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Abstract: The high rate of recidivism in cocaine addiction after prolonged periods of 
abstinence poses a significant problem for the effective treatment of this condition. Moreover, 
the neurobiological basis of this relapse phenomenon remains poorly understood. In this 
review, we will discuss the evidence currently available regarding the neurobiological changes 
during the extinction of cocaine self-administration. Specifically, we will focus on alterations 
in the dopaminergic, opioidergic, glutamatergic, cholinergic, serotoninergic and CRF systems 
described in self-administration experiments and extinction studies after chronic cocaine 
administration. We will also discuss the differences related to contingent versus non-
contingent cocaine administration, which highlights the importance of environmental cues on 
drug effects and extinction. The findings discussed in this review may aid the development of 
more effective therapeutic approaches to treat cocaine relapse. 
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1. Introduction  

While opiate and alcohol addiction may be partially treated with specific pharmacotherapies, no 
such approach is available for psychostimulant addictions [1]. Moreover, treatment of these disorders 
is further complicated by a high inherent risk of relapse. These features highlight the need for more 
effective prevention programs and a better understanding of the neurobiological mode of action of 
these substances with a view to developing drugs that aid patient recovery. Cocaine acts by blocking 
voltage-dependent sodium channels (which mediates its analgesic effects) [2] and inhibiting the 
reuptake of dopamine, serotonin and noradrenaline [3], acting presynaptically at the level of the 
vesicular monoamine transporter [4] and postsynaptically at M1 and M2 muscarinic receptors [5-7], 
serotoninergic receptors [8] and sigma opioid receptors [9]. Cocaine also exerts sympathomimetic 
effects, which appear to be mediated by its noradrenergic activity at the postganglionar terminals of the 
sympathetic autonomous nervous system. These effects include increased heart rate, mydriasis, 
vasoconstriction and salivation, gastric and pancreatic secretion. Increased noradrenergic activity in the 
locus coeruleus also mediates the increase in alertness and arterial pressure [2,10-12]. 

A growing body of evidence suggests that the dopaminergic effects of cocaine are responsible for 
its psychomotor, rewarding and euphoric effects [13-16]. There is some controversy with regard to this 
issue as the reinforcing potency of cocaine was reported to be maintained in the absence of the DAT 
but decreased in the absence of the NET and its motivational rewarding effect was observed in the 
absence of the SERT, but not when both DAT and SERT are lacking [17]. However, impaired cocaine 
self-administration was more recently demonstrated in mice lacking the dopamine transporter [18]. 

From a neuroanatomic point of view, most of cocaine’s rewarding and psychomotor activities 
appear to be dependent upon the integrity of the mesocorticolimbic dopaminergic system. Chronic 
cocaine intake is associated with functional alterations in specific neuronal populations within this 
circuit, as well as specific modulatory effects on neurotransmitter receptors, molecular signalling 
cascades and gene expression [19]. While much research effort in the last three decades has focused on 
cocaine’s effects on the dopaminergic system, it should not be forgotten that this drug also affects the 
serotonin, noradrenaline, opioid, glutamate, GABA and corticotropin releasing factor (CRF) 
neurotransmitter systems (see below). 

2. Mechanisms Involved in Cocaine Relapse  

Relapse is one of the greatest barriers to the effective treatment of drug addiction. Craving and 
compulsive use of a drug are two central features of this phenomenon [20-22]. Two opposing theories 
have emerged to explain relapse. The first suggests that relapse occurs after activation of reward 
circuits, as observed following acute drug administration, which supports the existence of a proponent 
process [23,24]. An alternative hypothesis proposes the existence of an opponent process elicited by 
drug administration, which induces hypofunctionality in reward circuits that is ultimately translated to 
dysphoric states during drug withdrawal [25-28]. However, both theories fail to fully account for 
several relapse-related phenomena. For example, the opponent process theory is contradicted by the 
following observations: (1) periods of maximal drug self-administration do not always overlap with 
periods of maximal dysphoria, i.e., for a wide variety of drugs of abuse there is a poor correlation 
between drug withdrawal effects per se and drug craving [29]; (2) there is a large body of medical and 
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experimental evidence indicating that the relief of withdrawal symptoms is not an effective method to 
treat addiction [23]; (3) passive drug administration to animals in which drug seeking has been 
extinguished reinstates this behavior [30]. These data suggest the existence of a drug craving 
mechanism independent of a negative reinforcement process. Taken together, this evidence suggests 
that the two core features of addiction (drug craving and relapse) are unrelated to the desire to escape 
the aversive consequences of abstinence. 

The proponent process theory proposes a positive reinforcement process, yet it is similarly 
contradicted by several findings suggesting that positive reinforcement and hedonic states are not 
correlated. In the first place, several psychostimulant drugs that do not produce euphoria are still 
highly addictive, such as nicotine [31]. Moreover, drug intake is maintained despite the dysphoric 
states that may be associated with the initial phases of drug use and the negative consequences 
associated with long term use [23]. In addition, the intense pleasure that a drug may produce when 
administered acutely does not appear to be derived when the individual is exposed to environmental 
stimuli previously associated with the drug, although these stimuli can induce a robust relapse to drug 
seeking [30]. These observations point to a dissociation between the pleasure induced by acute drug 
administration and the desire to consume the drug. Finally, humans self-administer low doses of drugs 
that in themselves do not cause pleasure, as witnessed with cocaine and opiates [32]. Based on these 
and other findings, it is clear that neither of the two theories can fully explain the phenomenon of 
relapse. However, both theories suggest that drug abuse produces specific neural adaptations that 
mediate the intense craving and drug seeking behavior observed long after chronic drug intake. 
Chronic drug administration may induce two types of neuroadaptive changes. One such change occurs 
firstly as a direct consequence to the pharmacological effects of the drug and it may generate tolerance 
to the physiological effects of the drug. The second type of adaptation is derived from the strong 
associations between the reinforcing effects of the drug and the environmental stimuli associated with 
them. Hence, stimuli that are motivationally neutral may acquire the ability to elicit the same responses 
as the drug itself [33]. Considering the importance of such neural adaptations in drug craving and 
relapse, we will summarize the key findings of our group and other relating to the neural adaptations 
that occur during the extinction of cocaine self-administration. 

3. Neural Changes Induced after the Extinction of Cocaine Self-Administration Behavior 

The main experimental design we use in our studies involves a triad approach employing three 
groups of animals. The first group of animals can press a lever to obtain a drug infusion and thus, they 
can exercise contingent control on their self-administration behavior. The second group is yoked to the 
first and as such, the animals passively receive the drug whenever the rats of the first groups press a 
lever for an infusion. This group is used to control for the effects of contingency. The third group 
receives non-contingent saline injections and serves as a control for the pharmacological effects of the 
drug [34,35]. Using this basic design, we have analyzed the neural adaptations that occur after cocaine 
administration and during extinction (1, 5 and 10 days), when cocaine is substituted with a  
saline solution. 
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3.1. The Dopaminergic System 

Using the design described above, we measured the levels of D1 and D2 dopamine receptors by 
quantitative autoradiography. The levels of D2-like dopamine receptors decrease in several forebrain 
regions after cocaine self-administration, an effect that is maintained throughout the extinction period. 
Interestingly, the long-term down-regulation of D2 receptors in cocaine-treated animals is more 
evident in self-administering rats than in yoked animals. Moreover, neither contingent access to 
cocaine nor passive administration of the drug affects dopamine D1 receptors in these experiments. 
These results are in agreement with previous reports in the literature. For example, chronic cocaine 
self-administration in monkeys leads to decreased binding level of D2 receptors in the anterior and 
central regions of the caudate nucleus, putamen, olfactory tubercle, and both the shell and core of the 
nucleus accumbens (NAcc) [36]. In the rat brain, a decrease in the binding levels to D2 receptor sites 
was also observed after withdrawal from limited but not extended access to cocaine, while D1 
receptors were transiently up-regulated following 20 minutes of withdrawal [37]. 

Analysis of dopamine transporter (DAT) binding in these animals reveals an increase in DAT 
binding in the caudate-putamen (CPU), NAcc (core and shell) and ventral tegmental area (VTA) in 
response to contingent cocaine administration. Furthermore, when compared with saline and cocaine-
yoked animals, this increase in binding was maintained during the entire extinction period in most of 
the brain areas examined. These results are in agreement with previous findings that showed that the 
DAT up-regulation evident after cocaine self-administration endured after withdrawal [38]. There are, 
however, mixed results in the literature concerning the regulation of DATs after cocaine exposure and 
withdrawal. For example it has been shown that cocaine self-administration may lead to either 
decreases or increases in the number of DATs as a function of the self-administration phase. For 
example, the Porrino group showed that the DAT levels decreased after initial exposure to cocaine but 
increased with higher doses and after several self-administration sessions, moreover, these changes 
were region-specific [39]. In contrast, limited access to cocaine was shown to up-regulate DAT levels 
in another study, while extended access was ineffective in provoking such changes [40]. The reasons 
for the discrepancies may lay on the different species used in both studies (rhesus monkeys vs., rats), 
or the specific self-administration parameters used (number of sessions or session duration, for 
example). Other authors have found a significant up-regulation of the DAT following extended access 
and withdrawal, but these changes were restricted to the prefrontal cortex [20]. 

With regard to human cases, there are at least 10 postmortem studies that employed either in vitro 
binding or autoradiography techniques to evaluate and contrast the status of striatal DAT in cocaine 
dependence with matched healthy controls. The results of the studies are not consistent, with reports of 
significant increases, decreases, and no change in DAT in cocaine dependent subjects relative to 
controls (see [41] for a review). 

It has been reported that DAT binding augmented and the expression of dopamine D2 receptors 
diminished after long-term chronic cocaine self-administration in monkeys [36,39,42]. Accordingly, 
we have found a decrease in D2 receptor binding that persisted even 10 days after the extinction [43].The 
coupling of increased DAT protein binding with a decrease in D2 receptor binding suggests an 
enhancement of dopamine transmission. In the absence of cocaine, increased DAT activity would lead 
to enhanced clearance of synaptic dopamine, thereby dampening dopamine neurotransmission. 
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However, no changes in basal extracellular dopamine levels have been reported in the NAcc after long 
term extinction of cocaine self-administration [44]. 

Chronic cocaine self-administration also decreased tyrosine hydroxylase (TH-the rate-limiting 
enzyme for dopamine synthesis) protein levels in the NAcc shell (but not core) after one week of 
withdrawal from self-administration [45]. In contrast, repeated extinction training during a one week 
withdrawal period completely normalized deficits in TH to levels found in untreated controls [45]. This 
same group reported that TH levels in VTA dopamine neurons were not altered after one week of 
withdrawal from chronic cocaine self-administration [45]. However, extinction training during 
withdrawal increased TH in the VTA over control levels. Thus, in both VTA and NAcc, extinction-
induced regulation represents an increase in TH relative to animals control animals without extinction 
training. These results suggest that normalization of TH deficits in the NAcc could result from an 
increased TH synthesis in the VTA leading to greater transport to dopamine terminals in the NAcc. 
Alternatively, extinction training could stabilize or impair degradation of TH in dopaminergic 
terminals of the NAcc shell; see [46] for an interesting review on this issue. 

3.2. The Glutamatergic System 

In addition to the changes reported in the dopaminergic system, NMDA glutamate receptor 
expression is altered 1 day after the extinction of cocaine self-administration. This change is short-
lived and no such changes are observed 5 or 10 days after extinction. Furthermore, this cocaine-
induced modulation is dependent upon the mode of cocaine administration and while NMDA receptors 
augment in animals that self-administer cocaine, they decrease in those receiving yoked infusions 
(unpublished observations). When expression of the NMDAR1 subunit of the NMDA receptor was 
assessed, it increases in forebrain regions involved in the cocaine-reinforcing effects of the non-
contingent group during cocaine administration and subsequent extinction. Similar alterations in 
NMDAR1 mRNA are observed in all the brain areas analyzed, although the magnitude of the changes 
vary in each brain region and in function of the mode of cocaine administration (contingent versus 
non-contingent). Across the brain, NMDAR1 gene expression is upregulated by contingent cocaine 
administration on the last day of drug intake when compared with saline or non-contingent cocaine 
administration. In the absence of cocaine in the contingent group, NMDAR1 mRNA expression 
decreases progressively, an effect that persists for up to 10 days after extinction in all forebrain areas 
except the olfactory tubercle (TU). By contrast, non-contingent cocaine administration does not change 
NMDAR1 gene expression on the last session of cocaine intake, while drug withdrawal in this group 
increases the NMDAR1 mRNA transcripts on Days 1 and 5 of extinction. However, this increase 
returns to the basal (saline) level 10 days after the last non-contingent drug administration session. 
These results suggest that interaction between environmental stimuli and the pharmacological action of 
cocaine during self-administration and extinction is important for cocaine-mediated regulation of 
NMDAR1 gene expression. Furthermore, the sustained decrease in NMDAR1 mRNA 10 days after 
extinction in the contingent cocaine group is not consistent with a response to short-term compensatory 
adaptations in brain function in the forebrain region [47]. 

Other groups have found that extinction training increases the amount of GluR1 and GluR2/3 
subunits of AMPA glutamate receptors in the NAcc shell subregion [48]. In contrast to GluR1 and 
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GluR2/3, the NR1 subunit of NMDA receptors decreased in the NAcc shell after one week of 
withdrawal from chronic cocaine self-administration. However, extinction training prevented deficits 
in NR1. This effect also required access to the response levers, and hence, extinction of cocaine-
seeking instrumental responses. These results are opposed to those previously reported by us (see 
above) and several methodological reasons, such the number of self-adminstration or extinction 
sessions, or the technique used to measure NR1 levels (Western blot vs. in situ hybridization) may 
account for these discrepancies. The extinction-induced changes in GluR2/3 and GluR1 content have 
functional consequences on extinction behavior and subsequent relapse. In this sense, it has been 
shown that viral-mediated GluR2 and GluR1 overexpression in the NAcc shell facilitates extinction 
and attenuates reinstatement [48]. 

Extinction training after cocaine self-administration has also been shown to induce glutamatergic 
plasticity to inhibit cocaine seeking [49]. In this study, rats were either extinguished or withdrawn 
without extinction training from cocaine self-administration, and measurements of postsynaptic density 
proteins in the core and shell subcompartments of the NAcc were compared with yoked-saline 
controls. Only extinguished rats had elevations of PSD-95, Homer1b/c, and Narp in the postsynaptic 
density of the NAcc core, with no changes in the shell. The authors also reported that surface 
expression of mGluR5 was reduced only in the core of extinguished animals, suggesting that that the 
elevation in Homer1b/c in the core may have sequestered mGluR5 away from the membrane surface 
and that the loss of surface mGluR5 could have inhibited long-term depression. This could be a 
cellular mechanism that may contribute to the inhibition of cocaine seeking after extinction of the self-
administration behavior [49]. 

Glutamate levels are controlled by the excitatory aminoacid transporters (EAATs). We observed 
changes in glutamate transporters after cocaine self-administration and subsequent extinction. We 
detected a decrease in binding to EAATs, the family of glutamate transporters, in the CA1 subfield of 
the hippocampus and the cerebellar cortex after chronic cocaine self-administration. By contrast, 
binding to EAATs increases after extinction of this behavior for 1 day, but only in the infra-limbic 
portion of the medial prefrontal cortex. No other differences in EAAT binding levels were observed in 
any of the brain regions analyzed. However, it should be noted that the radioligand used in this study 
could not differentiate between the different subtypes of EAATs involved in glutamate transport and 
thus, changes in the expression of a particular EAAT subtype could be masked by the expression of 
another subtype. Interestingly, the neuroadaptive changes in EAAT binding were only detected in 
animals receiving contingent cocaine administration, in accordance with the differential neurochemical 
effects in response to contingent versus non-contingent cocaine administration described 
 elsewhere [47,50,51]. Notably, these changes in EAAT binding were reversible, as they were no 
longer detected after 5 or 10 days of extinction. 

In another study we set out to define the time course of the effects of cocaine self-administration 
and extinction on glutamate and aspartate levels in the NAcc. Rats were trained to self-administer 
cocaine for 20 days, and the levels of extracellular glutamate and aspartate measured by in vivo 
microdialysis during cocaine self-administration and after a priming cocaine injection at different time 
points after extinction (1, 5, or 10 days). A food-reinforced control group was also included in the 
study. In addition, we evaluated the effect of acute i.v. cocaine administration (0, 1, 2, or 4 mg/kg) on 
glutamate and aspartate levels. We found that at all doses tested, acute i.v. cocaine has no effect on the 
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levels of glutamate or aspartate in the NAcc. By contrast, glutamate levels are reduced in animals 
trained to self-administer cocaine, although substantial increases are evident during a subsequent 
session of cocaine self-administration and no such effects are observed in food-reinforced controls. 
After 1 or 5, but not 10 days of extinction, glutamate levels are reduced. The ability of i.v. cocaine 
priming injections to increase glutamate levels followed a similar time course, and these effects were 
specific, as aspartate levels are not affected by any administration protocol. Taken together, these 
results suggest that recent chronic cocaine administration is necessary to reduce basal glutamate in the 
core of the NAcc, and that glutamatergic transmission is involved in both the maintenance of cocaine 
self-administration and the early phases of abstinence [52].  

Glutamatergic and dopaminergic transmission are intimately associated with plastic processes such 
as long-term potentiation (LTP) [53,54]. As such, we analyzed the status of LTP in the hippocampus of 
rats after extinction of cocaine self-administration. In hippocampal slices from animals in which 
chronic cocaine self-administration behavior was extinguished, high frequency stimulation evokes 
greater LTP than that observed in animals that self-administered saline. Thus, cocaine self-
administration appears to induce long-lasting changes in hippocampal synaptic plasticity that are 
maintained 10 days after the last self-administration session. While the mechanisms involved in this 
facilitation of LTP remain unknown, it is tempting to speculate that chronic self-administration of 
cocaine induces enduring metaplasticity in the hippocampus, facilitating neuronal responses to stimuli 
such as a single tetanus spike. In addition, our data suggest that neuroadaptive changes in hippocampal 
synaptic transmission play an important role in the long-term addictive potential of cocaine [55]. 

3.3. The Opioidergic System 

To analyze the endogenous opioid system, we studied the effect of long-term self-administration of 
cocaine and its subsequent extinction on PENK gene expression in the CPu, NAcc, Tu, piriform  
cortex (Pir), central nucleus of amygdala (Ce) and ventromedial hypothalamic nucleus (VMN). The 
magnitude and significance of the changes in PENK gene expression vary, depending on the brain 
region examined and the mode of drug administration (contingent versus non-contingent). Both 
contingent and non-contingent cocaine administration increase the expression of PENK on either the 
last day of cocaine self-administration or during extinction in all the brain regions examined, with the 
exception of the VMN and Ce nuclei where significant decreases were detected in contingent animals 
when compared to non-contingent and control animals. In the VMN, the decrease in PENK gene 
expression returns to basal levels 10 days after the extinction of cocaine self-administration behavior, 
while this decrease is maintained in the Ce for the entire 10-day period of extinction. These sustained 
effects on PENK gene expression do not suggest a response to short-term compensatory adaptations in 
brain function after cessation of cocaine self-administration. Interestingly, our results reveal important 
differences in PENK gene expression in some brain regions that depend upon the mode of cocaine 
administration. Although PENK mRNA expression differs in most brain regions of the animals that 
received cocaine, with the exception of VMN, the changes persisted mainly in the cocaine contingent 
administration group 10 days after extinction. These results suggest that the interaction between 
environmental stimuli and the pharmacological action of cocaine during drug self-administration and 
extinction may represent an important variable in cocaine-mediated regulation of PENK gene 
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expression [51] which could also have important implications for the regulation of relapse into cocaine 
seeking [56].  

3.4. The CRF System 

Given the growing importance of CRF transmission in addiction [26,57], we considered it essential 
to analyze CRF expression in our experimental model [50]. Accordingly, we demonstrated that CRF 
gene expression is altered in the paraventricular nucleus (PVN) of the hypothalamus, whereby long-
term cocaine self-administration and extinction provoke a large concentration of neurosecretory CRF 
cells. As observed for other neurotransmitter systems, the mode of cocaine administration appears to 
be an important variable in regulating CRF gene expression in the PVN. While long-term cocaine self-
administration has no effect on CRF mRNA expression in the PVN, passive cocaine administration in 
yoked subjects dramatically reduces CRF expression. In our experimental design, animals that self-
administer cocaine can regulate and control their own cocaine intake, whereas the yoked cocaine 
administered animals have no such control over their intake. Thus, these results suggest that 
environmental events associated with cocaine self-administration may play an important role in 
mediating the effects of cocaine on hypothalamic CRF mRNA expression. 

3.5. The Cholinergic System 

As stated in the introduction, cocaine acts postsynaptically at the level of M1 and M2 muscarinic 
receptors and therefore, neural adaptation of these receptors may occur during cocaine self-
administration and extinction. Indeed, muscarinic cholinergic receptors modulate dopaminergic 
function in brain pathways thought to mediate cocaine's abuse-related effects. Consequently, an 
attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 
acetylcholine receptor stimulation has been recently reported [58]. Additionally, M2 receptors in the 
lateral dorsal tegmental area modulate cocaine reward as M2 agonist infusions in the lateral dorsal 
tegmental area reduced cocaine self-administration [6]. In addition, activation of muscarinic and 
nicotinic acetylcholine receptors in the NAcc-core is necessary for the acquisition of drug 
reinforcement [59]. When we analyzed the levels of M1 and M2 receptors in the three groups of 
animals used in our experimental paradigm, contingent cocaine administration augments the 
muscarinic receptors in the forebrain (cingulate cortex and other regions). Interestingly, these changes 
were not evident in other caudal regions, such as the VTA and the caudal mesencephalon, although 
non-contingent cocaine administration augments the muscarinic receptors found in these regions, as 
well as in the NAcc. In limbic areas such as the hippocampus, both contingent and non-contingent 
cocaine administration decrease the levels of muscarinic receptors. These changes remain stable 
throughout the extinction period, highlighting the enduring nature of neural adaptations in the 
cholinergic system induced by cocaine self-administration [60]. These results are consistent with the 
fact that cocaine priming-induced reinstatement is mediated, in part, by increased signaling through 
muscarinic acetylcholine receptors in the shell subregion of the NAcc [61]. The literature regarding the 
role of muscarnic receptors on human cocaine addiction is rather scarce. There is one report providing 
evidence for altered neural cholinergic receptor systems in cocaine-addicted subjects. In this work, it 
was shown that cocaine addicted subjects and controls differ in their subcortical, limbic, and cortical 
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response to cholinergic probes in areas relevant to craving, learning, and memory [62]. Therefore, it 
can be suggested that cholinergic systems may offer a pharmacologic target for cocaine  
addiction treatment. 

4. Conclusions  

The data presented above suggest that cocaine self-administration modifies a number of 
neurotransmitter systems that might influence susceptibility to relapse. In particular, a divergence can 
be seen in the effects of contingent versus non-contingent exposure to cocaine, which serves to 
highlight the importance of goal-directed behavior in mediating the neuromodulatory effects of 
cocaine. Another important observation is the persistence of the neuroadaptive changes in regulatory 
elements of the dopaminergic, opioidergic and cholinergic systems during the extinction period. 
Hence, long term adaptations in these neurotransmitter systems play an important role in the relapse 
phenomenon, representing potential pharmacotherapeutic targets to deal with cocaine addiction.  
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