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Abstract: This minireview provides a brief outline of the peculiar aspects of the preparation 
of peptidomimetic and pseudopeptidic structures containing heterocycles. In particular 
novel tricyclic structures are investigated as potential drugs. 
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1. Introduction 

Heteroarenes are widely known in many fields of organic chemistry; in particular medicinal 
chemistry is intimately associated with heterocyclic compounds and most known chemicals used in 
medicine are based on heterocyclic frameworks [1]. 

There are two main sources of heteroarenes: They abound in Nature, often in complex form, but 
they can also be prepared in research laboratories by different synthetic approaches. Herein we 
generally describe synthesis and elaboration of benzocondensed heteroarenes and their introduction in 
peptidomimetic structures. In particular, we focus on benzothiophenes with a view to preparation of 
benzothienopyridines and their potential application as scaffolds in pseudopeptides. 
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2. Peptidomimetic Structures 

Peptidomimetics typically are small protein-like molecules designed to mimic natural peptides or 
proteins. These mimetics, whose structures were mainly derived from natural peptides, should have the 
ability to bind to their natural targets in the same way of the natural sequences and hence should 
produce the same biological effects. 

It is possible to design these molecules in such a way that they show the same biological effects as 
their peptide role models, but with enhanced properties like a higher proteolytic stability, higher 
bioavailability and also often with improve selectivity or potency [2]. 

Moreover it is known that the isosteric replacement of a peptide bond represents an important and 
general tool in design of peptidomimetics together with the incorporation of conformationally 
restricted units, such as rings, into a peptide sequence to force it to adopt a known, biologically active 
conformation [3]. 

The goal is to replace as much of the peptide backbone as possible with non-peptide fragments 
while still maintaining the pharmacophoric groups (usually the amino acid side chains) of the peptide. 
This makes the compound more lipophilic, and therefore its bioavailability is increased. Replacement 
of the amide bond with alternative groups prevents proteolysis and promotes metabolic stability. 
Initially, conformational flexibility has to be retained to allow the pharmacophoric groups a better 
opportunity to find their binding sites, but further lead refinement should favour the formation of more 
conformationally restricted analogs that hold appropriate pharmacophoric groups in the bioactive 
conformation for binding to the target receptor [4]. 

There are many examples in literature of peptidomimetics that result from the incorporation of a 
heterocycle into a peptide, or peptide-like structure; the pre-organization of peptide shape, via the 
introduction of a structural motif that imparts conformational restriction, can enhance binding and hence 
therapeutic potential [5]. 

To the best of our knowledge many drugs are peptidomimetics, in particular drugs actually in use 
for the inhibition of HIV protease (HIV-Pr) [6]. To date [7] there are ten commercially available drugs 
that target the HIV-Pr and nine of these collectively represent a success story in rational molecular 
design of peptidomimetics. Among these we focused our attention on saquinavir and nelfinavir, attracted 
by the great activity of the first and from the presence of a sulfur atom in the core of the second (Figure 1). 

Figure 1. Structures of saquinavir and nelfinavir. 

 

Our idea was the possibility of change in the core of this class of peptidomimetics by replacing of 
the phenyl ring with a heterocyclic ring, namely thiophene or benzothiophene: In fact it is well known that 
a thienyl ring mimics a phenyl group of phenylalanine in peptidomimetics [8] and in many drugs [9–11]. 
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On the basis of our experience in the chemistry of thiophene and benzothiophene [12,13] as well as 
in stereoselective synthesis [14,15], we began to work toward the synthesis of new heterocycle 
containing structures as potential inhibitors of HIV-Pr [16]. From this research, after different 
synthetic approaches, we were able to prepare the reported structures (Figure 2): It was remarkable 
that such compounds were active either against the wild type of protease or the mutated one. 

Figure 2. Structures of thienyl and benzothienyl derivatives of saquinavir (1) and nelfinavir (2). 

 

The goal in this synthetic approach was the construction of the core starting from two important and 
actual reactions: A Suzuki coupling for the introduction of the heterocyclic ring and the Sharpless 
asymmetric dihydroxylation (AD) for the introduction of the correct chirality in the core of the 
potential inhibitor [17,18] (Scheme 1). 

Scheme 1. Suzuki coupling and AD reaction. 

 
Reagents and conditions: (a) ethyl 4-bromocrotonate, Pd(PPh3)4, Na2CO3, dioxane, reflux, 18–20 h. 

Furthermore, the need to overcome viral resistance and to have a simpler synthetic sequence 
prompted us to investigate new non-peptidic compounds, with simplified structure, bearing the central 
isopropanolamine unit found in the commercially available peptidic drugs [19–21]. In our continuing 
interest on new inhibitors containing heteroarylic groups, the attention focused on some reported 
structures [22] in which the indole ring, mimicking the aminoindane group of Indinavir, seems to be 
important for the activity. So we produced another series of inhibitors [23] containing an indole ring in 
P2 position: Unfortunately the activity of these compounds remained in the range of micromolar scale, 
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even if SAR studies showed the importance of the indolic NH presence in that position for a good 
interaction with active site of the protease (Figure 3). 

Figure 3. Structure of indolic non-peptidic HIV protease inhibitor. 

 

3. Pseudopeptides 

Another approach to construct peptidomimetics involves the design of conformationally restricted 
analogs that mimic and/or stabilise characteristics of the receptor-bound conformation of the 
endogenous peptide, such as β-turns and other. 

The ability to access to such structures modified by incorporation of heterocycles allows the study 
of the associated biological processes, with an opportunity for further drug design and development. 
1,2,3-Triazoles, for example, offer an appealing structural motif in peptidomimetic research because 
their structural and electronic characteristics are similar to those of a peptide bond [24]. It is also 
known that secondary structures (β-turns, α-helices, β-strands) are sites of recognition by the enzymes, 
such as proteases [25]. 

This idea can be extended to scaffold peptidomimetics in which important pharmacophoric residues 
are held in the appropriate orientation by a rigid template. So in this field, much effort has been 
devoted to the design and synthesis of conformationally constrained compounds that mimic, or induce, 
specific secondary structural features of peptides and proteins. 

Many scaffolds possessing the functionalities of peptides (i.e., amine and carboxyl groups) together 
with well defined spatial properties, thus reproducing the desired orientation of a growing peptide 
chain, have hence been created [26]. 

The β-turn is a common feature in biologically active peptides and is defined as any tetrapeptide 
sequence, with a 10-membered intramolecularly H-bonded ring, in which the Cα(i) to Cα(i+3) distance 
varies from 4 to 7 Angstrom (Figure 4). 

There are at least 14 types of β-turn structures, described in literature [26]. These conformers used 
as models have been developed for linear and short peptides. In natural proteins, turn fragments can 
adopt an even larger variety of conformations, due to stabilization provided by the remaining portion 
of molecule. Although there has been much discussion in the literature on what constitutes a β-turn 
mimic and how different types of mimics have to be characterized, these can be roughly classified into 
three broad classes, illustrated in Figure 4. 

Aiming to construct a β-turn mimic with a heterocyclic scaffold we hypothesized an opportune 
synthetic approach, in particular directed to the preparation of potential active structure for the 
treatment of Alzheimer’s disease, either as β-secretase or as β-amyloid aggregation inhibitor. 



Pharmaceuticals 2012, 5                            
 

 

301

Figure 4. β-turn and induced β-turn. (a) internal β-turn mimics; (b) β-hairpin mimics (in 
which a rigid scaffold induces reversal of the peptide chain); (c) external β-turn inducers. 

 

β-Secretase (memapsin 2 or BACE1), discovered in 1999 [27,28], is one of the two proteases that 
cleave the β-amyloid precursor protein (APP) to produce a 40–42 residue amyloid β-peptide (Aβ) in the 
human brain. Accumulation of Aβ results in the formation of amyloid plaques and neurofibrillary 
tangles. The neurotoxicity of Aβ  is ultimately responsible for brain inflammation, neuronal death, 
dementia and Alzheimer’s disease [29]. Consequently therapeutic inhibition of memapsin 2 has emerged 
as one of the most active areas of today’s drug development for the intervention of Alzheimer’s disease. 

It is known that β-secretase is an aspartic protease, for which the inhibition mechanism and the 
design of transition state analogues through the successful development of HIV-1 protease inhibitor 
drugs are well previously described [30]. So, as first approach to the design and synthesis of potential 
inhibitors, Ghosh and co-authors reported [31] a series of Leu-Ala isosteres which led to the first 
potent transition-state inhibitor (CTS-21166) that is actually in advanced clinical trials. This compound  
(an optimization of the structure is reported in Figure 5a) represents the first small peptidomimetic 
inhibitor modifying therapy for Alzheimer’s disease. 

Figure 5. Two potential β-secretase inhibitors. (a) GRL-8234; (b) heteroarylaminoimidazole. 

 

The newest generation BACE1 inhibitors are low molecular weight molecules with excellent cell 
permeability, have little or no peptidic character, and possess enhanced pharmacokinetic profiles [32–35]. 
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Actually many lines of research are concerned with the synthesis and study of small-molecule-containing 
heterocyclic rings as β-secretase inhibitors [36,37] (Figure 5b). 

4. Scaffold for Pseudopeptides: Design and Synthesis of Heteroaromatic Tricyclic Structures 

Our long interest in the preparation of heterocycles and their application in medicinal chemistry 
prompted us to design and synthesize new tricyclic compounds as potential scaffolds for pseudopeptides 
and/or as β-secretase inhibitors. Recently [38], a particular structure that mimics a biological turn has 
just been synthetized in our laboratory. The molecule is shown in Figure 6. 

Figure 6. 5-Amino-4-carbomethoxy-2-methylbenzothienopyridine. 

 

As can be seen such a benzothienopyridine bears two interesting groups in the 4- and 5-positions of 
the tricyclic structure, a carbomethoxy and an amine function, respectively, that immediately suggest 
its possible use as a pseudopeptide scaffold as well as a β-secretase inhibitor. For its preparation an 
innovative synthetic route was developed (Scheme 2). 

Scheme 2. Synthetic route affording 5-amino-4-carbomethoxy-2-methylbenzothienopyridine. 
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The depicted synthetic approach is based on four principal reactions: 

(1) An azido-transfer reaction that furnishes the azido precursors [39]; 
(2) A Staudinger reaction that transforms the azido group into an iminophosphorane, a powerful 

tool for the construction of nitrogen containing heterocycles [40–44]; 
(3) A tandem aza-Wittig/electrocyclization of iminophosphoranes with suitable α,β-unsaturated 

carbonyl compounds; 
(4) Finally, a Smiles rearrangement that affords the benzothienopyridine [45–48]. 

It is well known that benzothienopyridines are of pharmacological interest due to their isosterism 
with indolopyridines [49,50] and to their reported activity as antibacterial [51], antiallergic [52] and 
anxiolytic agents [53], so the development of a facile preparation seems to be of timely interest. 

Our experience in heterocyclic chemistry suggested us also to extend the use of Staudinger reaction 
(and subsequent aza-Wittig/electrocyclization reaction) either to indole, benzofuran or to substituted 
benzothienyl ring. As an example of such a methodology for the preparation of a benzofuropyridine [54] 
and α-carboline [55] we reported the reaction scheme realized for 2-azido-N-methylindole (Scheme 3). 

Scheme 3. Synthesis of α-carboline. 

 

This efficient strategy was then applied on 4- and 5-substituted benzothiophenes; preliminary 
results are shown in the next Schemes 4 and 5, and Tables 1 and 2, [56,57]. 

Table 1. Synthesis of 5-amino (or hydroxy)-4-carbomethoxy-2-methylbenzothienopyridines. 

Entry Azide (%yield) 
Phosphorane 
(%yield) 

Benzothienopyridine (%yield) 

1 20a (77%) 21a (84%) 23a (91%) 
2 20b (80%) 21b (40%) 23b (14%) 
3 20c (30%) 21c (no product) 23c (no product) 
4 20a (77%) 22a (33%) 24a (40%) 
5 20b (80%) 22b (20%) 24b (no product) 
6 20c (30%) 22c (no product) 24c (no product) 
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Table 2. Synthesis of 4-carbomethoxy-6-hydroxy-(or amine)-2-methylbenzothienopyridines. 

Entry Azide (%yield) 
Phosphorane 
(%yield) 

Benzothienopyridine (%yield) 

1 26a (55%) 27a (58%) 29a (35%) 
2 26b (28%) 27b (79%) 29b (13%) 
3 26c (62%) 27c (49%) 29c (no product) 
4 26a (55%) 28a (74%) 30a (52%) 
5 26b (28%) 28b (81%) 30b (58%) 
6 26c (62%) 28c (no product) 30c (no product) 

Scheme 4. Synthesis of 5-amino (or hydroxy)-4-carbomethoxy-2-methylbenzothienopyridines. 

 

Scheme 5. Synthesis of 4-carbomethoxy-6-hydroxy-(or amine)-2-methylbenzothienopyridines. 

 

As can be seen, the presence of a t-butyldimethylsilylether functionality in the 4-position of the 
benzothiophene plays an important different effect: In fact the azido transfer reaction was favoured, 
while the Staudinger reaction was unfavoured, in particular when triphenylphosphine was used. 
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Probably, such an effect was due to the hindrance of the substituent either on phosphorous or on 
oxygen. In presence of a methoxy group at the 4-position of benzothiophene the effect on the azido 
formation was the same (we hypothesized a predominant electronic effect), but it had the opposite 
effect on iminophosporane synthesis. 

The NH-Boc substituent merits particular: In this case the presence of the hydrogen on the  
N-function represents a drawback during lithiation, despite the hindrance of the t-butyl group; hence 
the chemical yields were unsatisfactory, even with excess of butyl lithium. 

A different result was obtained when the same synthetic route was used on 5-substituted 
benzothiophene, precursor of 4-carbomethoxy-6-hydroxy-(or amine)-2-methylbenzothienopyridine 
(Scheme 5). As can be observed it seems that electronic effects were prevalent for all considered 
substrates, both in the azido transfer and in the Staudinger reaction leading to iminophosphoranes, but 
the final cyclization is still not an optimized procedure. Further studies on the synthesis of the 
described tricyclic structures and their potential biological activity on β-secretase are in progress. 

5. Experimental 

5.1. General 

Column chromatography was carried out on Merck silica gel (0.063–0.200 mm particle size) by 
progressive elution with petroleum ether/ethyl acetate or petroleum ether/diethyl ether mixtures.  
1H- and 13C-NMR spectra were normally recorded for CDCl3 solutions on a Bruker AM 300 MHz or 
on Varian INOVA 400 and 500 MHz instruments. IR spectra were registered on a JASCO FT/IR 460 
Plus. Mass spectra were obtained with a Hewlett-Packard 5971 mass-selective detector on a Hewlett-
Packard GC/MS 6890-5973 system. Dichloromethane, chloroform and carbon tetrachloride were dried 
with anhydrous CaCl2; diethyl ether and 1,4-dioxane were dried using sodium/benzophenone. Dry 
dimethylformamide was commercially available. 4-Hydroxybenzo[b]thiophene was prepared according 
to the literature [38]. 2-Bromo-2-methylpropanamide was synthesized as recently reported [38] and 
used in Smiles rearrangement as reported in the same paper to obtain the suitable 2-aryloxy-2-
methylpropanamide. 5-Aminobenzo[b]thiophene was commercially available (Maybridge Trevillet, 
Tintagel, Cornwall, UK). 

5.2. Synthesis of 4,5-Disubstituted Benzothieno[2,3-b]pyridine Precursors 

4-Methoxybenzo[b]thiophene (19a). Compound 19a was synthesized from 4-hydroxybenzo[b]-
thiophene according to a known procedure [38]. Thick red oil (yield 91%). Found: C, 65.85; H, 4.88; 
S, 19.56%. C9H8OS requires C, 65.83; H, 4.91; S, 19.52%; 1H-NMR (300 MHz, CDCl3) (ppm):  
δH 7.65–7.5 (m, 2H), 7.45–7.38 (m, 2H), 6.84–6.80 (m, 1H), 3.99 (s, 3H); 13C-NMR (75 MHz, CDCl3) 
(ppm): δC 155.0, 141.2, 130.5, 125.3, 124.6, 120.5, 115.0, 104.1, 55.9; MS m/z: 164 (M+), 149 (100). 

4-(Tert-butyldimethylsilyloxy)benzo[b]thiophene (19b). Compound 19b was synthesized from  
4-hydroxybenzothiophene according to a known procedure [38]. Thick oil (yield 75%). Found:  
C, 63.59; H, 7.59; S, 12.15%. C14H20OSSi requires: C, 63.58; H, 7.62; S, 12.12%; 1H-NMR (300 MHz, 
CDCl3) (ppm): δH 7.72–7.67 (m, 2H), 7.53–7.37 (m, 2H), 6.99–6.93 (m, 1H), 1.35 (s, 9H), 0.50 (s, 6H); 
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13C-NMR (75 MHz, CDCl3) (ppm): δC 150.7, 141.5, 133.5, 125.3, 124.3, 121.0, 115.7, 113.1, 25.7, 18.5, 
20.4; MS m/z: 264 (M+), 207 (100). 

Tert-butyl benzo[b]thiophen-4-yl carbamate (19c). 4-Hydroxybenzo[b]thiophene (135 mg, 0.9 mmol) 
was converted to N-(benzo[b]thiophen-4-yl)-2-hydroxy-2-methylpropanamide (190 mg, 90%) via a 
Smiles rearrangement according to a known procedure [38]. The N-(benzo[b]thiophen-4-yl)-2-
hydroxy-2-methylpropanamide was dissolved in HCl 6M (10 mL) and the resulting mixture was 
stirred at 100 °C for 4 h. After cooling to 25 °C the mixture was slowly treated with a solution of 
NaOH 2M until neutrality, then extracted twice with diethyl ether and dried over sodium sulphate. 
Removal of the solvent gave the 4-aminebenzo[b]thiophene as a black thick oil (107 mg, 90%). 

To a solution of 4-aminobenzo[b]thiophene (107 mg, 0.72 mmol) in dry dichloromethane (4 mL),  
di-tert-butyl dicarbonate (BOC) (205 mg, 0.94 mmol) was added and the resulting mixture was stirred 
in an inert atmosphere for 15 h at room temperature [56]. After solvent removal, the crude was 
dissolved into ethyl acetate and the organic phase was washed several times with water, once with 
brine and then dried over sodium sulphate and finally concentrated under vacuum. The crude product 
was chromatographed on silica gel, using petroleum ether/ethyl acetate 7:3 as eluent, to give 19c as a 
thick light pink oil (108 mg, 60%). 1H-NMR (400 MHz, CDCl3) (ppm):δH 7.82–7.80 (m, 1H),  
7.60–7.58 (m, 1H), 7.43–7.41 (m, 1H), 7.33–7.30 (m, 1H), 6.72 (s, 1H), 1.54 (s, 9H); 13C-NMR (125 MHz, 
CDCl3) (ppm): δC 152.9, 140.5, 132.7, 131.1, 125.9, 124.9, 119.1, 117.8, 115.1, 80.8, 28.3; MS: m/z 
249 (M+); 193 (100). 

5.3. Synthesis of Azides 20a,b,c 

2-Azido-4-methoxy-1-benzo[b]thiophene (20a). Compound 20a was synthesized from 19a according 
to a known procedure [38]. Thick yellow oil (yield 77%). Found: C, 52.65; H, 3.47; N, 20.45; S, 
15.63%. C9H7N3OS requires: C, 52.67; H, 3.44; N, 20.47; S, 15.62%; IR νmax/cm−1 2113 (N3);  
1H-NMR (300 MHz, CDCl3) (ppm): δH 7.35–7.20 (m, 2H); 7.05 (s, 1H); 6.80–6.75 (m, 1H); 3.95 (s, 3H); 
13C-NMR (75 MHz, CDCl3) (ppm): δC 152.7, 139.5, 138.2, 125.3, 124.6, 117.1, 115.7, 110.3, 50.5. 

[(2-Azidobenzo[b]thiophen-4-yl)oxy](tert-butyl)dimethylsilane (20b). Compound 20b was synthesized 
from 19b according to a known procedure [38]. Thick yellow oil (yield 80%). Found: C, 55.07;  
H, 6.21; N, 13.78; S, 10.44%. C14H19N3OSSi requires C, 55.05; H, 6.27; N, 13.76; S, 10.50%; IR 
νmax/cm−1 2110 (N3); 1H-NMR (300 MHz, CDCl3) (ppm): δH 7.50–7.40 (m, 1H), 7.19–7.11 (m, 1H), 
6.89 (s, 1H), 6.72–6.68 (m, 1H), 1.07 (s, 9H), 0.27 (s, 6H); 13C-NMR (75 MHz, CDCl3) (ppm):  
δC 142.7, 125.3, 124.5, 121.0, 115.6, 115.0, 113.6, 108.3, 25.8, 15.9. 

Tert-butyl (2-azidobenzo[b]thiophen-4-yl)carbamate 20c. Compound 19c (108 mg, 0,43 mmol) in dry 
diethyl ether (7 mL) was treated, under an inert atmosphere, with 1.6 M n-butyl lithium in hexane 
(0.65 mmol) and refluxed for 1 h. Then the reaction mixture was cooled to −70 °C and, slowly, 
tosylazide (119 mg, 0.60 mmol) in dry diethyl ether (3 mL) was added. After 5 h at this temperature 
the obtained triazene salt was filtered under vacuum, washed with dry diethyl ether and treated at 0 °C 
with an aqueous solution of sodium pyrophosphate decahydrate (316 mg, 0.7 mmol, in 5 mL of water). 
After 15 min of stirring at this temperature the suspension was filtered on a Buckner funnel and 
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extracted twice with diethyl ether and then with ethyl acetate. After solvent removal, the crude product 
was purified by chromatography on Florisil (eluent petroleum ether/ethyl acetate 8:2) giving the title 
compound (38 mg, 30%) as a thick light yellow oil. Compound 19c is unstable, so it was only 
characterized by IR and 1H-NMR spectroscopy. IR νmax/cm−1 2125 (N3); 1H-NMR (400 MHz, CDCl3) 
(ppm): δH 7.73 (s, 1H), 7.55–7.53 (m, 1H), 7.38–7.36 (m, 1H), 7.27–7.24 (m, 1H), 6.66 (s, 1H),  
1.49 (s, 9H). 

5.4. Synthesis of Imminophosphoranes 21a,b,c–22a,b,c 

[(4-Methoxy-1-benzothiophen-2-yl)imino]-(methyl)diphenylphosphorane 21a. This compound was 
prepared from the azide 20a and methyldiphenylphosphine (1eq) according to a known procedure [38]. 
Chromatography with petroleum ether/ethyl acetate 7:3 as eluent gave the title compound (yield 84%) 
as a red oil. Found: C, 70.04; H, 5.36; N, 3.69; S, 8.50%. C22H20NOPS requires C, 70.01; H, 5.34;  
N, 3.71; S, 8.49%; 1H-NMR (300 MHz, CDCl3) (ppm): δH 7.62–7.50 (m, 5H), 7.43–7.32 (m, 5H), 
6.98–6.90 (m, 1H), 6.87–6.80 (m, 1H), 6.53–6.48 (m, 1H), 6.08 (s, 1H), 3.70 (s, 3H), 2.25–2.20 (d, 3H, 
JPH = 12.8 Hz); 13C-NMR (75 MHz, CDCl3) (ppm): δC 157.0, 152.3, 140.2, 135.3, 133.0, 132.5, 132.0, 
131.7, 131.4, 130.0 129.5, 128.2, 125.8, 121.0, 114.3, 101.5, 55.5, 15.5. 

4-(Tert-butyldimethylsilyl)oxy)-N-(methyldiphenylphosphoranyliene)benzo[b]thiophen-2-amine 21b. 
This compound was prepared from the azide 20b and methyldiphenylphosphine (1eq) according to a 
known procedure [38]. Chromatography with petroleum ether/ethyl acetate 7:3 as eluent gave the title 
compound (88 mg, 40%) as a brown powder, mp 90–92 °C (diethyl ether). (Found: C, 67.66; H, 6.79; 
N, 2.99; S, 6.73%. C27H32NOPSSi requires C, 67.89; H, 6.75; N, 2.93; S, 6.71%); 1H-NMR (300 MHz, 
CDCl3) (ppm): δH 7.83–7.77 (m, 5H), 7.58–7.37 (m, 5H), 7.11–7.06 (m, 1H), 6.87–6.77 (m, 1H),  
6.52–6.49 (m, 1H), 6.02 (s, 1H), 2.25–2.20 (d, 3H, JPH = 12.8 Hz); 0.95 (s, 9H), 0.1 (s, 6H); 13C-NMR 
(75 MHz, CDCl3) (ppm): δC 168.3, 151.7, 147.5, 135.8, 134.7, 134.0, 132.2, 131.2, 130.8, 129.5, 
129.0, 128.8, 120.9, 116.1, 113.2, 101.9, 25.7, 18.3, 14.5, 13.8. 

Tert-butyl 2-(methyldiphenylphosphoranylidene)aminobenzo[b]thiophen-4-yl)carbamate 21c. Compound 
20c (62 mg, 0.21 mmol) in dry diethyl ether (3 mL) was added dropwise to a solution of 
methyldiphenylphosphine (41 mg, 0.20 mmol) in dry dichloromethane (3 mL) at 0 °C, in nitrogen 
atmosphere. After 2 h, the reaction mixture was allowed to room temperature, finally it was 
concentrated under vacuum. No desired product was recovered but only degradation products of the 
starting materials. 

[(4-Methoxy-1-benzothiophen-2-yl)imino]-triphenylphosphorane 22a. This compound was prepared 
from the azide 20a (100 mg, 0.49 mmol) and triphenylphosphine (128 mg, 0.49 mmol) following a 
reported procedure [38]. Chromatography on silica gel with petroleum ether/ethyl acetate 7:3 as eluent 
gave the title compound (72 mg, 33%). 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.74–7.70 (m, 5H), 
7.52–7.50 (m, 5H), 7.46–7.42 (m, 5H), 7.00–6.98 (d, 1H, JPH = 10 Hz), 6.88–6.85 (m, 1H), 6.51 (d, 1H, 
JPH = 5 Hz), 6.24 (s, 1H), 3.73 (s, 3H); 13C-NMR (125 MHz, CDCl3) (ppm): δC 161.2, 140.9, 132.6, 
131.2, 128.7, 125.4, 123.3 121.4, 115.2, 108.6, 98.9, 56.2. 
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[(4-[tert-Butyl(dimethyl)silyl]oxy-1-benzothiophen-2-yl)imino]-triphenylphosphorane 22b. This 
compound was prepared from the azide 20b (66 mg, 0.22 mmol) and triphenylphosphine (59 mg,  
0.22 mmol) following a reported procedure [38]. Chromatography on silica gel with petroleum 
ether/ethyl acetate 7:3 as eluent gave the title compound (24 mg, 20%) as a brown/green oil. 1H-NMR 
(500 MHz, CDCl3) (ppm): δH 7.74–7.70 (m, 5H), 7.50–7.49 (m, 5H), 7.42–7.41 (m, 5H), 7.01 (d, 1H, 
JPH = 11 Hz), 6.80–6.76 (m, 1H), 6.46 (d, 1H, JPH = 7 Hz), 6.03 (s, 1H), 0.95 (s, 9H), 0.1 (s, 6H);  
13C-NMR (125 MHz, CDCl3) (ppm): δC 185.8, 166.9, 147.2, 135.5, 134.5, 132.9, 132.8, 132.7, 128.8, 
128.7, 120.8, 114.7, 112.9, 80.3, 25.8, 23.8, 18.1, 1.0, −4.4. 

Tert-butyl (2((triphenylphosphoranylidene)amino)benzo[b]thiophen-4-yl)carbamate 22c. Compound 
20c (105 mg, 0.4 mmol) in dry dichloromethane (5 mL) was added dropwise to a solution of 
triphenylphosphine (117 mg, 0.44 mmol) in dry dichloromethane (5 mL) at 0 °C, in nitrogen 
atmosphere. After 2 h, the reaction mixture was allowed to reach room temperature and stirred over 
night; finally it was concentrated under vacuum. No desired product was recovered but only degradation 
products of the starting materials. 

5.5. General Procedure for Synthesis of (1)Benzothieno[2,3-b]pyridines 23a,b, 24a 

A solution of the appropriate iminophosphorane 22a,b (0.12 mmol) in dry chloroform (3 mL) was 
treated with methyl trans-4-oxo-2-pentenoate (0.12 mmol) and then stirred in an inert atmosphere for 
34 h at 45 °C. After removal of the solvent, the crude product was chromatographed on silica gel, 
using petroleum ether/ethyl acetate 7:3 as eluent. For yields see Table 1. 

Methyl 5-methoxy-2-methyl(1)benzothieno[2,3-b]pyridine-4-carboxylate 23a–24a. This compound 
was obtained as a thick oil. (Found: C, 62.72; H, 4.58; N, 4.85; S, 11.13%. C15H13NO3S requires C, 
62.70; H, 4.56; N, 4.87; S, 11.16%); 1H-NMR (300 MHz, CDCl3) (ppm): δH 7.75–7.70 (m, 1H),  
7.57–7.50 (m, 1H), 7.47–7.40 (m, 1H), 6.95–6.90 (m, 1H), 3.98 (s, 6H), 2.72 (s, 3H); 13C-NMR  
(75 MHz, CDCl3) (ppm): δC 169.4, 167.8, 156.8, 139.4, 138.2, 132.5, 131.2, 129.1, 128.8, 118.2, 
115.6, 106.6, 55.9, 30.3; MS: m/z = 287 (M+). 

Methyl 5-[tert-butyl(dimethyl)silyl]oxy-2-methyl(1)benzothieno[2,3-b]pyridine-4-carboxylate 23b. 
This compound was obtained as a thick oil. (Found: C, 62.00; H, 6.53; N, 3.58; S, 8.24%. 
C20H25NO3SSi requires: C, 61.98; H, 6.50; N, 3.61; S, 8.27%); 1H-NMR (300 MHz, CDCl3) (ppm):  
δH 7.50–7.25 (m, 3H), 7.00–6.95 (m, 1H), 3.90 (s, 3H), 2.72 (s, 3H), 0.81 (s, 9H), 0.15 (s, 6H);  
13C-NMR (75 MHz, CDCl3) (ppm): δC 169.5, 154.2, 151.9, 150.5, 149.5, 141.5, 131.7, 128.4, 117.7, 
117.0, 116.2, 53.9, 29.8, 26.2, 25.7, 19.8, 18.5, −0.4; MS: m/z: 387 (M+). 

5.6. Synthesis of 4,6-Disubstituted Benzothieno[2,3-b]pyridine Precursors 

5-Methoxybenzo[b]thiophene 25a. Compound 25a was prepared from commercial 4-methoxybenzenethiol 
(2 g, 14 mmol) according to a known procedure [57]. Chromatography on silica gel, using petroleum 
ether/ethyl acetate 9:1 as eluent, furnished the title compound 25a as a thick fragrant yellow oil (218 mg, 
31%). 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.67 (d, 1H, JPH = 10 Hz), 7.37 (d, 1H, JPH = 5 Hz), 
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7.22–7.20 (m, 2H), 6.94–6.93 (d, 1H, JPH = 5 Hz), 3.81 (s, 3H); 13C-NMR (125 MHz, CDCl3) (ppm):  
δC 159.3, 141.0, 132.9, 127.9, 123.8, 123.6, 121.5, 106.7, 55.9; MS: m/z = 164 (M+). 

5-Hydroxybenzo[b]thiophene. At 0 °C, to the substrate 25a dissolved in chlorobenzene was added 
dropwise a solution of BBr3⋅S(CH3)2 1 M in CH2Cl2. After about 30 min at 0 °C the solution is brought 
to reflux for 22 h. The reaction was quenched by adding about 50 mL of water and extracting the 
organic product three times with CH2Cl2 (25 mL). The combined organic phases were washed first 
with water, then with brine. The reaction product is purified by chromatography on silica gel 
(petroleum ether/diethyl ether 8:2 as eluent) to give 395 mg (81%) of 5-hydroxybenzo[b]thiophene as 
a light pink solid. Mp 89–92 °C. 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.73 (d, 1H, JPH = 10 Hz ),  
7.46 (d, 1H, JPH = 5 Hz), 7.27 (d, 1H, JPH = 5 Hz), 7.22 (d, 1H, JPH = 5 Hz); 6.94 (d, 1H, JPH = 5 Hz); 
5.04 (s;1H). 13C-NMR (125 MHz,CDCl3) (ppm): δC 153.4, 141.1, 133.6, 128.1, 123.5, 116.2, 114.6, 
108.8; MS: m/z 150 (M+). 

(Benzo[b]thiophen-5-yloxy)(tert-butyl)dimethylsilane 25b. 5-Hydroxybenzo[b]thiophene (320 mg, 
2.13 mmol) was dissolved in 8 mL of dry dichloromethane and to this solution were added  
tert-butyldimethylsilylchloride (3.48 mmol), imidazole (6.68 mmol) and a catalytic amount of  
4-dimethylaminopyridine. The resulting mixture was stirred in inert atmosphere for 3 h at room 
temperature, then was filtered and washed with saturated ammonium chloride solution and twice with 
water. After solvent removal the crude product was chromatographed on silica gel, using petroleum 
ether as eluent, to give 25b as a thick light brown oil (434 mg, 83%). 1H-NMR (500 MHz, CDCl3) 
(ppm): δH 7.47 (d, 1H, JPH = 15 Hz), 7.19 (d, 1H, JPH = 15 Hz), 7.04 (d, 1H, JPH = 15 Hz), 7.02–6.99 
(m, 1H), 6.70–6.68 (m, 1H), 0.79 (s, 9H), 0.30–0.00 (m, 6H); 13C-NMR (125 MHz, CDCl3) (ppm):  
δC 153.0, 140.9, 132.8, 127.3, 123.4, 122.9, 118.7, 113.5, 29.7, 25.7. MS: m/z 264 (M+); 207 (100). 

Tert-butyl benzo[b]thiophen-5-yl-carbamate 25c. To a solution of benzo[b]thiophen-5-amine (78 mg, 
0.52 mmol) in dry dichloromethane (2 mL) was added di-tert-butyl dicarbonate (BOC) (148 mg,  
0.68 mmol). The resulting mixture was stirred in an inert atmosphere for 15 h at room temperature. 
Then, after solvent removal, the crude was dissolved in ethyl acetate and the resulting organic phase 
was washed several times with water, once with brine and then dried over sodium sulphate. After 
solvent removal, the crude product was chromatographed on silica gel, using petroleum ether/ethyl 
acetate 7:3 as eluent, to give 25c as a thick colourless oil (103 mg, 80%). 1H-NMR (400 MHz, CDCl3) 
(ppm): δH 8.01 (s, 1H), 7.76 (d, 1H, JPH = 8 Hz), 7.43 (d, 1H, JPH = 4 Hz); 7.26 (d, 1H, JPH = 4 Hz);  
7.22 (d, 1H, JPH = 8 Hz), 6.64 (s, 1H), 1.56 (s, 9H); 13C-NMR (125 MHz, CDCl3) (ppm): δC 153.0, 
140.3, 135.2, 134.4, 127.3, 123.8, 122.6, 116.8, 113.0, 80.5, 29.3. MS: m/z 249 (M+); 193 (100). 

5.7. Synthesis of Azides 26a, 26b, 26c 

2-Azido-5-methoxy-1-benzothiophene 26a. Compound 25a (300 mg, 1.8 mmol) in dry diethyl ether (4 
mL) was treated, in an inert atmosphere, with 1.6M n-butyllithium in hexane (2.7 mmol) and refluxed 
for 1 h. Then the reaction mixture was cooled to −70 °C and tosyl azide (380 mg, 1.9 mmol) in dry 
diethyl ether (4 mL) was added dropwise. After 4 h at this temperature, the obtained triazene salt was 
filtered under vacuum, washed with dry diethyl ether and then treated at 0 °C with an aqueous solution 
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of sodium pyrophosphate decahydrate (868 mg, 1.9 mmol, in 9 mL of water). After 15 min of stirring 
at this temperature the suspension was filtered on a Buckner filter and extracted twice with diethyl 
ether and then with ethyl acetate until the organic phase appeared colourless. Then, after solvent 
removal, the crude product was purified by chromatography on Florisil (eluent petroleum ether/ethyl 
acetate 8:2) giving the title compound (206 mg, 55%) as a thick orange oil. Azide 26a is unstable; it 
was characterized by IR and 1H-NMR spectroscopy. ΙR νmax/cm−1 2117 (N3); 1H-NMR (400 MHz, 
CDCl3) (ppm): δH 7.35–7.20 (m, 1H), 7.07 (s, 1H), 6.95 (d, 1H, JPH = 24 Hz), 6.75 (s, 1H), 3.84 (s, 3H). 

((2-Azidobenzo[b]thiophen-5-yl)oxy)(tert-butyl)dimethylsilane 26b. Compound 25b (434 mg, 1.64 mmol) 
in dry diethyl ether (9 mL) was treated, in an inert atmosphere, with 1.6 M n-butyllithium in hexane 
(1.64 mmol) and refluxed for 1 h. Then the reaction mixture was cooled to −78 °C and, slowly, 
tosylazide (378 mg, 1.92 mmol) in dry diethyl ether (9 mL) was added. After 5 h at this temperature 
the obtained triazene salt was filtered on a Buckner filter, washed with dry diethyl ether and then treated 
at 0 °C with an aqueous solution of sodium pyrophosphate decahydrate (0.9 g, 2.02 mmol) in water  
(9 mL). After 15 min of stirring at this temperature the suspension was filtered on a Buckner filter and 
extracted twice with diethyl ether and then with ethyl acetate until the organic phase appeared 
colourless. Then, after solvent removal, the crude product was purified by chromatography on Florisil 
(eluent petroleum ether) giving the title compound (141 mg, 28%) as a thick yellow oil. Azide 26b is 
unstable; it was characterized by IR and 1H-NMR spectroscopy. IR νmax/ cm−1 2116 (N3). 1H-NMR 
(500 MHz, CDCl3) (ppm): δH 7.72–7.70 (d, 1H, JPH = 10 Hz), 7.43 (d, 1H, JPH = 10 Hz ), 7.27 (s, 1H), 
6.73 (s, 1H), 1.03 (s, 9H), 0.23 (m, 6H). 

Tert-butyl (2-azidobenzo[b]thiophen-5-yl)carbamate 26c. Compound 24c (141 mg, 0.56 mmol) in dry 
diethyl ether (3 mL) was treated, under a nitrogen atmosphere, with 1.6 M n-butyllithium in hexane 
(500 μL, 0.70 mmol) and refluxed for 1 h. Then the reaction mixture was cooled to −78 °C and 
tosylazide (135 mg, 0.68 mmol) in dry diethyl ether (3 mL) was added dropwise. After 5 h at this 
temperature, the reaction mixture was treated at 0 °C with an aqueous solution of sodium 
pyrophosphate decahydrate (412 mg; 0.92 mmol, in 3 mL of water). After 15 min of stirring at this 
temperature the suspension was extracted several times with diethyl ether and then with ethyl acetate 
until the organic phase appeared colourless and dried over sodium sulphate. Then, after solvent 
removal, the crude product was purified by chromatography on Florisil (eluant petroleum ether/diethyl 
ether 8:2) giving the title compound (150 mg, 62%) as a thick yellow oil. IR νmax/cm−1 2126 (N3).  
1H-NMR (400 MHz, CDCl3) (ppm): δH 8.01 (s, 1H), 7.86 (d, 1H, JPH = 8 Hz), 7.41 (s, 1H), 7.21 (d, 1H, 
JPH = 4 Hz), 6.55 (s, 1H), 1.55 (s, 9H). 13C-NMR (100 MHz, CDCl3) (ppm): δC 152.5, 140.3, 135.2, 
134.2, 123.8, 122.7, 116.8, 113.0, 98.8, 80.6, 28.4. 

5.8. Synthesis of Imminophosphoranes 27a,b,c-28a,b 

[(5-Methoxy-1-benzothiophen-2-yl)imino]-(methyl)diphenylphosphorane 27a. Compound 26a (46 mg, 
0.22 mmol) in dry diethyl ether (2 mL) was added dropwise to a solution of methyldiphenylphosphine 
(44 mg, 0.22 mmol) in dry diethyl ether (2 mL) at 0 °C, in nitrogen atmosphere. After 2 h, the reaction 
mixture was allowed to room temperature for another hour and then was concentrated under vacuum. 
The residual material was purified by chromatography on silica gel (eluent petroleum ether/ethyl 
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acetate 7:3). The title compound (83 mg, 58%) was obtained as a brown solid. Mp 135–136°C. 1H-NMR 
(500 MHz, CDCl3) (ppm): δH 7.71–7.66 (m, 5H), 7.47–7.45 (m, 5H), 7.41–7.40 (m, 1H), 7.18 (d, 1H, 
JPH = 15 Hz), 6.72 (s, 1H), 6.52 (d, 1H, JPH = 10 Hz), 5.88 (s, 1H), 3.70 (s, 3H), 2.08 (d, 3H, JPH = 15 Hz); 
13C-NMR (100 MHz, CDCl3) (ppm): δC 159.6, 157.5, 142.6, 132.5, 131.8, 131.7, 130.8, 129.8, 129.3, 
129.1 126.4, 122.1, 109.4, 105.3, 105.2, 105.1, 103.6, 55.7, 15.1. 

5-((Tert-butyldimethylsilyl)oxy)-N-(methyldiphenylphosphoranylidene)benzo[b]thiophen-2-amine 27b. 
Compound 26b (62 mg, 0.21 mmol) in dry dichloromethane (2 mL) was added dropwise to a solution 
of methyldiphenylphosphine (42 mg, 0.21 mmol) in dry dichloromethane (2 mL) at 0 °C, in nitrogen 
atmosphere. After 2 h, the reaction mixture was taken to room temperature for another hour and then 
was concentrated under vacuum. The residual material was crystallized from diethyl ether and 
characterized. The title compound (79 mg, 79%) was obtained as a green thick oil. 1H NMR (500 
MHz, CDCl3) (ppm): δH 7.58–7.56 (m, 4H), 7.39–7.37 (m, 4H), 7.21–7.19 (m, 2H), 6.82 (d, 1H,  
JPH = 5 Hz), 6.73 (s, 1H), 6.44 (d, 1H, JPH = 10 Hz), 5.90 (s, 1H), 2.23 (d, 3H, JPH = 10 Hz), 0.83 (s, 9H), 
0.19 (d, 6H); 13C NMR (125 MHz, CDCl3) (ppm): δC 155.0, 140.8, 132.8, 131.3, 130.1, 128.70, 127.5, 
123.3, 114.6, 98.9, 30.2, 25.9, 25.3. 

Tert-butyl(2-((methyldiphenylphosphoranylidene)amino)benzo[b]thiophen-5-yl)carbamate 27c. 
Compound 26c (100 mg, 0.34 mmol) in dry dichloromethane (3 mL) was added dropwise to a solution 
of methyldiphenylphosphine (85 mg, 0.42 mmol) in dry dichloromethane (3 mL) at 0 °C, in nitrogen 
atmosphere. After 2 h, the reaction mixture was taken to room temperature for another hour and then 
was concentrated under vacuum. The residual material was crystallized from diethyl ether and 
characterized. The title compound (77 mg, 49%) was obtained as white needles. Mp 112–114 °C.  
1H-NMR (500 MHz, CDCl3) (ppm): δH 8.58 (s, 1H), 7.81 (d, 1H, JPH = 10 Hz), 7.73–7.62 (m, 5H)  
7.54–7.39 (m, 5H), 7.23 (s, 1H), 6.98–6.97 (d, 1H, JPH = 5 Hz), 5.18 (s, 1H), 2.38 (s, 3H), 2.27 (s, 9H). 
13C-NMR (125 MHz, CDCl3) (ppm): δC 152.5, 143.0, 140.0, 137.0, 135.5, 129.2, 128.2, 126.3, 123.3, 
123.0, 116.4, 115.9, 98.8, 79.5, 38.7, 28.4, 25.2. 

[(5-Methoxy-1-benzothiophen-2-yl)imino]-triphenylphosphorane 28a. Compound 26a (125 mg,  
0.61 mmol) in dry diethyl ether (5 mL) was added dropwise to a solution of triphenylphosphine  
(162 mg, 0.62 mmol) in dry diethyl ether (5 mL) at 0 °C, in nitrogen atmosphere. After 2 h, the 
reaction mixture was allowed to room temperature, then was concentrated under vacuum. The residual 
material (a very dark and thick oil) was purified by chromatography on silica gel (eluent petroleum 
ether/ethyl acetate 8:2). The title compound (200 mg, 74%) was obtained as a brown oil. 1H-NMR  
(500 MHz, CDCl3) (ppm): δH 7.81–7.77 (m, 5H), 7.61–7.57 (m, 5H), 7.52–7.47 (m, 5H), 7.3 (s, 1H),  
6.80 (d, 1H, JPH = 5 Hz), 6.63–6.60 (m, 1H), 6.07 (s, 1H), 3.78 (s, 3H); 13C-NMR (100 MHz, CDCl3) 
(ppm): δC 162.2, 160.5, 144.2, 136.3, 134.8, 132.7, 131.0, 129.7, 129.5, 129.2, 126.8, 122.7, 109.1, 
105.7, 105.4, 105.1, 103.1. 

5-((Tert-butyldimethylsilyl)oxy)-N-(triphenylphosphoranylidene)benzo[b]thiophen-2-amine 28b. 
Compound 26b (66 mg, 0.22 mmol) in dry dichloromethane (2 mL) was added dropwise to a solution 
of triphenylphosphine (60 mg, 0.23 mmol) in dry dichloromethane (2 mL) at 0 °C, in nitrogen 
atmosphere. After 2 h, the reaction mixture was taken to room temperature for another hour and then 
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was concentrated under vacuum. The crude was purified on silica gel using petroleum 
ether/dichloromethane 1:1 as eluent to give the title compound (97 mg, 81%) as a yellow solid. Mp 
163–165 °C. 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.82–7.78 (m, 5H), 7.60–7.50 (m, 10H), 7.23 (d, 1H, 
JPH = 10 Hz), 7.01 (s, 1H), 6.75 (s, 1H), 6.53 (d, 1H, JPH = 10 Hz), 0.99 (s, 9H), 0.19 (m, 6H);  
13C-NMR (125 MHz, CDCl3) (ppm): δC 152.6, 132.9, 132.9, 132.6, 130.8, 128.8, 125.3, 121.6, 114.5, 
112.5, 98.8, 29.7, 25.8. 

5.9. General Procedure for the Synthesis of (1)-Benzothieno[2,3-b]pyridines 29a,b, 30a,b 

A solution of the appropriate iminophosphorane 27a,b, 28a,b in dry chloroform was treated with 
methyl trans 4-oxo-2-pentenoate (1.1 eq) and then stirred in inert atmosphere at 61 °C. After removal 
of the solvent, the crude product was chromatographed on silica gel, using petroleum ether/ethyl 
acetate 9:1 as eluent. For yields see Table 2. 

Methyl 6-methoxy-2-methyl(1)benzothieno[2,3-b]pyridine-4-carboxylate 29a-30a. This compound was 
obtained as a thick oil. 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.95 (s, 1H), 7.75 (d, 1H, JPH = 12 Hz), 
7.47 (s, 1H), 7.09–7.07 (d, 1H, JPH = 12 Hz), 4.10 (s, 3H), 3.91 (s, 3H), 2.74 (s, 3H); 13C-NMR (125 MHz, 
CDCl3) (ppm): δC 168.2, 160.0, 160.3, 142.4, 136.6, 133.5, 132.2, 131.2, 129.5, 126.4, 120.9, 115.6, 
106.5, 55.8, 27.5; MS: m/z 287 (M+). 

Methyl 6-((Tert-butyldimethylsilyl)oxy)-2-methylbenzo[4,5]thieno[2,3-b]pyridine-4-carboxylate  
(29b-30b). Thick red oil. 1H-NMR (500 MHz, CDCl3) (ppm): δH 7.84 (s, 1H); 7.72–7.71 (m, 1H),  
7.43 (s, 1H), 7.07 (d, 1H, JPH = 5 Hz), 4.09 (s, 3H), 2.74 (s, 3H), 1.05 (s, 9H), 0.35 (s, 6H); 13C-NMR 
(125 MHz, CDCl3) (ppm): δC 165.9, 159.0, 151.1, 142.8, 133.6, 132.9, 127.5, 126.5, 124.9, 120.9, 
114.6, 112.6, 51.6, 30.2, 25.9, 23.5, −0.9; MS: m/z 387 (M+). 

6. Conclusion 

In summary, in this paper we have examined the general characteristics of peptidomimetics and 
pseudopeptides: Their use as drugs is under development. Particular attention has been devoted to the 
synthesis of tricyclic structures as potential scaffolds for new pseudopeptides. Moreover, the choice of 
4- and 5-substituted benzothiophenes is relevant, not only for their isosterism with biologically active 
compounds containing indole rings, but also for the electronic characteristics of sulfur in interaction 
with the active sites of biological molecules. 
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