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Abstract: We previously developed the direct interaction approximation (DIA) method to 

estimate the protein-ligand binding free energy (G). The DIA method estimates the G 

value based on the direct van der Waals and electrostatic interaction energies between the 

protein and the ligand. In the current study, the effect of the entropy of the ligand was 

introduced with protein dynamic properties by molecular dynamics simulations, and the 

interaction between each residue of the protein and the ligand was also weighted considering 

the hydration of each residue. The molecular dynamics simulation of the apo target protein 

gave the hydration effect of each residue, under the assumption that the residues, which 

strongly bind the water molecules, are important in the protein-ligand binding. These two 

effects improved the reliability of the DIA method. In fact, the parameters used in the  

DIA became independent of the target protein. The averaged error of G estimation was  

1.3 kcal/mol and the correlation coefficient between the experimental G value and the 

calculated G value was 0.75. 

Keywords: protein-ligand docking; molecular dynamics simulation; protein-ligand binding 

free energy 
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1. Introduction 

In the pharmaceutical sciences, the protein-ligand binding free energy (G) is one of the most 

important properties of a drug compound. Despite the development of numerous docking programs 

and scoring functions to estimate the G [1–7], the typical accuracy of G estimation remains about 

2−3 kcal/mol [6–10]. Usually, docking scores are proportional to G values. This low accuracy of the G 

or docking score has contributed to a low success rate of computer-aided drug design. The limitations 

of the docking score are obvious. In statistical physics, the free energy is calculated from the partition 

function, which is based on a structural ensemble of numerous structures at a particular temperature. On the 

other hand, the conventional docking score is calculated from a single protein-compound complex structure. 

Many reports have used molecular dynamics (MD) simulations to analyze protein-compound 

docking and to calculate the G. Even if the protein-ligand complex structure is unknown, ab-initio 

MD docking simulations can be used to reveal the protein-ligand complex structures and the free 

energy landscapes [11–14]. In an explicit water model, if the protein-ligand complex structure is 

known, the binding free energy and the potential of mean force (PMF) along the dissociation path can 

be obtained using the filling potential (FP) method [15], the meta dynamics method [16,17], the  

MP-CAFEE method [18], the smooth-reaction path generation method [19] and Jarzynski’s method [20]. 

There have been several reports on the calculation of protein-ligand binding free energy by  

semi-empirical methods, since the ab-initio free energy calculation is still very time-consuming. The 

molecular-mechanical Poisson-Boltzman surface-area (MM-PBSA) method [21], the linear interaction 

energy (LIE) method [22] and the COMBINE method [23−29] have succeeded in reproducing the 

trends of Gs for single target proteins. These methods have been successful in practical use, but the 

parameters used in these methods must be optimized for each target protein. 

We previously proposed a direct interaction approximation (DIA) method for the G estimation [30]. 

This method estimates the G value based on the direct interaction between the protein and the ligand 

just as in the COMBINE method, but the weighted parameters for residues are set to fixed values as in 

the LIE method. In the current study, we modified the DIA method in order to use target-independent 

parameters. Since previous authors have introduced a ligand-entropy term in their docking studies [5,6], we 

also examined the ligand-entropy term. In addition, because the mobility of solvent water molecules has 

been analyzed in previous reports [31,32], and we also examined the effect of the solvent water 

mobility herein, but used a different method of analysis for this purpose. 

2. Results and Discussion 

The brief explanation of the previously developed direct interaction approximation (DIA) [30] is 

introduced in Section 2.1. The ligand-entropy term is the first additional term to the original DIA and it 

is introduced in Section 2.2. The stability of hydration shell of each residue is the second additional 

term to the original DIA and it is introduced in Section 2.3. The ligand-entropy term and the stability 

of hydration shell were examined by using the protein-ligand complex structures in Section 2.4. These 

additional two terms improved the accuracy and the physical consistency of the DIA model. These 

results showed that the trajectory average of the protein-ligand interaction improved the estimation of 

the protein-ligand binding free energy. In Section 2.5, we showed the trajectory average of the docking 
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score can improve the binding free energy estimation and the consensus score of the DIA result and the 

docking score improved the correlation between the experimental and the calculated binding free energies. 

2.1. Original Direct Interaction Approximation (DIA) Method 

In our previous study, we developed the DIA method to estimate G [30]. The fluctuation of the 

accessible surface area (ASA) or the dihedral angles of the system was introduced as the entropy term 

of the G value, and the estimation accuracy reached 1.5 kcal/mol for several tens protein-compound 

complex structures. Here, we will explain the DIA method briefly. In the original DIA method without 

a direct solvent effect (DIAV), the G value is estimated as follows [30]: 
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where E
vdW

(i) and E
ele

(i) are the vdW and electrostatic interactions between the i-th residue of the 

protein and the ligand, respectively. Svdw(i) and Sele(i) are the fluctuation of the E
vdW

(i) and E
ele

(i), 

respectively. The *Sx term represents the entropy of the system. Sx is the fluctuation of a property x. 

In the current study, Sx is the fluctuation of the accessible surface area (x = ASA) of the protein-ligand 

complex structure or the all dihedral angles (x = DIH) of the protein over the trajectory. There are five 

parameters: α, α2, β, β2, and . 

To represent the van der Waals interaction and the hydrophobic interaction, a Lennard-Jones (LJ)  

8-4-type function has been used instead of the LJ12-6 type function: 
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where Re is the equilibrium distance. The Re and the well depth values are set to the same values 

obtained from AMBER param99 [33] and the general AMBER force field (GAFF) [34]. The data 

sampling MD simulation is performed with the conventional AMBER force field (LJ 12-6 potential), 

and the DIA analysis is performed with Equation (2). 

In the ligand-binding pocket, the effective dielectric constant (eff) should be different at each point, 

since the eff values of proteins are 2−4 and the eff of water is 78.5. The E
ele

(i) should be scaled by the 

eff. Therefore, the electrostatic interactions in the DIAV method were modified and we named the 

modified method as the direct interaction approximation with solvent (DIAS) method [30]: 
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where Emod
ele

(i) is the E
ele

(i) value scaled by eff. The eff value could be calculated from the ratio 

between the electrostatic force calculated in the explicit water model and that in a vacuum as follows: 
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where Ej
ele

(i) is the electrostatic interaction between the i-th residue and the j-th atom of the ligand in a 

vacuum. Here, the effective dielectric constant is given by: 
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where Fj
real

 and Fj
vac

 are the electrostatic force acting on the j-th atom in the explicit water model and 

in a vacuum, respectively. The F
real

 and F
vac

 were calculated by the molecular dynamics simulation in 

the explicit water model and in a vacuum, respectively. 

The scale factor 1/ε
'j 

eff could be an unrealistically large value when the denominator of Equation (5) is nearly 

zero. Thus, we introduce a parameter x and the scale function as follows: 

)exp(1 ' j

eff

j

eff x    (6) 

This parameter, 1/ε
j 

eff, was used as the scale factor and the previous study showed that the optimal 

value was 0.6 [30]. Note that the actual effective dielectric constant corresponds to ε
j 

eff/β. 

2.2. Intra-Molecular Ligand-Entropy Term 

In the current study, the entropy change of the ligand was taken into account in the G estimation. 

The rotatable bonds of the ligand can freely rotate in its unbound form, and these bonds can be fixed 

into a single conformation in its bound form. Thus, the entropy of the ligand decreases during the 

protein−ligand binding process. We added the ligand-entropy term (TSligand) as follows [5,6]: 

3ln rotBligand NTkwST  (7) 

where Nrot is the number of rotatable bonds (single bonds between heavy atoms) in the non-ring part. 

The number of possible conformers is 3
Nrot

 without the ring part. Considering the intra-molecule atomic 

collision, the number of conformers can be less than 3
Nrot

, and so an additional parameter w is introduced. 

First, the ligand entropy of the ring parts was examined. The number of conformers of a ring part 

was approximated by 2
(Nrot-ring

 
-3)

 or 3
(Nrot-ring

 
-3)

, where Nrot-ring is the number of rotatable bonds (single 

bonds between heavy atoms) in the ring parts, since the three-membered ring has only one conformer 

and the torsion angles of ring parts are restricted compared to the free rotation. We examined the 

importance of the ring-entropy term by multiple linear regression analysis of the data of 34 protein-ligand 

complexes. Consequently, the ring-entropy term did not improve the estimation accuracy of G. Thus, 

in the current work, Equation (7) was used as the ligand-entropy term. 

2.3. Hydration Effect of Each Residue of the Target Protein 

In computer-aided drug design, crystal water molecules are often replaced by ligand atoms to design a 

high-activity compound [35]. This is an empirical procedure known among medicinal chemists. The 

amino-acid residues around the crystal water molecules should be important to the protein-ligand 

binding interaction (hot spot). To detect the hot spot, the mobility of water molecules is observed by 

MD simulations. In the current study, the MD simulation of apo protein in water was performed at 

room temperature, and the mobility of the water molecules was observed around the i-th residue. 

The mobility of water is measured by the ligand exchange rate. In the current study, a residue-based 

ligand exchange rate for the i-th residue (<Hi>) was introduced: 
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Here n
m 

j  is the number of water molecules exchanged at the m-th step of the sampled MD trajectory 

around the j-th atom. The j-th atom belongs to the i-th residue and Ni is the total number of atoms 

(including H atoms) of the i-th residue. Nstep is the total number of the sampled MD steps. The water 

molecule, whose distance to the j-th residue is less than 6 Å, is taken into account as the ligand of the  

j-th atom in Equation (8). Since the weight for each energy term of Equations (1) and (3) 

[exp(−α2xSvdw(i)) and exp(−β2xSele(i))] corresponds to the probability, the weight for the i-th residue 

is a dimensionless parameter. We assume that the weight of the amino-acid residues is a function of 

<Hi>, since it could be a measure of the stability of hydration shell around the i-th residue. The higher 

the value of <Hi> is, the more important is the i-th residue is in the protein-ligand interaction. Thus, the 

weight of residues should be a monotonically increasing function of <Hi>. We apply exp(<Hi>) as a 

simple function for approximating the weight, where  is a positive parameter. In the current study, the 

trajectory was sampled every 2 psec and the minimum, maximum and average values of <Hi> were 

0.0, 0.16, and 0.042, respectively. These values correspond to 1, 0.26, and 0.96 of the exp(<Hi>) 

values. The average <Hi> values in the ligand binding pocket and on the protein surface were 0.0478 

and 0.0488, respectively. The ratios of the residue with <Hi> less than the average <Hi> value were 

54% and 48% in the ligand binding pocket and on the protein surface, respectively. 

Water molecules in the bottom of the pocket hardly move and the contact number of the bottom of 

the pocket should be large. Thus there is a correlation between the water mobility and the contact 

number. The contact number is the number of atoms (protein atoms only, excluding the solvent and 

ligand atoms), whose distances from the atom in question are less than 6 Å. In this assumption, the 

<Hi> value for the i-th residue is estimated instead of Equation (8) as follows: 
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Here Cj
m
 is the contact number of the j-th atom at the m-th step of the sampled MD trajectory and 

Cavg is the average value of Cj
m
. The j-th atom belongs to the i-th residue and Ni is the total number of 

atoms of the i-th residue. In the current study, the correlation coefficient between the <H
w 

i > and <H
c 

i > was 

0.32. The average (Cavg), minimum and maximum <H
c 

i > values were 73.51, 0, and 106.2, respectively. 

2.4. G Estimation by the DIA Method 

In the current study, we used the following 6 models to examine the ligand-entropy term and the 

hydration effect of residues. 

Model 1: The original DIAV model described in Equation (1). Here, α2 and β2 were set to zero. 

Model 2: The original DIAS model described in Equation (3). 

Model 3: The DIAV_L model, where the ligand-entropy term is added to the original DIAV model: 
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Model 4: The DIAV_W model, where the weight of each residue is calculated from the hydration 

solvent water. Here <Hi> = <Hi
w
> as in Equation (8): 
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(11) 

Model 5: The DIAV_LW model. Here, the ligand-entropy term and the weight for each residue are 

added to the original DIAV model. The weight for each residue is calculated from the hydration solvent 

water. Here <Hi> = <Hi
w
> as in Equation (8): 
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Model 6: The DIAV_LC model. The weight for each residue is estimated based on the contact 

number. The model equation is Equation (12) with the relation <Hi> = < H
c 

i  > as in Equation (9). 

Table 1 shows the computational average error and the correlation coefficient between the 

experimental values and the values calculated by these six models. The results were obtained by  

leave-one-out cross-validation tests. In the leave-one-out cross-validation test, one data is selected as 

the test data that is to be predicted and the other data are used as the teaching data to generate the 

prediction model equation. The test data is selected one after another in the given data set until all data 

are selected as the test data. The property x of Sx (entropy term) was fixed to x = DIH (the fluctuation 

of the dihedral angles), since the G accuracy obtained by x = DIH was better than that obtained by  

x = ASA (the fluctuation of the accessible surface area). The  values were optimized to minimize the 

G estimation error, and these values were set to −6.115 and 0.00613 for the DIAV_LW and 

DIAV_LC methods, respectively. 

Comparing the average error obtained by the DIAV and DIAV_L models, the consideration of the 

ligand-entropy term improved the accuracy. In addition, comparing the average error obtained by the 

DIAV and DIAV_W models, the consideration of the weight of the residues improved the accuracy. 

The combination of both the ligand-entropy term and the weight of the residues improved the accuracy 

(DIAV_LW). Among the six models examined, the DIAV_LW model showed the best accuracy and 

the DIAV_C model showed the second best accuracy. The accuracy of the DIAV_L model was almost 

the same as that of the DIAS model. Since the number of parameters of the DIAV_L model was 

smaller than that of the DIAS model, the second best model should be the DIAV_L model. 

Figure 1 shows the correlation between the experimental and calculated G values obtained by the 

DIAV, DIAV_LW and DIAV_LC methods. These values were obtained by the molecular dynamics 

simulation starting from the experimentally determined protein-ligand complex structures.  

The computational detail was described in the data preparation section. It is clear that the 

DIAV_LW/DIAV_LC methods gave a better correlation than the DIAV method.  
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Table 1. Estimated binding free energies by several models and the experimental value (Gexptl). 

PDB 

ID 
Gexptl

GDIAV GDIAS GDIAV_L GDIAV_W GDIAV_LW GDIAV_LC

Equation (1) Equation (3) Equation (10) Equation (11) Equation (12) Equation (9,12) 

1abf −7.39 −6.44 −7.46 −7.33 −6.35 −7.16 −7.68 

1apu −10.50 −9.70 −10.70 −9.00 −9.70 −9.30 −10.45 

1dbb −12.27 −11.89 −11.25 −12.08 −11.67 −13.09 −12.80 

1dbj −10.47 −11.28 −10.39 −11.35 −11.07 −9.24 −9.19 

1dog −5.48 −6.45 −8.58 −8.00 −6.38 −8.28 −8.64 

1dwb −3.98 −5.04 −5.16 −5.24 −4.92 −5.57 −5.65 

1epo −10.85 −12.49 −12.35 −13.13 −12.53 −10.79 −10.85 

1etr −10.09 −10.95 −9.86 −9.90 −10.87 −10.38 −10.23 

1ets −11.62 −10.75 −10.21 −10.48 −10.62 −10.43 −9.51 

1ett −8.44 −12.04 −10.87 −10.42 −11.76 −8.44 −10.53 

1hpv −12.57 −13.29 −13.32 −12.78 −13.33 −12.22 −13.15 

1hsl −9.96 −6.79 −7.86 −7.26 −6.74 −5.43 −7.74 

1htf −11.04 −12.10 −10.45 −11.48 −12.13 −11.19 −11.97 

1hvr −12.97 −15.58 −14.97 −15.33 −15.63 −14.42 −15.18 

1nsd −7.23 −8.76 −9.21 −9.19 −8.65 −10.07 −9.92 

1pgp −7.77 −9.81 −9.10 −8.99 −9.56 −6.98 −8.00 

1phg −11.81 −9.63 −9.57 −10.59 −9.53 −9.58 −11.04 

1ppc −8.80 −9.09 −8.55 −9.44 −9.10 −8.40 −9.56 

1pph −8.49 −7.83 −7.46 −8.13 −7.81 −7.63 −8.51 

1rbp −9.17 −9.10 −9.62 −9.74 −9.11 −9.04 −9.76 

1tng −4.00 −5.03 −5.39 −5.48 −4.98 −4.82 −2.64 

1tnh −4.59 −4.89 −5.53 −5.26 −4.83 −4.78 −5.52 

1ulb −7.23 −6.18 −5.90 −6.06 −5.99 −6.10 −6.25 

2cgr −9.92 −12.21 −11.20 −11.16 −11.99 −11.19 −8.41 

2gbp −10.36 −7.55 −9.23 −8.63 −7.45 −10.09 −9.37 

2ifb −7.41 −8.13 −7.89 −7.08 −8.15 −8.63 −7.48 

2phh −6.38 −7.04 −7.57 −7.31 −6.83 −8.47 −7.95 

2r04 −8.48 −10.72 −10.58 −10.29 −10.71 −12.11 −10.48 

2tsc −11.62 −8.63 −9.97 −8.90 −8.75 −9.76 −8.09 

2ypi −6.58 −5.87 −6.53 −6.20 −5.76 −7.16 −6.64 

3ptb −6.46 −4.17 −4.75 −4.75 −4.12 −5.59 −5.11 

4dfr −13.23 −8.35 −7.96 −8.16 −8.36 −9.25 −8.14 

5abp −9.05 −6.86 −8.12 −7.46 −6.77 −8.87 −8.21 

Average Error 1.58 1.36 1.39 1.48 1.26 1.31 

SD a 1.88 1.66 1.68 1.86 1.70 1.72 

Correlation 

coefficient 
0.59 0.75 0.76 0.76 0.75 0.75 

Average Error 

(MLR) b 
1.42 1.23 1.23 1.32 1.13 1.17 

a: standard deviation of the difference between calculated and measured binding free energy. b: We also 

applied the multiple linear regression (MLR) to the 34 protein-ligand complex data. “Average Error (MLR)” 

is the averaged error obtained by the MLR. The error of the MLR is always smaller than the error obtained by 

the cross−validation test. 
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Figure 1. Cross-validation results obtained by the DIAV, DIAV_LW and DIAV_LC methods: 

The experimental data (Gexptl) and the calculated values (Gcalc). Open circles, filled circles 

and filled triangles represent the results obtained by the DIAV, DIAV_LW and DIAV_LC 

methods, respectively. 

 

Table 2 shows the average, deviation, and minimum and maximum values of the optimized 

parameters (α, β,  and w) of Models 1−6 of the 34 cross-validation tests. The % of the negative values is 

also summarized. The other parameters, i.e., α2, β2, and , are omitted. The smaller the deviation of the 

parameter is, the less dependent on the target protein the model is. In particular, the sign of parameter β is 

important. Negative values of β are physically unreasonable. Namely, negative β implies that repulsive 

ligand-protein interactions stabilize the free energy of binding. In the DIAS and the DIAV models, the 

β value was negative in 2.86% of the cases (one model among total 34 cross-validation test models). In 

contrast, the average α,  and w values were almost identical among the DIAV_L, DIAV_LW, DIAV_LC 

and DIAS models. The consideration of the ligand-entropy term (DIAV_L model) slightly improved 

the problem of the negative β parameter. In addition, the weight of residues (DIAV_W model) also 

slightly improved the problem of the negative β parameter. In the DIAV_LW and DIAV_LC models, 

all β parameters were positive in the 34 cross-validation tests. 

Among these six models, the deviation of the DIAV_LW model was the smallest. Considering the 

average error and the deviation of the parameters, the DIAV_LW model was the best of the 6 models 

and the DIAV_LC model is the second best. In the drug design, the prediction accuracy of unknown 

compounds for a new target protein is more important than the regression of the activities of known 

active compounds for a known target. Thus, the parameters of the computational model must not 

depend on the target proteins. From this point of view, the DIAV_LW or DIAV_LC model is desirable. 
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Table 2. Summary of parameters determined by the cross-validation tests. 

DIAV α β  w 

Average 0.0341719  0.0017533  −0.0002198  0.0000000  

Deviation () 0.0005495  0.0011874  0.0000087  0.0000000  

Min 0.0323511  −0.0038807  −0.0002438  0.0000000  

Max 0.0357564  0.0049798  −0.0002027  0.0000000  

Negative value 0.0000000  0.0285714  1.0000000  0.0000000  

DIAV_L α β  w 

Average 0.0370196  0.0029651  −0.0000050  0.1749169  

Deviation () 0.0007599  0.0008450  0.0000002  0.0190521  

Min 0.0350933  −0.0000641  −0.0000054  0.1132383  

Max 0.0396249  0.0047204  −0.0000045  0.2325974  

Negative value 0.0000000  0.0285714  1.0000000  0.0000000  

DIAV_W α β  w 

Average 0.0346823  0.0021929  −0.0002054  0.0000000  

Deviation () 0.0005388  0.0011036  0.0000083  0.0000000  

Min 0.0329273  −0.0030242  −0.0002290  0.0000000  

Max 0.0362899  0.0050095  −0.0001878  0.0000000  

Negative value 0.0000000  0.0285714  1.0000000  0.0000000  

DIAV_LW α β  w 

Average 0.0413163  0.0062033  −0. 0000067 0.1536118  

Deviation () 0.0007382  0.0007907  0. 0000002 0.0140040  

Min 0.0392677  0.0034216  −0. 0000071 0.1254044  

Max 0.0434480  0.0087162  −0. 0000063  0.1944447  

Negative value 0.0000000  0.0000000  1.0000000  0.0000000  

DIAV_LC α β  w 

Average 0.0343046  0.0042958  −0.0000070  0.1143295  

Deviation () 0.0006129 0.0011950  0.0000002  0.0097216 

Min 0.0321378  0.0002835  −0.0000076 0.0942835  

Max 0.0363001  0.0090566  −0.0000067  0.1414504  

Negative value 0.0000000  0. 0000000 1.0000000  0.0000000  

DIAS α β  w 

Average 0.0392333  0.0030804  −0.0000053  0.0000000  

Deviation () 0.0005573  0.0010426  0.0000002  0.0000000  

Min 0.0375654  −0.0017236  −0.0000056  0.0000000  

Max 0.0409116  0.0055269  −0.0000049  0.0000000  

Negative value 0.0000000  0.0285714  1.0000000  0.0000000  

The consideration of the ligand entropy and the weight of each residue did not improve the DIAS 

model. In the DIAS model, the weight of each residue is already considered by using the parameters 

α2 and β2. Thus, the newly introduced weight with the  parameter would count the weight of the 

residue twice. Considering the number of parameters (α, β, ,  and w in the DIAV_LV/DIAV_LC models, 

and α, β, , α2, β2 and  in the DIAS model), the DIAV_LW/DIAV_LC models have a smaller number of 

parameters than the DIAS model. Since a model with a small number of parameters should, in 
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principle, be better than that with a large number of parameters, the DIAV_LW/DIAV_LC models are 

better than the DIAS model. 

The trajectory dependence of the models was examined. The above results were obtained from the 

2-nsec trajectories. Figure 2 shows the time dependence of the DIAV, DIAV_LW and DIAV_LC 

results. When the 1-nsec trajectories were used, the results were slightly worse than those shown 

above, but the difference was not statistically significant.  In the DIAV model, the β value was 

negative in 5.71% of the cases (1ett and 1hsl). In the DIAS, DIAV_L and the DIAV_W models, the β 

value was negative in 2.86% of the cases (1ett in the all models) and no negative β value was observed 

in the DIAV_LW/DIAV_LC models, just as in the above results. The 1ett structure is thrombin, but 

the other thrombin structures (1etr, 1ets) did not show the problem. Currently, the reason of the 

problem is unclear. 

Figure 2. Time dependence of the DIAV, DIAV_LW and DIAV_LC results. Filled circles, 

open squares and open circles represent the results obtained by the DIAV, DIAV_LW and 

DIAV_LC methods, respectively. The averaged error is plotted vs. the sampling-time length. 

 

We also estimated the binding free energies of non-active compounds, since evaluation of the binding 

free energies of the both active and non-active compounds are essential in practical use.  

We docked three GPCR (G-protein coupled receptor: membrane protein) ligands to the proteins and  

calculated the binding free energies of them by the DIAV_L method. These compounds were alprenolol  

(a β-adrenergic inverse agonist), fenoterol (a β-adrenergic inverse agonist) and cetirizine (H1 receptor 

inverse agonist). They are non-active compounds of the proteins, because there are no GPCR in the 

target proteins. The condition of the MD simulation was the same as those used in Table 1. The 

parameters of the DIAV_L method were determined for the MLR of the all 34 proteins used in Table 1. 

The results are summarized in Table 3. In some cases, the pocket sizes of the ligand-binding sites of the 
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proteins were too small for the GPCR ligands to be docked, and so MD simulations were not possible 

for them. Obviously, such ligands should be non-active compounds. The average values of the 

estimated binding free energies for the non-active compounds were weaker than those of the original 

ligands. In all 19 cases, the Gs of alprenolol were weaker than those of the original ligand. The Gs 

of fenoterol and cetirizine were weaker than those of the original ligand in 69% and 56% cases, 

respectively. For some proteins, feneterol and cetirizine show stronger affinities estimated than those 

for the original ligands, but most of their absolute bindings are weak. 

Table 3. The binding free energies estimated for the non-active compounds (kcal/mol). 

PDB ID ΔGexptl 

ΔGDIAV_L 

Original 

ligand 
Alprenolol Difference 

a
 Fenoterol Difference 

a
 Cetirizine Difference 

a
 

1abe2 −9.57  −8.06  −6.85  −1.22  −8.21  0.14  −9.28  1.22 

1abf1 −7.39  −8.40  −6.13  −2.27  −6.72  −1.68  −7.93  −0.47 

1apu −10.50  −11.63  −2.77  −8.86  −4.50  −7.12  −5.69  −5.93  

1cbx −8.65  −8.89  −5.84  −3.04  −7.51  −1.38  −8.30  −0.58  

1dog −5.48  −9.05  −5.18  −3.87  −7.75  −1.30  −5.08  −3.97  

1dwb −3.98  −5.45  −5.44  −0.01  −6.56  1.11  −8.24  2.80  

1ebg −14.76  −6.74  0.00  −6.74  0.00  −6.74  0.00  −6.74  

1epo −10.85  −14.42  −5.64  −8.78  −7.30  −7.12  −8.49  −5.93  

1rbp −9.17  −8.76  N.D.b N.D. b N.D. b N.D. b −8.69  −0.08 

1stp −18.27  −6.59  N.D. b N.D. b N.D. b N.D. b −5.96  −0.63 

1tnh −4.59  −5.59  −4.39  −1.20  −5.62  0.03  −6.13  0.54 

1ulb −7.23  −6.19  −5.45  −0.74  −6.23  0.04  −8.98  2.79 

2gbp −10.36  −10.14  −7.16  −2.98  −8.74  −1.40  −10.24  0.11  

2ifb −7.41  −8.60  −5.81  −2.79  −7.09  −1.51  −9.01  0.41 

2tsc −11.62  −8.23  −5.68  −2.55  −6.48  −1.75  −8.69  0.47 

2ypi −6.58  −6.92  −4.68  −2.24  N.D. b N.D. b N.D. b N.D. b 

3ptb −6.46  −4.96  −4.49  −0.48  −5.89  0.93 −5.64  0.68 

4dfr −13.22  −8.42  −5.16  −3.26  −5.64  −2.79 −6.66  −1.76 

6cpa −15.71  −11.68  −6.82  −4.86  −7.77  −3.91 −9.75  −1.93 

Average −9.57  −8.35  −5.15  −3.29  −6.38  −2.15 −7.38  −1.06 

a: the energy difference between the calculated G of the original ligand and the non-active ligand.b: Not 

Determined, because the pocket sizes of the ligand−binding sites of the proteins were too small for these 

ligands to be docked, and so MD simulations were not possible for them. 

The whole protein set included four thrombins, three HIV-1 proteases and five trypsins. We have 

examined the Spearman’s rank correlations for these ligands of the same target proteins. The parameters of 

the DIAV_L, DIAV_LW and DIAV_LC methods were determined based on the 22 proteins excluding 

these 12 target proteins. The Gs, error of the Gs, and the correlation coefficients are summarized in 

Table 4. The total number of HIV-1 proteases was 11, since we added eight new data points. These results 

obtained by the DIAV_L, DIAV_LW and DIAV_LC methods are similar to each other. The trends of 

the Gs are almost correctly reproduced. 
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Table 4. G values (kcal/mol) of the same target proteins and Spearman’s rank correlations. 

Thrombin ΔGexptl ΔGDIAV_L Error ΔGDIAV_LW Error ΔGDIAV_LC Error 

1dwb −3.98 −5.15 1.17 −5.02 1.04 −5.57 1.59 

1ett −8.44 −9.9 1.46 −9.74 1.31 −9.81 1.37 

1etr −10.09 −9.9 0.19 −9.89 0.2 −10.22 0.13 

1ets −11.62 −10.9 0.72 −10.76 0.86 −10.46 1.16 

Averaged error 

(kcal/mol) 
- - 0.89 - 0.85 - 1.06 

SD
a
 - - 1.01  - 0.95 - 1.20 

Correlation 

coefficient 
- - 0.97 - 0.97 - 0.96 

Spearman’s rank 

correlation  
- - 1 - 1 - 1 

HIV-1 Protease ΔGexptl ΔGDIAV_L Error ΔGDIAV_LW Error ΔGDIAV_LC Error 

1k6p −8.84 −11.71 2.87 −11.74 2.90 −11.78 2.94 

1ajv −10.59 −10.36 0.23 −10.39 0.20 −10.13 0.46 

1ajx −10.86 −9.89 0.97 −9.91 0.95 −9.68 1.18 

1hih −10.97 −11.67 0.70 −11.67 0.70 −11.73 0.76 

1htf −11.04 −11.57 0.53 −11.59 0.55 −11.86 0.82 

1aaq −11.45 −13.15 1.70 −13.13 1.68 −12.96 1.51 

1hpv −12.57 −12.79 0.22 −12.87 0.30 −13.06 0.49 

1hvr −12.97 −14.79 1.82 −14.93 1.96 −14.65 1.68 

1hvk −13.79 −13.63 0.16 −13.65 0.14 −13.70 0.09 

1vj −14.62 −12.82 1.80 −12.85 1.77 −12.89 1.73 

1dif −14.63 −13.76 0.87 −13.77 0.86 −13.82 0.81 

Averaged error 

(kcal/mol) 
- - 1.08 - 1.09 - 1.13 

SD
a
 - - 1.36 - 1.37 - 1.37 

Correlation 

coefficient 
- - 0.68 - 0.67 - 0.68 

Spearman’s rank 

correlation  
- - 0.78 - 0.75 - 0.81 

Trypsin ΔGexptl ΔGDIAV_L Error ΔGDIAV_LW Error ΔGDIAV_LC Error 

1tng −4.00 −5.45 1.45 −5.36 1.37 −2.69 1.31 

1tnh −4.59 −5.29 0.70 −5.20 0.61 −5.50 0.91 

3ptb −6.46 −4.92 1.54 −4.83 1.63 −5.15 1.31 

1pph −8.48 −8.32 0.16 −8.30 0.18 −8.51 0.02 

1ppc −8.80 −9.32 0.52 −9.31 0.51 −9.53 0.72 

Averaged error 

(kcal/mol) 
- - 0.88 - 0.86 - 0.86 

SD
a
 - - 1.03 - 1.02 - 0.98 

Correlation 

coefficient 
- - 0.86 - 0.86 - 0.93 

Spearman’s rank 

correlation  
- - 0.60 - 0.60 - 0.90 

a: standard deviation of the difference between calculated and measured binding free energy. 
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2.5. Consensus Score with the Trajectory Average of the Docking Score 

Next, we examined the trajectory average of the docking score. The Sievgene protein-compound 

docking program was used to calculate the protein-ligand docking score [7]. The trajectory average 

improved the correlation between the experimental binding free energy and the averaged docking 

score. Namely, the correlation coefficients between the experimental binding free energy and the 

averaged docking score were 0.751 and 0.745, with and without the trajectory average, respectively. 

The actual docking scores calculated by three different programs were summarized in the supplementary 

data. On the contrary, the DIAV_L (R = 0.76) and DIAV_LW (R = 0.78) methods gave R = 0.76 and 0.78, 

respectively, slightly better than those for the averaged docking scores. However, the differences between 

their estimated binding free energies and the experimental ones were 1.39 kcal/mol and 1.33 kcal/mol, 

respectively. They are much smaller than those by the averaged docking scores, 1.63 kcal/mol and  

1.89 kcal/mol with and without trajectory average, respectively. We must note that the results should 

strongly depend on the ensemble generated by the MD simulation [36]. Our method should be applied 

the correct protein-ligand complex structures or the protein-ligand complex structures must be the 

equilibrium states, otherwise the calculated G values should drift depending on the simulation time. 

The consensus score of the DIA model and the docking score was also examined. The simple sum 

of the G value obtained by the DIAV_LW and Sievgene docking score gave a correlation coefficient 

between the consensus score and the experimental G of 0.796. The simple sum of the G value 

obtained by the DIAV_LC and Sievgene docking score gave a correlation coefficient between the 

consensus score and the experimental G of 0.782. Thus, the consensus score worked well and it slightly 

improved the G estimation. 

Recently, a machine-learning approach was applied to improve the docking score. Such new method 

showed the G standard deviation (SD) error of 1.5 kcal/mol and the correlation coefficients between 

the experimental binding free energy and the docking score reached 0.76 based on a single structure [37]. 

This result is better than our current result (R = 0.75−0.76, SD = 1.7–1.8 kcal/mol; see Table 1), however 

the used protein-ligand datasets were different to each other. The accuracy of the other docking score 

could be improved considering the suitable ensemble of the protein-ligand complex structures. 

3. Method: The Docking Score Calculation 

A protein-compound docking simulation was performed by the program Sievgene, which is a 

protein-ligand flexible docking program for in silico drug screening [7]. This program generates many 

conformers (100 conformers by default) for each compound and keeps the target protein structure 

rigid, but with soft interaction forces adapting its slight structural change to some extent. The Sievgene 

scoring function was designed to consider the structural change of the target protein. In the inner 

region of the target protein, the protein is approximated as an elastic body, while the atomic pair-wise 

scoring function is applied in the outer region of the target protein. This docking program was developed 

with a performance yielding about 50% of the reconstructed complexes at a distance of less than 2 Å 

RMSD for the 132 complexed receptors with the compounds in PDB. The results predicted by our 

program were almost the same as those predicted by other docking programs [7]. The docking score 

(Hdock) to estimate the protein-ligand binding free energy was determined as: 
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 (15)  

where Nrot, EASA, EvdW, Eele, Ehyd, and Eintra-vdW represent the number of rotatable bonds of the ligand 

molecule, the hydrophobic energy due to the accessible surface area, the vdW energy, the protein-ligand 

Coulombic potential, the hydrogen bond energy, and the intra-molecular vdW energy of the ligand for 

Sievgene [7]. Also, crot, cAV, cele, chyd, and cintra-vdW are the optimized coefficients for each energy term. 

For each atom type, the sum of EASA and EvdW gives a grid potential, and both energy terms are always 

simultaneously calculated. Thus, these two terms share the same coefficient, cAV. Sievgene utilizes the 

grid potential to calculate each energy term except for the intra-molecular interactions. In this study, a 

mesh size of 60 × 60 × 60 was adopted. 

4. Data Preparation 

To determine the coefficients for the G scores for several current models, we performed a  

protein-ligand docking simulation based on the known complex structures registered in the Protein  

Data Bank. The data and the procedure were almost the same as those used in the previous study [30]. 

Here, 34 complexes accompanied by the experimental binding free-energy values were selected from 

the database that was used to determine the G scores of the PRO_LEADS [6]. The PDB identifiers, 

the names (protein names and ligand names), the molecular weights (MW), the number of hydrogen 

bond acceptors (HA) and the number of hydrogen bond donors (HD) of ligands are summarized in 

Table 5. There was no peptide-like compound. The MWs were distributed from 114 to 606 Da. To assess 

the ligand diversity, we calculated the average Tanimoto index and the standard deviation of the all  

34 ligands  all 34 ligands by using Maximum Common Substructure (MCS) method [38]. The average 

Tanimoto index and the standard deviation were 0.29 and 0.19, respectively. These values showed that the 

used ligand molecules were diverse. In the test dataset, the metalloproteins were removed from the 

present analysis. Metal atoms (Zn and Fe atoms) formed covalent bonds with O and S atoms of the 

ligands, and the classical force field that we applied could not represent the covalent bond. Thus, the 

present method cannot calculate G values for metalloproteins with high precision. 

The structural ensembles generated from the PDB structure given by MD in explicit water were 

prepared as follows. All target proteins were prepared with ligands (forming a protein-ligand complex 

structure). In the previous study, all metal atoms in the systems were removed, since the target proteins 

were not metalloproteases. Some non-metalloproteins include metal atoms those bind to the proteins. 

In the current study, all metal atoms of the PDB files were included in the MD simulations. The force 

fields and the charges of the protein atoms originated from AMBER parm99 [36]. The atomic charge 

of each ligand was determined by the restricted electrostatic point charge (RESP) procedure using 

HF/6-31G*-level quantum chemical calculations [39]. We used Gaussian98 to perform the quantum 

chemical calculations [40]. The initial coordinates of protein and ligand molecule of each data were 

fixed to the experimentally determined coordinates. The whole structure of each protein was embedded 

in a sphere of TIP3P [41] water molecules (CAP water), including ion particles of 0.1% Na
+
 and Cl−, 

in order to neutralize the total charge of the systems.  The center of the sphere was set at the mass 

center of the protein. The shortest distance between the protein atom and the CAP sphere wall was  

set to 10 Å. 

  

vdWravdWrahydhydeleelevdWASAAVrotrotdock EcEcEcEEcNcH   intint)(
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Table 5. List of the proteins and ligands used.  

PDB ID Protein Ligand MW HA HD 

1abe L-arabinose-binding protein L-arabinose 150.1 5 4 

1abf L-arabinose-binding protein D-fucose 161.2 5 4 

1apu acid proteinase (penicillopepsin) pepstatin 485.7 6 4 

1dbb Fab' fragment progesterone 314.5 2 0 

1dbj Fab' fragment aetiocholanolone 290.4 2 1 

1dog glucoamylase deoxynojirimycin 163.2 4 5 

1dwb thrombin benzamidine 120.2 0 2 

1epo endothia aspartic proteinase N-carbonylmorpholine 131.1 5 6 

1etr thrombin MQPA 509.2 5 5 

1ets thrombin NAPAP 522.6 4 4 

1ett thrombin 4-tapap 429.6 3 3 

1hpv HIV-1 protease amprenavir 505.6 6 3 

1hsl Histidine-binding protein Histidine 156.2 3 2 

1htf HIV-1 protease GR126045 574.7 4 5 

1hvr HIV-1 protease XK263 606.8 3 2 

1nsd neuraminidase neuraminic acid 290.2 8 5 

1pgp 6-phosphogluconate dehydrogenase 6-phosphogluconic acid 276.1 10 4 

1phg cytochrome P450 metyrapone 226.3 3 0 

1ppc trypsin Napap 533.6 4 4 

1pph trypsin 3-Tapap 429.6 3 3 

1rbp retinol-binding protein retinol 286.5 1 1 

1tng trypsin aminomethylcyclohexane 114.2 0 1 

1tnh trypsin 4-fluorobenzylamine 126.2 0 1 

1ulb purine nucleoside phosphorylase guanine 151.1 3 3 

2cgr Igg2b (KAPPA) Fab fragment guanidineacetic acid 384.4 3 3 

2gbp 
D-galactose / D-glucose-binding 

protein 
D-glucose 180.2 6 5 

2ifb intestinal fatty acid binding protein palmitic acid 256.4 2 0 

2phh P-hydroxybenzoate hydroxylase P-hydroxybenzoate 138.1 3 1 

2r04 rhinovirus 14 (HRV14) W71 342.4 5 0 

2tsc thymidylate synthase 
10-propargyl-5,8-dideazafolic 

acid 
477.5 7 3 

2ypi triose phosphate isomerase 2-phosphoglycolate 156.0 6 0 

3ptb trypsin benzamidine 120.2 0 2 

4dfr dihydrofolate reductase methotrexate 454.4 9 3 

5abp L-arabinose-binding protein D-galactose 180.2 6 5 

MW: Molecular weight (Da); HA: Number of hydrogen bond acceptors; HD: Number of hydrogen bond donors. 
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Before an MD calculation was performed for the entire system, an MD calculation for only the 

solvent parts (solvent water and counter ions) was performed with the protein, ligand, and metal ion 

coordinates fixed, so as to bring the solvent parts sufficiently close to an equilibrium state. The 

SHAKE method was used to constrain covalent bonds between heavy and hydrogen atoms in any 

molecule in the system [42]. MD simulations of the entire system were performed using 2.0 fs time 

steps with the temperature set at 310 K; the fast multipole method [43] was used to calculate the 

Coulombic interaction.  The cutoff distance of the van der Waals interaction was 12.0 Å. The MD 

simulations were performed by using cosgene/myPresto [15]. After equilibration steps of 1,000 ps, the 

protein coordinates were sampled every 2 ps. Finally, we obtained 1,000 structures for each  

target protein in the 2,000 ps production run. The software program myPresto version 4 

(http://presto.protein.osaka-u.ac.jp/myPresto4/index_e.html) was used for the simulation. The 2-nsec 

MD simulations cost average 79 h (max 229 h) using 4-core parallel computation on intel Xeon 5600. 

The trajectory analysis for the DIA method cost average 580 second using single core on intel Xeon 5600. 

5. Conclusions 

We have developed new computational models for protein-ligand binding free energy estimation. 

The DIAV_LC and DIAV_LW models were based on the trajectory average of the protein-ligand 

interaction with the ligand-entropy term. The mobility of the water molecules in the ligand-binding 

pocket was used to calculate the weight of the each residue-ligand interaction of the target protein. The 

interactions of residues around the low-mobility water were weighted comparing to the interactions of 

other residues. The consideration of the ligand entropy and the weight of the residues reduced the 

target-protein dependence of the parameters of the DIA models and consequently the accuracy was 

improved. The average error of G estimation was 1.3 kcal/mol and the correlation coefficient between 

the experimental values and the calculated values was 0.75, when the correct protein-ligand complex 

structures were provided. The trajectory average of the docking score improved the correlation 

between the docking score and the experimental G values. In addition, the simple sum of the G 

value obtained by the DIAV_LW/DIAV_LC and a docking score showed the correlation coefficient 

between the consensus score and the experimental G of 0.8. Thus, the consensus score worked well, 

and it slightly improved the G estimation. 
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