.27% 0.04 0.25 1.5 31% 

Prodrug D

11.9 100.14% 101.61% 0.06 0.06 1.3 30% 

Prodrug E 
1.7 95.50% 96.27% 6.6 0.60 0.4 5% 

Prodrug F 

15.4 91.32% 98.45% 0.02 0.04 2.2 10% 

1 SGF: simulated gastric fluid; 2 FaSSIF: Fasted state simulated intestinal fluid; 3 The octanol/water partition coefficient (ALogP 98) was calculated using Accelrys Cerius2 

Software (Accelrys, Inc., San Diego, CA, USA);4 Ratio of AUC0-24 h colonic to AUC0-24 h oral administration. 
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Figure 1. Mean plasma concentration vs. time profiles of prodrug A and parent following 

oral and colonic administration of prodrug solution to fasted Beagle dogs at a dose of 4 mpk 

(mean ± SE). [bottom graph is zoom in for prodrug only profile]. 

 

 

Comparing physicochemical properties of prodrugs A through D, prodrugs B, C and D had lower 

solubility than prodrug A but were more stable in the in vitro biorelevant media stability assays. More 

stable prodrugs could lead to better colonic absorption. Prodrugs B, C and D had permeation values 

comparable to the parent and slightly higher than prodrug A (Table 2). The relative colonic 

bioavailability for the parent when dosing prodrugs B, C or D was 43%, 31% and 30%, respectively. 

Prodrugs B and C showed a higher relative colonic absorption ratio compared to the parent but lower 

oral absorption compared to parent and similar to lower colonic absorption (Table 3). With this 

significant drop in oral absorption from prodrugs B and C and only moderate increase in colonic 

absorption, it is difficult to say that the overall colonic absorption is increased in prodrugs B and C 

compared to parent. Prodrug D, given the same increased in vitro stability in biological media, showed 

similar relative colonic absorption to prodrugs A, B, and C but with overall better oral absorption. 

Compared to parent, prodrug D gave similar oral absorption and showed a 2.5-fold increase in colonic 

absorption. This increase in colonic absorption was comparable to what was seen with prodrug A but 

with no loss in oral absorption suggesting that prodrug D had generally better colonic absorption than 

parent based on the dog colonic studies. 
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Table 3. Mean [± SE] pharmacokinetic parameters for parent after oral and colonic administration of solutions of the prodrug to fasted Beagle dogs 1. 

CompoundDosed  

(vehicle) 
Dose (mpk) DosingRoute

nAUC0-24 h
2 

(µM h/mpk)
nCmax

2(µM/mpk) Tmax
3 (h) 

Percent Relative Dog 

Colonic Absorption

Parent  

(3% Tween) 
4 

Oral 2.92 ± 0.48 1.40 ± 0.25 0.5(0.3–0.5) - 

Colonic 0.30 ± 0.26 0.06 ± 0.04 0.5(0.3–2.0) 9% 

Prodrug A  

(3% Tween) 
4 

Oral 1.91 ± 0.12 0.69 ± 0.09 1.0(0.5–1.0) - 

Colonic 0.76 ± 0.21 0.24 ± 0.04 0.5(0.3–1.0) 39% 

Prodrug B  

(10% Tween) 
1 

Oral 0.94 ± 0.05 0.38 ± 0.03 1(0.5–1) - 

Colonic 0.40 ± 0.13 0.09 ± 0.02 1 43% 

Prodrug C  

(10% Tween) 
1 

Oral 0.77 ± 0.13 0.27 ± 0.05 0.25 - 

Colonic 0.24 ± 0.04 0.06 ± 0.01 1(0–1) 31% 

Prodrug D 

(30% Captisol®) 
4 

Oral 2.4 ± 0.14 0.83 ± 0.21 1.0(0.5–2.0) - 

Colonic 0.72 ± 0.07 0.17 ± 0.01 1.0 30% 

Prodrug E  

(10% Tween) 
0.7 

Oral 4.35 ± 1.3 1.65 ± 0.35 0.5(0.5–1) - 

Colonic 0.24 ± 0.15 0.06 ± 0.02 0.5 5% 

Prodrug F  

(10% Tween) 
1 

Oral 0.75 ± 0.02 0.26 ± 0.01 1 (0.5–1) - 

Colonic 0.07 ± 0.13 0.02 ± 0.01 2 (0.5–2) 10% 
1 It should be noted that the plasma exposure for the prodrugs were below the limit of quantitation at 2 h for oral and colonic dosing; 2 nAUC0-24 h and nCmax refer to dose normalized values;  
3 For Tmax, median value is provided. 
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Overall this data indicate that for this series, prodrug stability in vitro was generally not a 

significant factor as long as the greater than 90% stability criteria in biological media was met. 

However the potential contributing effect of solubility in vivo cannot be ruled out given the high 

solubilizing nature of the dosing vehicles of these prodrugs. It should also be noted that prodrug D was 

dosed as a Captisol® solution rather than in Tween. This was a result of the lower initial prodrug 

solubility in vehicle. 

To further investigate the effects of solubility on the colonic absorption of the prodrugs, prodrug E 

was evaluated. Prodrug E was found to have slight degradation in biological media compared to 

prodrugs B, C and D but not significantly different than the degradation seen with prodrug A. Prodrug 

E did, however, show solubility in SGF that was significantly higher than that of the other  

prodrugs (18 to 330 fold increase) and in a similar trend a 2 to 20 fold higher FaSSIF solubility  

(Table 2). For this reason prodrug E was used to assess the relationship between increased prodrug 

solubility and colonic absorption. The results from prodrug E show that compared to the other prodrugs 

there was an increase in oral absorption but a low colonic absorption resulting in an overall relative 

bioavailability for colonic administration of only 5% for prodrug E (Table 3). This was analogous to the 

relative colonic absorption seen with the parent itself. For prodrug E the colonic absorption was similar 

to prodrug C and lower than that of the prodrugs A, B and D but the oral absorption was increased 

significantly compared to parent and that of all the prodrugs (1.5-fold increase compared to the parent  

and 1.8 to 5.6 fold increase compared to the other prodrugs). This increase in oral absorption but 

stagnant colonic absorption suggests that the overall absorption was increased from prodrug E but the 

colonic absorption was not. To further support this, the ALogP value and LLC-PK1 permeation of 

prodrug E were considerably lower than those of the previous prodrugs (Table 2) implying that  

colonic bioavailability was strongly influenced by permeation and increases in solubility alone were 

not sufficient to increase colonic absorption for this series of prodrugs. An important consideration for 

absorption with prodrugs, and non-prodrug small molecules alike, is the interplay of solubility and 

permeation. To this end, prodrug F was used to assess the understanding between cell culture Papp 

values and the colonic permeation seen in the dog colonic model. Prodrug F had a higher lipophilicity 

and LLC-PK1 permeation than all the other prodrugs with similar biorelevant stability but its solubility 

in biorelevant media was also one of the lowest (Table 2). The dog colonic absorption results from 

prodrug F show that the relative colonic absorption for parent when dosing prodrug F was only 10% 

(Table 3). The oral dosing of prodrug F showed similar exposure compared to prodrug C and lower 

exposure than from dosing of prodrugs A, B, D and E. Prodrug F did give a significantly lower colonic 

exposure compared to all prodrugs and parent (3 to 11 fold lower colonic absorption). The lower 

colonic exposure is likely not from dosing issues as the observed oral exposure of parent was similar to 

prodrug C. Levels of prodrug F in plasma did seem to be higher with colonic dosing than for the other 

prodrugs (data not shown) but in this case this did not translate into higher parent exposure.  

The significantly lower colonic absorption for prodrug F could be attributed to differences in metabolic 

profile and/or in vivo bioconversion. Overall this data suggests a good correlation of LLC-PK1 

permeation and ALogP 98 values for the prodrugs which was not surprising, however these studies 

also indicated that the permeation of the prodrugs seen from the LLC-PK1 permeation assay did not 

correlate well with dog colonic absorption. Thus other factors in addition to permeation seem to affect 

colonic absorption for these prodrugs. This could potentially be vehicle related, as the dog PK studies 
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were evaluated using different vehicles (Table 3). In addition the 3-fold difference in LLC-PK1 Papp  

values between the prodrugs tested may not be sufficient (without solubility enhancement) to increase 

colonic permeation. 

The formulation of a compound also plays an important role in determining colonic absorption in 

relation to potential sustained release feasibility in the clinic, so it is always important to take the 

dosing formulation into account for colonic absorption studies. Overall the higher the percentage of 

solubilizing agent, the lower the feasibility of being able to achieve similar levels of absorption from a 

solid dosage form in the clinic. For the dog colonic absorption studies, the prodrugs were generally 

formulated as solutions with high amounts of surfactant (i.e., 10% Tween), levels which are higher 

than the typical surfactant amount in clinical dosage forms (i.e., 0.5% surfactant). This suggests that 

due to enhanced solubilization the colonic absorption reported may be an overestimation of what can 

be achieved with a clinical dosage form. Despite the limited translatability of these studies to the 

clinic, these results are useful to gauge the impact of permeability and solubility on the colonic 

absorption. It should be noted that while compound phase and in vivo bioconversion of the prodrugs 

were not highlighted in this article, these are important aspects to the overall success of a prodrug 

strategy and were extensively evaluated during these studies (manuscripts in preparation). 

4. Conclusions 

These studies show that a balance of increases in lipophilicity and solubility were necessary to 

enhance the colonic permeability of the prodrugs. If the balance was skewed too far in one direction, 

colonic absorption was negatively affected. The relative colonic absorption for the parent from prodrug 

dosing was between 30%–43% for most of the prodrugs relating a 3-to-4 fold higher relative 

bioavailability for colonic absorption compared to the parent, which gave a relative colonic 

bioavailability of only 9%. The exceptions were prodrugs E and F which gave relative colonic 

absorptions similar to parent at 5% and 10%, respectively. The low colonic absorption of prodrugs E 

and F was most likely linked to their specific physicochemical or metabolic properties. 

Critically considering the changes in oral and colonic absorption during these studies, prodrug D 

gave a similar oral absorption as parent and a 2.5-fold increase in colonic absorption therefore likely 

represented the overall best increase in colonic absorption for the prodrugs. However, it should be 

noted that for the dog colonic absorption studies the prodrugs were formulated in highly solubilizing 

vehicles (i.e., 10% Tween, 30% Captisol®). These dosing vehicles represent an extremely high amount 

of solubilizing agent compared to the typical clinical formulation and may represent an overestimation 

of the colonic absorption. Overall this research shows prodrugs have been made that exhibit a higher 

relative colonic bioavailability of the parent than dosing of parent alone. When formulated as a 

sustained release formulation, it might be expected that a suitable prodrug could provide a positive step 

to improving colonic absorption and dosing regimen of the parent. 
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