Pharmaceuticals 2010, 3(1), 158-187; doi:10.3390/ph3010158
Review

Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease

1 School of Health Science and Healthcare Administration, University of Atlanta, 6685 Peachtree Industrial Blvd., Atlanta, Georgia, 30360, USA 2 Department of Nutrition and Biochemistry, Faculty of Sciences, Javeriana University, Bogotà D.C., Colombia 3 Stress Relief and Memory Training Center, Brooklyn, New York, NY 11235, USA 4 Department of Biology, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249–1664, USA 5 Department of Cytology, Histology and Embryology, Azerbaijan Medical University, 25 Street Bakhikhanov, Baku AZ10 25, Azerbaijan 6 Department of Pathology, School of Medicine, Case Western Reserve University, WRB 5301, Cleveland, Ohio, 44106, USA 7 Department of Psychiatry, Wroclaw Medical University, 25 St. Kraszewskiego, Wroclaw, 50–229, Poland 8 Dirección de Investigación y desarrollo, Centro de Estudios de la Fotosíntesis Humana, S.C. López Velarde 108 y 109, Centro, Aguascalientes, Aguascalientes, 20000, México 9 Department of Mathematics, College of Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
* Author to whom correspondence should be addressed.
Received: 28 November 2009; in revised form: 11 January 2010 / Accepted: 14 January 2010 / Published: 19 January 2010
(This article belongs to the Special Issue Mitochondrial Drugs for Neurodegenerative Diseases)
PDF Full-text Download PDF Full-Text [815 KB, uploaded 19 January 2010 10:28 CET]
Abstract: Mitochondrial dysfunction may be a principal underlying event in aging, including age-associated brain degeneration. Mitochondria provide energy for basic metabolic processes. Their decay with age impairs cellular metabolism and leads to a decline of cellular function. Alzheimer disease (AD) and cerebrovascular accidents (CVAs) are two leading causes of age-related dementia. Increasing evidence strongly supports the theory that oxidative stress, largely due to reactive oxygen species (ROS), induces mitochondrial damage, which arises from chronic hypoperfusion and is primarily responsible for the pathogenesis that underlies both disease processes. Mitochondrial membrane potential, respiratory control ratios and cellular oxygen consumption decline with age and correlate with increased oxidant production. The sustained hypoperfusion and oxidative stress in brain tissues can stimulate the expression of nitric oxide synthases (NOSs) and brain endothelium probably increase the accumulation of oxidative stress products, which therefore contributes to blood brain barrier (BBB) breakdown and brain parenchymal cell damage. Determining the mechanisms behind these imbalances may provide crucial information in the development of new, more effective therapies for stroke and AD patients in the near future.
Keywords: oxidative stress; Alzheimer disease; antioxidants; hypometabolism; mitochondria; metabolism; neurodegeneration

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Aliev, G.; Palacios, H.H.; Gasimov, E.; Obrenovich, M.E.; Morales, L.; Leszek, J.; Bragin, V.; Solís Herrera, A.; Gokhman, D. Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease. Pharmaceuticals 2010, 3, 158-187.

AMA Style

Aliev G, Palacios HH, Gasimov E, Obrenovich ME, Morales L, Leszek J, Bragin V, Solís Herrera A, Gokhman D. Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease. Pharmaceuticals. 2010; 3(1):158-187.

Chicago/Turabian Style

Aliev, Gjumrakch; Palacios, Hector H.; Gasimov, Eldar; Obrenovich, Mark E.; Morales, Ludis; Leszek, Jerzy; Bragin, Valentin; Solís Herrera, Arturo; Gokhman, Dmitry. 2010. "Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease." Pharmaceuticals 3, no. 1: 158-187.

Pharmaceuticals EISSN 1424-8247 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert