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Abstract: Mitochondrial dysfunction occurs early in the progression of Alzheimer’s disease. 
Amyloid-β peptide has deleterious effects on mitochondrial function and contributes to energy 
failure, respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen 
species in Alzheimer’s disease. The mechanisms underlying amyloid-β induced mitochondrial 
stress remain unclear. Emerging evidence indicates that mitochondrial permeability transition 
pore is important for maintenance of mitochondrial and neuronal function in aging and 
neurodegenerative disease. Cyclophilin D (Cyp D) plays a central role in opening 
mitochondrial permeability transition pore, ultimately leading to cell death. Interaction of 
amyloid-β with cyclophilin D triggers or enhances the formation of mitochondrial 
permeability transition pores, consequently exacerbating mitochondrial and neuronal 
dysfunction, as shown by decreased mitochondrial membrane potential, impaired 
mitochondrial respiration function, and increased oxidative stress and cytochrome c release. 
Blockade of cyclophilin D by genetic abrogation or pharmacologic inhibition protects 
mitochondria and neurons from amyloid-β induced toxicity, suggesting that cyclophilin D 
dependent mitochondrial transition pore is a therapeutic target for Alzheimer’s disease.  
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1. Introduction 

Amyloid beta (Aβ), a major component of amyloid plaque, is a neurotoxic peptide, the 
accumulation of which leads to neuronal degeneration relevant to the pathogenesis of Alzheimer’s 
disease (AD) [1-5]. Aβ accumulates in the extracellular and intracellular compartments, including 
mitochondria. Notably, recent studies from several independent groups including our laboratory 
demonstrate the accumulation of Aβ in mitochondria of brains from AD patients and AD mouse 
models [1,6-12]. It is known that progressive accumulation of mitochondrial Aβ is significantly related 
to the mitochondrial and neuronal dysfunction in an Aβ rich environment [1,6,7,11-14]. Predominant 
mitochondrial pathological changes in AD include mitochondrial membrane potential 
dissipation [15-17], respiration defect [6,7,18], oxidative stress [1,14,19-21], Aβ accumulation in 
mitochondria [1,5,6,10,11], impaired calcium buffering capacity [22-25], altered mitochondrial 
dynamics and trafficking [26-28], mtDNA mutation [29-31] and mitochondrial permeability transition 
[7,13,32]. Mitochondria are essential for provision of energy by oxidative phosphorylation; this 
organelle also modulates intra-neuronal calcium homeostasis necessary to sustain neuronal function 
and survival. Dysregulation of mitochondrial function leads to synaptic stress, disruption of synaptic 
transmission, apoptosis and ultimately neuronal death [6,15,33-35]. Thus, it is highly important to 
unravel the mechanism(s) of Aβ-associated mitochondrial alterations to enhance our understanding of 
the pathophysiological process of AD. 

Recent studies emphasize that mitochondrial permeability transition pore (mPTP) is involved in Aβ 
induced mitochondrial perturbation [7,13,25,32,36-38]. The formation of mPTP is closely related to 
Aβ superimposition and perturbation of mitochondrial structure and function. Inhibition of mPTP 
formation in an AD animal model and in Aβ-insulted cells results in enhanced protection of neurons 
from Aβ toxicity and oxidative stress. Here, we review the role of mPTP in mitochondrial pathology 
relevant to the pathogenesis of AD, particularly related to the involvement of Cyclophilin D (Cyp D) in 
mPTP.  
 
2. mPTP and Alzheimer’s Disease 
 

Mitochondrial permeability transition, or MPT, is an increase in permeability of the mitochondrial 
membranes to molecules of less than 1,500 Daltons in molecular weight. MPT results from opening of 
mitochondrial permeability transition pores, known as MPT pores or mPTP. mPTP is a protein pore 
that is formed in mitochondrial membranes under certain pathological conditions such as oxidative 
stress, ischemia, traumatic brain injury and stroke. Induction of the permeability transition pore can 
lead to mitochondrial swelling and cell death. The deleterious impact of mitochondrial permeability 
transition on mitochondrial function has long been proposed [39-41].  

Mitochondria are two-membrane encapsulated organelles with strict regulation of the uptake and 
release of substances. Disruptions in this regulation lead to mitochondrial and cellular perturbation. For 
example, the release of cytochrome c from mitochondria triggers a signal transduction cascade and 
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apoptosis. mPTP is one among several factors that interfere with the integrity of mitochondrial 
membrane. The formation of mPTP in a mitochondrial membrane opens a nonselective portal that 
results in abnormal exchange of solutes and molecules > 1,500 Daltons between mitochondria and 
cytoplasm [42].  

Though the exact structure of the mPTP is still unknown, it is postulated that several proteins come 
together to form the pore, including the outer membrane voltage-dependent anion channel (VDAC), 
adenine nucleotide translocase (ANT) located in the mitochondrial inner membrane, and cyp D 
residing in mitochondrial matrix [43-46]. A recent study suggests that phosphate carrier (PiC) in 
mitochondrial inner membrane is also a possible component of mPTP [47]. It is known that formation 
of mPTP relies on the translocation of cyp D to inner mitochondrial membrane and the intra- 
mitochondrial perturbations of calcium, phosphate and oxidative stress are strong inducers of the cyp 
D translocation [39,42,47-49]. Mitochondria undergoing mPTP show dissipated membrane potential, 
perturbed mitochondrial respiration chain, decreased ATP production, increased free radical generation, 
and disruption of calcium modulation [7,40,50]. Calcium effluxes from mitochondria while cytoplasm 
solutes flow into mitochondria; thereby causing mitochondrial swelling that in turn leads to ruptures in 
mitochondrial membrane. Importantly, pre-apoptotic molecules such as cytochrome c are released 
from the mPTP afflicted mitochondria through these ruptures, which then trigger apoptosis [43,50]. 
Obviously, mPTP formation is a detrimental process that significantly contributes to mitochondrial and 
cellular malfunction. 

Involvement of mPTP in neurodegeneration has been reported in neurodegenerative diseases, 
including AD [7], ALS (amyotrophic lateral sclerosis) [51,52], HD (Huntington’s disease) [53] and PD 
(Parkinson’s disease) [54,55], as evidenced by increased CypD expression, decreased mitochondrial 
calcium handling capacity and mitochondrial oxidative stress in disease-affected brain regions. In our 
published studies, we demonstrated that CypD levels were elevated in mitochondria isolated from the 
hippocampus and temporal pole of AD patients. Increased Cyp D expression is predominantly 
localized in neurons in these specific areas of AD patients [7]. Given the positive correlation of Cyp D 
expression to mPTP opening [7,43,52,56], neurons with increased expression of CypD in AD-affected 
brain regions would be more susceptible to mPTP formation and the resultant consequences. Similarly, 
AD mice overexpressing amyloid precursor protein (APP) and Aβ (APP mice) demonstrated 
up-regulation of CypD expression in cortical mitochondria. As expected, cortical mitochondria 
containing Aβ undergo increased mitochondrial swelling in the presence of calcium. In addition, APP 
mice demonstrate increased CypD translocation to mitochondrial inner membrane and decreased 
mitochondrial calcium buffering capacity, suggesting that mitochondria enriched for Aβ environment 
are susceptible to mPTP formation, which is consistent with increased CypD expression also seen in 
this strain [7,13].  

Transgenic AD mouse models show age-dependent accumulation of cerebral/mitochondrial Aβ as 
well as neuronal and mitochondrial stress. In APP mice (J-20 line), Aβ accumulation in the brain 
occurs by 4-5 months and progresses with age. By the age of 10-12 months, there are plentiful amyloid 
deposits in the brain [57,58]. Consistent with this observation, impaired mPTP function and calcium 
buffering capacity correlate with age-related Aβ accumulation in APP mouse brain and mitochondria. 
Cortical mitochondria from transgenic and nonTg mice showed swelling in response to Ca2+, although 
APP mitochondria show greater swelling compared to nonTg mitochondria at the ages of 12-24 
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months. Cortical mitochondria of both nonTg and APP mice exhibited an age-dependent increased 
swelling in response to Ca2+. Similarly, brain mitochondria isolated from APP mice demonstrated an 
age-related mitochondrial respiration defect, mitochondrial oxidative stress, and decreased ATP 
production [7,13]. Another study showed that the inhibition of ANT substantially attenuated apoptosis 
and autophagy in a mouse model for cerebral amyloid angiopathy, lending further credence to the 
involvement of mPTP in AD [59]. Taken together, these data indicate that mitochondrial permeability 
transition pore is sensitized in the Aβ milieu. 
 
3. The Interplay of Aβ and mPTP 

Aβ has been shown to directly perturb mPTP function. Moreira and colleagues demonstrated that 
Aβ directly induces mitochondrial swelling, cytochrome c release and mitochondrial membrane 
potential decrease in isolated brain mitochondria [37, 60]. Administration of Aβ 25-35 triggers mPTP 
formation accompanying mitochondrial oxidative stress [38]. We observed in isolated brain, that the 
addition of Aβ to mitochondria in the presence of mPTP inducers (e.g. phosphate) enhances 
mitochondrial swelling in a dose-dependent manner [7]. It has been demonstrated that Aβ treatment 
significantly sequestrates Cyp D translocation to mitochondrial inner membrane and reduces 
mitochondrial calcium buffering capacity. These data indicate that Aβ is responsible for mPTP 
formation.  

An indirect effect of Aβ on mPTP is due to the ability of Aβ to elevate intra-cellular calcium and 
free radical levels. Aβ, a peptide cleaved from its precursor protein (APP), causes severe intra-neuronal 
free radical injury and calcium dysregulation, leading to accelerated neuronal damage [22,61-63]. 
Calcium and free radicals are strong inducers of mPTP and conversely mPTP formation further 
exacerbates calcium perturbation and oxidative stress. Thus, it is proposed that deregulated neuronal 
calcium metabolism and accumulation/production of reactive oxygen species (ROS) are possible 
mechanisms underlying Aβ-induced mPTP formation. Aβ treatment in cells or primary cultured 
neurons induces oxidative stress, calcium perturbation, increased cobalt quenching of 
intra-mitochondrial calcein intensity and mitochondrial cytochrome c release, suggesting the 
involvement of mPTP formation in an Aβ-induced disturbance of calcium and free radical production 
[60,64-70]. Thus, Aβ mediates ROS accumulation and stimulates intracellular and intra-mitochondrial 
calcium accumulation, thereby triggering the formation of mPTP, which, in turn, leads to further 
mitochondrial calcium efflux and free radical generation from mitochondria. 

Mechanistically, we know that Aβ enhances translocation of CypD to mitochondrial inner 
membrane to trigger mPTP formation and forming Aβ-Cyp D complex. Using co-immunoprecipitation 
of Aβ and Cyp D, Aβ-Cyp D complex was found in mitochondrial fractions from brains of AD 
subjects and APP mice as well as in neurons and isolated brain mitochondria exposed to Aβ. These 
findings indicate the presence of Aβ-CypD interaction in vivo in brain mitochondria. Using surface 
plasmon resonance (SPR), different species of Aβ, including monomeric and oligomeric Aβ, were 
found to have high affinity for binding to Cyp D in vitro, confirming interaction of Aβ with Cyp D 
[7,13]. In addition, a recent report using molecular docking experiments postulates that Aβ binds with 
ANT [71]. However, we are not aware of any conclusive report regarding interaction of Aβ with ANT. 
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Although Aβ or oxidative stress could directly or indirectly affect mitochondrial function, such as 
mPTP formation, enhancement of mPTP formation by Aβ might be due to synergistic action of the two. 
Given that mPTP is critical for mitochondrial pathology and neuronal dysfunction in the pathogenesis 
of AD, blocking or limiting mPTP formation holds potential as a therapeutic strategy for AD.  
 
4. Blockage of mPTP Attenuates Aβ-Mediated Neuronal and Mitochondrial Malfunction  

Several studies have shown that the blockage of mPTP by either genetic depletion of the mPTP key 
component, Cyp D or through use of the Cyp D or VDAC inhibitors protects neurons against oxidative 
stress- or Aβ-induced injury [7, 72-74]. Genetic depletion of Cyp D decreases mitochondrial swelling 
induced by calcium. Cyp D deficient cells show less oxidative stress and apoptosis and maintain 
mitochondrial membrane potential even in the presence of stress inducers [7,43,50]. Further, Cyp D 
depletion attenuates cardiac ischemia and reperfusion injuries in mice [7,75,76] and ameliorates axonal 
degeneration and movement disorders in a multiple sclerosis (MS) mouse model [77]. To investigate 
the protective effect of blockading mPTP by genetic depletion of Cyp D in an Aβ milieu, we generated 
Cyp D deficient APP mice by crossing APP/Aβ overexpressing mice (APP mice) to Cyp D-deficient 
mice and then investigated the effect of Cyp D depletion on Aβ-induced toxicity. Cyp D-deficient APP 
mice preserve mitochondrial function including mitochondrial cytochrome c oxidase activity, 
mitochondrial respiration control ratio and mitochondrial ATP production. Furthermore, the protective 
effects of CypD deficiency were observed even in aged AD mice (22–24 months), suggesting that 
abrogation of CypD results in persistent life-long protection against Aβ toxicity in an Alzheimer’s 
disease mouse model [7,13]. Cyp D depletion also results in improved synaptic function and spatial 
learning memory, even in aged 22-24-month-old APP mice. 

Pharmaceutical inhibition of Cyp D is another approach to inhibit mPTP formation. There are 
several known Cyp D inhibitors: cyclosporin A, sanglifehrin A, FK506 and FK1706. Administration of 
these inhibitors results in significant protection against mPTP-associated mitochondrial pathology in 
several animal models of neurodegenerative diseases, as follows. Cyclosporin A injection ameliorated 
the moving disorders in an ALS mouse models [78]. Cyclosporin A, FK506 or FK1706 treatment 
attenuated the symptoms of MS mouse models [79]. Administration of cyclosporin A or FK506 also 
had protective effects on HD mouse model [80]; the protective effects of these Cyp D inhibitors are 
proposed to be, at least in part, due to the inhibition of mPTP formation. Notably, treatment with Cyp 
D inhibitors at experimental dosages did not show detectable adverse effects in the mice, suggesting 
probable safety of these drugs in clinical translation.  

The effect of Cyp D inhibitors on Aβ toxicity has also been investigated. We and other groups have 
demonstrated that cyclosporin A significantly inhibited apoptosis and production of oxidative stress 
induced by Aβ accumulation [7,13,32,81]. Cyclosporin A treatment attenuated Aβ- induced 
mitochondrial swelling and increased mitochondrial calcium buffering capacity. In addition, the 
addition of cyclosporin A to the hippocampal CA1 region completely rescued Aβ-induced long term 
potentiation (LTP) reduction. These data indicate that pharmaceutical inhibition of Cyp D is a potential 
strategy to protect neurons from Aβ toxicity [7]. It remains to be determined whether the protective 
effects of CypD inhibitors are present in animal model studies.  
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VDAC is another key component of mPTP. A recent report using a VDAC inhibitor, 
cholest-4-en-3-one oxime (TRO19622), showed results of significantly extended lifespan as well as 
attenuation of symptoms in G93A SOD1 ALS mice [82]. TRO19622 has not yet been tested in AD 
mouse or cell models. 4,4’-Diisothiocyanatostilbene-2,2’-disulfonic acid (DIDS) is a VDAC blocker 
and has been shown to protect cells from VDAC -potentiated cell apoptosis [73]. Small and his 
colleagues demonstrated that DIDS protected against neurotoxicity induced by Aβ25-35 or 
staurosporine on primary cultured neurons as evidenced by significantly less cell death upon the 
application of DIDS. These findings implicate that inhibiting VDAC-mediated mPTP might be a 
potential therapeutic option for the protection of neurodegeneration in AD [74]. 

In summary, interventions affecting mPTP formation such as genetic Cyp D depletion or use of Cyp 
D or VDAC inhibitors have been proven experimentally to be effective in counteracting the 
detrimental effects of Aβ or oxidative stress on mitochondrial and neuronal perturbation, suggesting 
that targeting mPTP may result in the rescue of neurons from Aβ-induced damage.  

 
5. Conclusions 

We reviewed here the recent studies eliciting the involvement of mPTP in the pathogenesis of AD 
and the effects of inhibiting mPTP on mitochondrial and neuronal dysfunction. The interplay of Aβ 
with mPTP may be a novel mechanism underlying Aβ-associated mitochondrial pathology. 
CypD-dependent mitochondrial permeability transition contributes significantly to Aβ-induced 
neuronal and mitochondrial injury relevant to the pathogenesis of Alzheimer’s disease. In an Aβ-rich 
environment, Aβ gains access to the mitochondrial matrix by the translocase of the outer membrane 
(TOM) machinery [10] or an as yet unknown mechanism, and forms a complex with CypD, promoting 
its translocation to the inner mitochondrial membrane and formation of mPTP. In addition, CypD-Aβ 
interaction enhances generation of ROS and triggers signal transduction. These events eventually lead 
to cell death relevant to the AD pathogenesis (Figure 1). Thus, decreasing CypD dependent mPTP 
formation through pharmacologic inhibition on cyp D is an important therapeutic target for prevention 
and treatment of Alzheimer disease and other neurodegenerative diseases. There is also potential 
benefit in the development of new inhibitors of other mitochondrial transition pore components (e.g. 
VDAC) as therapeutic approaches to treat AD and other diseases. 

Figure 1. Cyclophilin D-Aβ interaction: implications for mitochondrial function. 
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