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Abstract: Alzheimer’s Disease (AD) is a neurodegenerative condition characterized by progressive
memory loss and other affected cognitive functions. Pharmacological therapy of AD relies on
inhibitors of the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), offering
only a palliative effect and being incapable of stopping or reversing the neurodegenerative process.
However, recent studies have shown that inhibiting the enzyme β-secretase 1 (BACE-1) may be able
to stop neurodegeneration, making it a promising target. Considering these three enzymatic targets,
it becomes feasible to apply computational techniques to guide the identification and planning of
molecules capable of binding to all of them. After virtually screening 2119 molecules from a library,
13 hybrids were built and further screened by triple pharmacophoric model, molecular docking, and
molecular dynamics (t = 200 ns). The selected hybrid G meets all stereo-electronic requirements to
bind to AChE, BChE, and BACE-1 and offers a promising structure for future synthesis, enzymatic
testing, and validation.

Keywords: molecular hybrids; Alzheimer’s disease; cholinesterase; human β-secretase 1; molecular
dynamics

1. Introduction

Alzheimer’s disease (AD) is a progressive, irreversible, and insidious neurodegenera-
tive disease that causes memory loss and various cognitive disorders [1]. AD is responsible
for about 70% of all cases of dementia worldwide, with a current prevalence of 24 million
people and estimated to double by 2040 [2,3].

The pathogenesis seems to involve three main factors. (i) Deficiency in cholinergic
transmission caused by the loss of cholinergic neurons; (ii) accumulation of extracellular
deposits of β-amyloid protein due to the catalytic action of β-secretase 1; (iii) formation of
neurofibrillary clusters of a phosphorylated form of the TAU protein [3–5].

The cholinergic hypothesis is described as one of the causes of AD [3]. Cholinesterases
are a family of enzymes responsible for catalyzing the hydrolysis of acetylcholine (ACh)
into choline and acetic acid, and are divided into AChE and BChE [6,7]. These enzymes
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are mainly found in the central nervous system (CNS) and their inhibition would lead
to an increase in ACh available in nerve endings, promoting cognitive improvement [7].
In AD patients, AChE activity may remain unchanged or decline. When it declines, BChE
activity progressively increases, thus generating an imbalance between them [8,9].

The amyloid hypothesis relates AD to the formation of extracellular deposits of
β-amyloid peptide and the accumulation of insoluble plaques in neurons. This patho-
physiological process involves the enzyme β-secretase (BACE-1) initiating the cleavage of
the transmembrane protein (Amyloid Precursor Protein-APP). This cleavage is terminated
by another enzyme, γ-secretase, generating the β-amyloid peptide (Aβ), which aggregates
into oligomers, forming plaques that are deposited in different parts of the brain, mainly in
neurons of the hippocampus, basal nucleus, cortex entorhinal and associative cortex [10].
One of the few drugs currently being used to address the amyloid hypothesis is the recently
FDA-approved Aduhelm© (Aducanumab) [11], a drug that reduces extracellular deposits
of β-amyloid peptide. It is a monoclonal antibody that targets aggregated forms of amyloid
beta agglomerates and reduces its buildup.

Despite its relevance in epidemiological and public health terms, the drug repertoire
against AD is limited and associated with serious adverse effects such as hepatotoxicity,
hypertension, and weight loss [3]. These limitations make it urgent to search for new drugs
capable of preventing disease progress, controlling symptoms, and increasing patients’
survival and quality of life [3,12].

Computer-aided drug design (CADD), one of the modern tools used in the devel-
opment of new drugs, is used to investigate the chemical interactions of a ligand (drug)
with its receptor in the exploration of structural factors related to the biological effect
and prediction of potential pharmacological activities [13]. Among the available CADD
techniques, Virtual Receptor-Based Screening uses knowledge of the three-dimensional
(3D) structure of disease-related targets (receptors, enzymes) to select molecular structures
with a good level of complementarity with these targets and respective binding affinity or
molecular docking intensity [14].

Recent studies focus on the identification of multi-targeted drugs for the treatment of
AD patients with approaches based on classical strategies, such as synthesis and biological
evaluation of molecular hybrids [15,16]. Additionally, the application of computational tech-
niques that take into account the total flexibility between the ligand and the macromolecule,
such as molecular dynamics studies, allow us to describe the variation in molecular behav-
ior as a function of time, with a greater approach to biological conditions [17,18].

Another strategy that can be also employed is the pharmacophore-based approach,
where multi-target molecules are built from the union of pharmacophores, that is, by
molecular hybridization, in which a new chemical entity is formed by the union of two
or more pharmacophoric units of bioactive molecules through linkers, using groups that
are not cleaved, and thus act on the targets. Multitarget molecules are built from the
preservation of important groups [15,19,20].

In this work, we present the identification of molecular fragments with high-binding effi-
ciency (∆G < −0.4 Kcal/mol) to AChE, BChE, and BACE-1 and subsequent docking through
molecular hybridization, with the proposed hybrids evaluated through virtual screening
(molecular docking and pharmacophore model) and molecular dynamics simulations.

2. Methods
2.1. Docking-Based Virtual Screening

The fragment bank available for purchase (Fragmenta) and present on the ZINC15
platform [21] was hierarchically subjected to molecular docking against the 3D structures
of the targets, AChE, BChE and BACE-1, respectively.

The 3D structures of the targets, AChE, BChE, and BACE-1, were obtained from the
Protein Data Bank (PDB) under code 4M0E, 4BDS and 6UWP, respectively, using resolution
value and the presence of ligand as search parameters. Target structures were prepared
with the biopolymer module implemented in SYBYL-X 2.0 [22], where ions and water were
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removed and hydrogen atoms were inserted to optimize hydrogen bonds. For the AChE
and BChE target structures, the protonation state of the receptors was adjusted to pH 7.4
through PropKa [23] server, and the conformational search and scoring were performed
by AutoDock Vina 1.1.2 [24], according to previously validated parameters [25]. As for
the BACE-1 structure, the receptor had its protonation state evaluated by the H++ 1.0
server program and pKa corrected at pH 4.5 [26]. Validation methods were used, and after
obtaining the data, the program selected for molecular docking with BACE-1 was GOLD
5.8.1 [27,28]. The score was provided by the Astex Scoring Potential (ASP, knowledge-
based function derived from a database of protein–ligand complexes) function with the
parameters previously validated [29]. The search parameters were evaluated for the ability
to identify the crystallographic pose through redocking with the better pose according to
root-mean-square deviation (RMSD < 2 Å) and asset recognition capability against false
positives by calculating the area under the ROC curve (AUC > 0.7) [25,29].

Initially, molecules were classified based on the affinity energy provided by the pro-
grams. Those with energies greater than the median were analyzed for binding efficiency
(LE < −0.4 Kcal/mol) with the aid of Marvin© Sketch 15.4.20 [30] to calculate the number
of heavy atoms, according to Equation (1) [25].

BE =
∆G
N

(1)

where:
BE = Binding Efficiency
∆G = Affinity Energy
N = Number of heavy atoms

Binding efficiency provides an estimation of physicochemical properties that can be
optimized to increase affinity for a target. The binding efficiency metric is recommended at
all stages of drug discovery, starting with fragment selection or a screening success [31].
Then, the binding efficiency is the ratio between the affinity energy value and the number
of heavy atoms, with the fragments that have a BE less than −0.4 Kcal/mol being selected.
Following this, the fragments selected were submitted to an analysis of interactions with
the main amino acids present in the orthosteric site of the crystallographic structure of
the targets.

2.2. Molecular Hybridization

The most active thirteen fragments (the fragment bank available for purchase (Frag-
menta) and present on the ZINC15 platform) against the selected targets were joined by
adding linkers [15,32], using the program Marvin© Sketch 15.4.20 [30]. It is worth noting
that each union of the fragments was selected with respect to affinity towards the targets.
Thus, the best fragments for each target were selected and united, forming hybrid molecules
designed to bind to the three targets. These hybrids were converted to 3D format and
minimized on the SYBYL-X© platform. 2.0 [22].

2.3. Physicochemical Filters

The hybrids designed were characterized using the pkCSM server [33] for the physic-
ochemical descriptors in Lipinski’s rule and evaluated potential mutagen (Salmonella ty-
phimurium reverse mutation assay-AMES test), namely: the number of hydrogen bond
acceptors (≤10), hydrogen bond donor groups (≤5), molecular mass (≤500 g/mol), octanol–
water partition coefficient (clogP) (≤5) and polar surface area (PSA) (≤140 Å2) and Veber’s
rules [34].

The AMES test was performed against Salmonella typhimurium and Escherichia coli.
It is based on the knowledge that if a substance is mutagenic for these bacteria, it also
presents a carcinogenic risk in humans [35]. Physicochemical characteristics suggesting oral
bioavailability are also evaluated, as these drugs are intended mostly for elderly patients
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with chronic diseases. Such patients benefit from orally available drugs, as they tend to
increase patient adherence to the treatment.

2.4. Pharmacophore-Based Virtual Screening

A pharmacophoric model of triple inhibitors previously developed by our group [16]
was used to filter the molecular hybrids. This step was implemented through the flexible
3D alignment routine, available in the UNITY 3D module on the SYBYL-X© platform.
2.0 [22]. The quality of the alignment of the molecules will be expressed by their QFIT
value, which can vary from 0 to 100. The QFIT value may be regarded as a measure of the
degree of closeness with which the hit pharmacophore matches the corresponding query
feature coordinates within a given range of a spatial constraint tolerance. Where, the closer
the fit, the higher the value [36].

2.5. Molecular Docking

The hybrids selected in the previous step were subjected to molecular docking,
AutoDock Vina 1.1.2 [24] was used for the AChE and BChE [24] targets; whereas GOLD
5.4.0 [28] was used for BACE-1 [25] (following the same protocol and steps as 2.1) to obtain
the pose with best affinity, analyze the interaction of the hybrids at the binding site under
test and also to generate the topology that was used in the molecular dynamics.

2.6. Molecular Dynamics

2.6.1 Parameterization of the Ligand
The hybrid topology prioritized through molecular docking assays was generated

according to the ATB 3.0 server [37]. Atomic charge, bond length, torsional angles, and
dihedral parameters were obtained using the GROMOS96 54A7 force field [38].

2.6.2 MD Simulations
MD simulations were performed in the GROMACS 5.1.2 package [39]. The APO

forms were previously obtained [33]. In this step, 3D structures were obtained from the
PDB (AChE: 4M0E; BChE: 4BDS; BACE-1: 6UWP), which the crystallographic ligand,
non-structural water, and crystallization artifacts were removed. The unmodeled regions
of the structures were built using the SWISS-MODEL server [40]. The protonation state of
acidic and basic residues of the targets was adjusted in the pdb2gmx module implemented
in GROMACS 5.1.2 [39] according to pH 7.4 for AChE and BChE [25] and pH 4.5 for
BACE-1 [26]. The pKa values of the residuals were evaluated by the H++ server, except the
catalytic residues of BACE-1, which were manually adjusted for the protonated (Asp32)
and deprotonated (Asp228) state [41]. A dodecahedral box with the SPC-E water model
was used [42] to solvate the system, with a minimum distance of 1.4 nm from the edge
of the box. Following this, for neutralization in systems involving AChE seven Na+ ions
(NaCl; 0.15 M) were added, while four and five Cl- ions were added in systems with BChE
and BACE-1, respectively, the same was repeated for the complexes.

The APO forms were minimized by the Steepest Descent algorithm (SD) with 10,000 cycles,
followed by the Conjugate Gradient algorithm (CG) with 1000 cycles. After the minimiza-
tion steps, the complexes were then subjected to MD simulations. The equilibrium was
performed during 1 ns, the heating step from 0 to 300 K during 1 ns, and the production
step during 200 ns, with constant temperature (300 K) and pressure (1 bar).

The MD data were obtained in the isothermal–isobaric ensemble-NPT (number of
particles, temperature and constant pressure) using periodic boundary conditions. Elec-
trostatic and hydrophobic interactions were described by the PME method (Particle Mesh
Ewald) [43] with a cut-off radius of 0.9 nm. The stability of the system was evaluated by
analyzing the variation of the Root Mean Square Deviation (RMSD) value, Root Mean
Square Fluctuation (RMSF) and turning radius with the aid of the RMS modules, RMSF
and GYRATE, respectively, available in the GROMACS 5.1.2 package.

The number and permanence of hydrogen bonds (H) between the ligand and the
residues of the binding site were calculated using the HBOND module available in GRO-
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MACS 5.1.2 and the HbMap2Grace program developed by Gomes and collaborators (un-
published data). As criteria for the identification of these bonds, the following parameters
were evaluated: distance between donor and acceptor ≤ 3.5 Å and angle (α) between
donor/acceptor/atom H ≤ 60◦. The hydrogen bonds that remained for less than 10% of
the simulation time were disregarded.

The representative structure of the ligand-macromolecule complex during the MD
production phase was obtained from the grouping of similar conformations with the aid of
the G_CLUSTER module available in the GROMACS 5.1.2 package, using the GROMOS
union method [44], with cut-off points defined from the values of RMSD 1.0; 1.1; 1.2; 1.3;
1.4; 1.5 Å. The average structure of the most populous group was then selected to analyze
the main interactions between the prioritized ligand and the targets.

3. Discussion and Results
3.1. Docking-Based Virtual Screening

Molecular docking is a receptor-based technique capable of increasing the success rate
of virtual screening by evaluating the different binding modes of a molecule at the binding
site, predicting the binding affinity and, therefore, indicating the compounds filtered in
the Ligand-based Virtual Screening that are more likely to interact with targets [45]. In
this context, a new methodology, called hierarchical or successive screening, has been
proposed to systematically and progressively take advantage of the knowledge about
ligands and their relationship with the structure of biological targets against more than one
target [46,47]. Through this approach, 2119 fragments were successively evaluated, with
1091 having an affinity energy value of AChE < −7.1 Kcal/mol; 582 with an affinity energy
value of BChE < 7.8 Kcal/mol; and 51 fragments having favorable scores for interactions
with the active site of BACE-1 with a score bigger than 31.561 with respect to the median.

The LE of the selected fragments was calculated. This method compares molecules
according to their average binding energy per atom. This concept provides an estima-
tion of physicochemical properties that can be optimized to increase affinity for a target.
The binding efficiency metric is recommended at all stages of drug discovery, starting with
selecting a fragment or a screening success [31]. The binding efficiency is the ratio between
the affinity energy value and the number of heavy atoms, with an optimal threshold of
LE < −0.4 Kcal/mol. As a result, eleven, twelve, and fifteen fragments were selected for
AChE, BChE, and BACE-1, respectively.

The intermolecular interaction between fragments and crystallographic ligand against
molecular targets were evaluated using PyMOL™1.3 software [48]. Thus, as a result, four,
seven, and eight fragments were selected for AChE, BChE, and BACE-1, respectively. In
Figure 1, a comparison between the crystallographic ligand and a fragment for each target
is illustrated. As can be observed, the pose of the fragment ZINC183800 selected for
AChE (Figure 1A.1–2) shows the presence of residues Phe338, and Tyr337 in the catalytic
site and also the residues Tyr72, Trp286 and Tyr341 in the peripheral anionic site, which
participate in the adhesion of the substrate to the enzyme, thus ensuring the efficiency of
the catalytic process [49,50]. In addition, the fragment ZINC183800 was selected for BChE
(Figure 1B.1–2). This fragment shows the interaction with residues constituting the catalytic
triad (Ser198, His438, and Glu325) [51]. Finally, the fragment ZINC36615 interacts with
Asp32 and Asp228, the main residues involved in the catalytic process [52,53] of BACE-1
(Figure 1C.1–2).

3.2. Molecular Hybridization

The best fragments selected in previous stages against the selected molecular targets
were joined through linkers using Marvin® Sketch 15.4.20 [30] and converted to 3D format
on the SYBYL©-X 2.0 platform [22], resulting in a library containing thirteen molecular
hybrids (Figure 2). It is worth noting that each union of fragments was selected with respect
to affinity towards the targets, so the fragments that were in common were selected and
joined to what acted on only one target. Thus, all of the hybrids have an affinity toward the
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three targets. The choice of linkers was based on the alignment of the hybrid to the triple
pharmacophoric model.

Figure 1. PosePosition of crystallographic ligands and fragments in the active targets’ site, AChE
Dihydrotanshinone I and ZINC183800 (A.1–2); BChE Tacrine and ZINC183800 (B.1–2), and BACE-1
QKA and ZINC36615 (C.1–2).
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The fragments used for the formation of the hybrids were the codes ZINC173351,
ZINC183800, ZINC21985310, ZINC57379, ZINC16696635, ZINC9766, ZINC1261, ZINC13458,
ZINC13597823, ZINC1464, ZINC13586781, ZINC36615, and ZINC4199922.

Figure 2. Fragments and chemical structure of the hybrids (Red bonds are used to highlight the linker).

3.3. Physicochemical and Toxicological Filters

The use of receptor-based computational techniques plays an important role in identi-
fying molecules capable of binding to three targets simultaneously. Therefore, the hybrids
prioritized in the molecular docking step were further evaluated through Lipinski’s and
Veber’s rules to evaluate their oral bioavailability and for potential mutagenicity through
the Ames test that was used to discard molecules with toxic potential [34,35,54]. The results
are summarized in Table 1. As can be observed, molecular hybrids positive for the AMES
test were discarded; however, the others were considered for further steps, and it is known
that about 6% of approved drugs do not obey the rules and are still bioavailable [55].
The remaining molecular hybrids (B, D, E, F, G, H, I, K and L) were then subjected to
virtual screening by pharmacophoric model followed by molecular docking to confirm
the presence of the necessary stereo-electronic requirements for the inhibition of three
molecular targets.
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Table 1. Physical–chemical and toxicological filters.

Molecule MW
(g/mol) HBD HBA cLog P PSA

(Å2) RB HBD +
HBA AMES

A 578.24 2 5 6.39 251 7 7 YES
B 545.61 3 10 1 226 8 13 NO
C 588.13 4 9 2.35 244 7 12 YES
D 550.08 6 7 2.94 238 9 13 NO
E 518.70 3 7 6.63 227 8 10 NO
F 542.60 2 10 5.03 229 8 12 NO
G 546.08 2 7 7.06 238 7 9 NO
H 567.05 2 9 6.15 240 8 11 NO
I 540.58 2 9 6.13 229 6 11 NO
J 1098.0 1 15 14.94 466 11 16 NO
K 503.56 1 10 2.64 213 9 11 NO
L 586.49 1 7 6.10 232 9 8 NO
M 585.74 4 10 6.37 254 5 14 YES

MW = molecular weight; HBD = hydrogen bond donor; HBA = hydrogen bond acceptor; cLog P = octanol–water
partition coefficient; PSA = polar surface area; RB = rotatable bonds. AMES: YES = potential carcinogenicity,
NO = no concerns about carcinogenicity.

3.4. Pharmacophore-Based Virtual Screening

Virtual screening based on pharmacophores can address the search of compounds
with the same stereoelectronic characteristics as known active inhibitors/modulators. Thus,
according to the previous report [16], the pharmacophoric models were generated using the
GALAHADTM module, which seeks to identify the set of ligand conformations that have an
optimal combination of pharmacophoric similarity, stereo overlap, and low-conformational
energy [56]. From the training set, ten pharmacophoric models of triple inhibitors were
generated. Pharmacophoric models generated by ligands with energetically unfavorable
conformations were excluded [57,58]. In this context, four pharmacophoric models showed
an energy penalty (Energy > 100.0 kcal/mol) and were excluded from the other validation
steps. However, the exclusive use of this parameter was not enough to select a single
pharmacophoric model.

The PARETO value, which represents a normalization of the values of the quality
components of the pharmacophoric models, demonstrated that no pharmacophoric model
was statistically superior to another [59], as all values were equal to zero. It was necessary
to apply enrichment metrics. An important parameter to be evaluated in virtual screening
methods is the ability to differentiate active compounds (true positives) from inactive
compounds (false positives-decoys), based on the construction of the receiver operating
characteristic curve (ROC curve) and the Area Under the ROC curve (AUC ROC) [60].

Additionally, another factor to be considered when evaluating the performance of
pharmacophoric models is the predictive analysis of their ability to identify actives before
identifying false positives and assigning higher scores to true positives in the early stages
of the alignment process [25,61] with the help of early enrichment by Boltzmann-enhanced
discrimination of ROC (BEDROC), given that only a small part of the molecule library will
be acquired for biological tests.

Based on the AUC and BEDROC data, only one pharmacophoric model (AUC = 0.72
and BEDROC = 0.75) fulfils the necessary requirements for a reliable pharmacophoric model.

Molecular hybrids characterized by physical–chemical and toxicological filters were
aligned with the best triple pharmacophoric model previously built and evaluated [16].
Molecular hybrid G was the only one that aligned to the triple pharmacophoric model and
for this reason, it was selected (Figure 3).
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Figure 3. Representation of the triple model and molecular hybrid overlap (cyan spheres: hydropho-
bic centers; green: H-bond acceptor points; and red: positively charged center).

The triple pharmacophoric model has a positively charged center, three hydrogen
bond acceptor centers, and four hydrophobic centers, characteristics described as important
for activity against the enzymes [25,62,63]. The presence of the positively charged atom is
observed in compounds that can be metabolized by cholinesterases, being fundamental for
the interaction with the aspartate residues present in the binding site (Asp74 for AChE and
Asp70 for BChE). In addition, it can interact with the aspartyl dyad observed at the active
site of BACE-1.

3.5. Molecular Docking

After selection of the hybrid better aligned with the triple pharmacophoric model, molec-
ular docking was performed against the three pharmacological targets, using AutoDock Vina
1.1.2 [24], against AChE and BChE and GOLD 5.4.0 [28], against BACE-1 for the prediction
of ligand affinity for the site and binding efficiency. After molecular docking, a visual
inspection of the best-scoring pose and the crystallographic ligand was carried out for each
target using PyMOL™1.3 [48] (Figures 4–6).

Figure 4. Representation of the intermolecular interactions of the crystallographic ligand dihydrotan-
shinone I (A), and the best-scored pose for AChE with molecular hybrid (B).
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Figure 4A shows the crystallographic ligand, dihydrotanshinone I (4M0E), which is
stabilized at the binding site through a π-π bond with Trp286, the oxygen atom attached to
the aromatic ring of the ligand acts as hydrogen bond acceptor with Phe295 and Tyr124.
Hydrophobic interactions with residues Trp286 and Tyr341 are also observed. Upon
evaluating the interactions of the molecular hybrid (Figure 4B), it was possible to observe
a π-π bond between the ring attached to Tyr341, the ring of the molecular hybrid, and
Trp286, whereas the hydrophobic interactions occur with Leu76, Tyr341, and Leu289. This
profile is considered important for AChE inhibition since interactions of the same nature
involving Trp286 are observed in AChE inhibitors with inhibitory activity at the nanomolar
scale [64].

The crystallographic ligand of BChE (4BDS), tacrine, which was one of the first drugs
to be used for the treatment of patients with AD, the heteroaromatic ring of the ligand
establishes π-π stacking interactions with the aromatic nuclei of the residue Trp82 and also
establishes hydrophobic interactions with residue Trp82. The intermolecular interaction
map of the molecular hybrid (Figure 5B) shows that hydrophobic interactions occur with
Asp70, Gly116, Trp82, Gln119, Thr120, Phe329, and Gly117. Hydrogen interactions also
occur with Thr120, Glu197, Ser198. The interactions observed, both in the ligand and in the
hybrid, with Trp82 residues present in the anionic site prevent the substrate from reaching
the catalytic site. In the interaction map of the hybrid, it is also possible to observe an ionic
interaction with Asp70, which is part of the peripheral site. In addition, other interactions
with Thr120, Phe329 have been observed in other potent BChE inhibitors [65].

Figure 5. Representation of the intermolecular interactions of the crystallographic ligand tacrine (A),
and the best-scored pose for BChE with molecular hybrid (B).

The crystallographic ligand of BACE-1 (6UWP) establishes hydrogen interactions
between the nitrogen atoms of the thiazinemidine ring with the catalytic residues Asp32
and Asp228. A hydrogen interaction between the nitrogen of the side chain and Gly230 and
the pyrimidine ring establishes a hydrophobic interaction with residue Val69. The molecular
hybrid (Figure 6B) performed a π-π bond between the hybrid ring and the phenolic ring
of Tyr71, and hydrophobic interactions occur with residues Arg128, Val69, Thr72, Gln73,
Tyr71, Ile110, Trp115. Previous reports have shown that interactions with Asp32 and
Asp228 are essential for biological activity. Interactions with Tyr71, which were observed
in the molecular hybrid, are essential for inhibiting activity as they promote a change in
conformation and prevent the substrate from reaching the catalytic site. Interactions with
the Val69, Ile110, and Trp115 are also cited as important for inhibiting BACE-1 [66].
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Figure 6. Representation of the intermolecular interactions of the ligand (1R,2R)-2-[(4aR,7aR)-2-
amino-6-(pyrimidin-2-yl)-4a,5,6,7-tetrahydropyrrolo[3,4-d][1,3]thiazin-7a(4H)-yl]-N-[(1R,2R)-
2-methylcyclopropyl]methylcyclopropane-1-carboxamide (A), and the highest scoring pose for
BACE-1 with molecular hybrid (B).

3.6. Molecular Dynamics

Molecular dynamics (MD) is a computational technique capable of approaching bio-
logical phenomena, using simple approximations based on Newtonian physics to simulate
atomic movements, thus reducing computational complexity [18], and describing the vari-
ation of molecular behavior as a function of time [17]. The objective of MD in this study
was to evaluate the stability of the molecular hybrid at the active sites of AChE, BChE,
and BACE-1 and also to evaluate the pattern of interactions established in relation to
molecular docking.

Initially, the systems used in the MD simulations were evaluated for structural stability
through the root-mean-square deviation (RMSD), which provides information on the
variation of atomic positions compared to the starting structure. Low RMSD values suggest
the moment the system reaches stabilization [67].

The APO and complex systems (molecular hybrid linked to AChE, BChE and BACE-1)
were evaluated for RMSD for the main chain (backbone) along the trajectory (Figure 7).
As can be seen in Figure 7A, APO forms stabilized from 25 ns onwards, reaching few struc-
tural variations, and, therefore, the production phase was defined for data acquisition. In
addition, as can be seen in Figure 7B, the MD routines for the complexes showed stabiliza-
tion from 150 ns for AChE, BChE, and BACE-1. APO and complex systems have divergent
simulation times, as the equilibrium may vary according to inherent characteristics of
the binding between the protein and ligand. Thus, RMSD lower than 3.0 Å is considered
appropriate [17].

Figure 7. RMSD (backbone) of APO structures (A) and complexes of AChE, BChE and BACE-1 with
molecular hybrid (B) during molecular dynamics.
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RMSD analysis is considered a useful evaluation metric that considers protein flexi-
bility. In addition, the behavior of the binding-site residues was observed to evaluate the
atomic fluctuations of the residues individually through the root-mean-square fluctuation
(RMSF) calculation. For this reason, residual fluctuation graphs were generated for the
APO forms and compared with those of the respective complexes during the production
phase of previously defined by MD (Figure 8).

Figure 8. RMSF (Å) (backbone) of the APO structure and AChE complex with molecular hybrid
during the productive phase of molecular dynamics (A). RMSF (Å) (backbone) of the APO structure
and BChE complex with molecular hybrid during the productive phase of molecular dynamics (B).
RMSF (Å) (backbone) of the APO structure and BACE-1 complex with molecular hybrid during the
productive phase of molecular dynamics (C). Gray highlights correspond to active site regions.

As can be observed in Figure 8A, the atomic fluctuation of the complex with
AChE (RMSF = 0.9 ± 0.4 Å) is statistically similar to the fluctuation of the APO form
(RMSF = 1.2 ± 0.7 Å) (Figure 8A). The regions of the orthosteric site followed a similar
fluctuation profile both in the complexed form and in the APO form, which demonstrates
that there were no significant changes in the conformation of the site in the simulations.
Region A corresponds to residues Tyr72, Asn74, and Trp86. Region B corresponds to
residue Tye124. The regions identified by the letters C, H, and I had higher fluctuation.
The regions C (region of residues Ala160-Glu166) and H (Asp494-Ala497) correspond to
loop regions and region I (Leu540-Ala542) corresponds to the tip chain. All of them were
characterized by conformational flexibility.

The BChE showed RMSF values of 1.0 ± 0.4 Å and 0.8 ± 0.4 Å for the APO form
and of the complex, respectively, suggesting that the complex presents higher stability
(Figure 8B). As BChE changes its conformation through coordinated movements to allow
access to the substrate at the active site, the fluctuations are more evident for the APO to
form at the active site regions (A, B, D, E). In the complex form, substrate entry is blocked,
as movements are inhibited, and smaller fluctuations are observed. Regarding the C and F
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regions where the fluctuation peak is observed, in the C region (Ser210-Leu216) corresponds
to a loop region, and in the F region (Pro527-Val529), corresponds to the end of the chain,
which is characterized by conformational flexibility.

The BACE-1 exhibited RMSF values of 0.8 ± 0.6 Å and 0.9 ± 0.6 Å for the APO
form and the complex, respectively, showing similarity in their values. The regions B and
C that comprise the catalytic residues had low fluctuation, similar in the two systems,
demonstrating that there were no significant changes in the conformation of the site in the
simulations. Moreover, the higher fluctuations observed in the A (Pro-Val) and D regions
(Val312-Ser315) can be attributed to the loop regions.

To understand the stabilization process of the systems, it is necessary to investigate
the intermolecular interactions formed between the molecules and the amino acids at
the binding site. Non-covalent interactions are essential for the maintenance of protein
structure, and hydrogen bonds contribute to the maintenance of tertiary structure and
protein folding as well as molecular recognition [68]. As this type of bond can be transient
and directed, it is important that not only their occurrence be evaluated, but also their
duration/permanence in the simulation time and by the pairs of atoms that make those
interactions [46]. Thus, our findings showed a set of hydrogen bonds during the productive
phase of the simulations in the active sites of AChE, BChE, and BACE-1 and the hybrid
(Figure 9).

Figure 9. Time of permanence of hydrogen interactions (Hbond) in the active site of AChE, BChE
and BACE-1 during the productive phase and identification of the involved pairs. In the chart legend;
N: nitrogen atoms of the hybrid.

As can be observed in Figure 9, the AChE complex presents two hydrogen interactions
between the N3 nitrogen of the hybrid and the ASN87 residue alternating as a donor (1.60%)
and as an acceptor (22.16%); however, for a period greater than 10%, established. Residue
interactions do not influence catalytic activity, but stability and folding, as can be seen with
ASN289. It is known that interactions with these residues also occur with the cholinesterase
inhibitor Donepezil [69].

In the BChE complex, interactions with permanence are higher than 10% between the
N3 nitrogen of the hybrid and GLN71 (11.98%), and also between the N7 nitrogen of the
hybrid and ASN289 (15.17%). Interactions with GLN71 are also present in the interaction
map of the most representative structure in our study. Similar to ASN289 in AChE, GLN71
in BChE influences stability and folding as well.

In the BACE-1 complex, there were a total of six interactions of H, namely, between
the N5 nitrogen of the hybrid and the GLN73 residues, in one the residue appears as
a donor (1.00%) and in the other as an acceptor. (24.75%). There was an interaction between
the N3 nitrogen of the hybrid and the residues of ASP32, in one the residue appears
as a donor (8.98%) and as an acceptor (7.78%). There was also an interaction between
the N3 nitrogen of the hybrid and the residues ASP228, in one the residue is as a donor
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(8.98%) and in another as an acceptor (88.42%). However, the hydrogen bonds between
the residues and the hybrid are established for a period greater than 10%. Residues ASP32
and ASP228 are located in the active site of BACE-1 and are directly involved with the
catalytic mechanism [35,41,53]. Hydrogen interactions with GLN73 have been observed in
complexes with inhibitors of known activity against BACE-1, where it is possible to observe
the enzyme in a closed conformation that denies access to the substrate, this interaction is
also present in molecular docking.

Analysis of hydrogen bonding does not cover all the interactions that the hybrid can
make in the active site of each target. Other interactions can happen and collaborate with
the stability of the system. In order to evaluate these interactions, it was necessary to
select a representative structure, where an analysis was carried out through an appropriate
cut-off point that represented the conformational diversity of the complex during the
simulation [70].

The analysis using different cut-off points pointed out that the most suitable RMSD
value to be used was 1.1 Å since it presented a greater number of clusters with signifi-
cant diversity and more than 50% of the conformations were presented in the three first
groupings for the three systems [71].

The population of the three largest clusters (for the three targets) represented more
than 50% of the total conformations of the systems during the production phase. Thus,
it was possible to obtain the coordinates of the central structure for AChE (time = 162,700 ns)
(Figure 10A), BChE (time = 178,400 s) (Figure 10B), and BACE-1 (time = 160,000 ns)
(Figure 10C), which is representative of the most populous grouping. Furthermore, these
clusters were the most prevalent during the trajectory of the productive phase of the MD
simulation for the three targets.

Figure 10. Representation of the interactions of the hybrid complex plus the AChE target obtained
from the representative structure during the productive phase (A). Representation of the interactions
of the hybrid complex with BChE obtained from the representative structure during the produc-
tive phase (B). Representation of the interactions of hybrid “G” with BACE-1 obtained from the
representative structure during the productive phase (C).
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The interaction map of the representative structure of the AChE complex shows
hydrophobic interactions between the molecular hybrid and amino acid residues Val73,
Tyr77, Trp286, Gln291 and Leu76 and also hydrogen bonding with Asn87 (Figure 10A).
The interaction of hydrogen with Asn87 was also seen in the interaction established with
N3 of the crystallographic ligand. Moreover, the intermolecular interaction map of the
crystallographic ligand (Figure 4A) shows hydrophobic interaction with Trp286, and this is
characteristic of AChE inhibitors phthalazine derivatives with biological activity [72].

The interaction map of the most representative structure for BChE, hybrid “G”, shows
hydrophobic interactions occur with residues Gly117, Phe329, Val288, Trp82, Tyr332, Gln71,
Thr120, Ser79, Trp460, Ser72 (Figure 10B). Moreover, π-stacking interactions occurred
between rings [72], of the residues Tyr332 and Phe329. In addition, a previous report
showed that the Val288 and Tyr332 residues are located in the region close to the catalytic
residues [73,74]), which are responsible for interacting with the substrate at the active site.
Furthermore, the interaction with Trp82 was also observed in the crystallographic ligand
(Figure 5A) and prevents the substrate from reaching the catalytic site [52,72].

The interaction map of BACE-1 with hybrid “G” shows hydrogen interactions es-
tablished with the catalytic residue Aps228 (Figure 10C), which is also present in the
crystallographic ligand interaction map (Figure 6A). This interaction was also repeated in
Hbond with a residence time longer than 80%. Interactions with Asp32 and Asp228 residues
are essential for biological activity, as they are present at the catalytic site. π-stacking inter-
actions occur with residues Tyr198 and Phe108. Hydrophobic interactions with the rings of
this group occur with residues Tyr71, Thr72, Ile226, Val332, Ile110, and Phe108. Interactions
with the amino acid residue Tyr71 are essential for inhibiting activity as they promote
a change in the conformation of the site and prevent the substrate from reaching the site,
residues Phe108 and Ile226 contribute to the stability of the ligand-macromolecule complex
and they have been observed in previously described MD simulations [75,76]. Interactions
with the amino acid residue Ile110A are cited as important for the inhibition of BACE-1 [66].

According to the data obtained, molecular hybrid G has the essential stereo-electronic
requirements for affinity with the three targets, AChE, BChE, and BACE-1.

Due to hepatotoxicity being one of the main side effects associated with anti-AD drugs,
the cytochrome-inhibition values related to Molecular hybrid G were then calculated.
It used the same pkCSM server [33] that characterized and evaluated the hybrids in the
Physicochemical Filters step. The data obtained were that the compound acts as a CYP2D6
substrate; CYP3A4 substrate; CYP2C19 inhibitor; CYP2C9 inhibitor and CYP3A4 inhibitor.
From the analysis of the results, it is necessary to emphasize the attention warranted toward
the concomitant use of other drugs, as there may be drug interactions.

4. Main Limitations of This Work

The use of computational techniques to select molecules obeying proper stereo-
electronic requirements and binding at the target site is important for the identification of
inhibitors. Despite the advantages offered by computational techniques, some limitations
are inherent.

Despite compound G, in addition to exhibiting some physical–chemical limitations
and high-structural complexity, it presents important molecular interactions against the
inhibition of targets.

However, analyses carried out by [77], on a set of compounds in addition to the chem-
ical space proposed by the rules of Lipinski and Veber, demonstrated that they were orally
bioavailable. The observation that ligands for difficult targets have higher MW and greater
lipophilicity than highly explored classes lends further support. Synthetic chemistry and
purification challenges associated with iterative and exhaustive modifications of complex
molecules must also be considered, especially for natural product leads. Recent and future
advances in synthetic methods may reduce this concern [78].
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5. Conclusions

This study designed a hybrid compound capable to inhibit the three molecular targets
proposed to be associated with the disease. This goal was reached using a set of molecular
modeling tools, docking, virtual screening, and molecular dynamics simulations. Thus, the
use of a generic algorithm by GOLD, which has the ability to generate satisfactory solutions
and score functions, allowed molecular docking against BACE-1. In addition, AutoDock
Vina allowed docking to AChE and BChE. In other words, our study showed that docking
methodologies are structure dependent; therefore, requiring evaluations such as redocking
and ROC curve.

Virtual screening followed by the analysis of binding efficiency selected eleven frag-
ments for AChE, twelve fragments for BChE, and fifteen fragments for BACE-1. Further
analysis of the position of these fragments in the active site reduced those numbers to four
fragments for AChE, seven fragments for BChE, and eight fragments for BACE-1.

The interactions of these fragments occurred with the same residues of the active sites
of each enzyme observed with the crystallographic ligands. Molecular hybridization of
those fragments generated a structure capable of an alignment with the triple pharma-
cophoric model with QFIT > 27.00. During MD simulations, it was shown that the presence
of the hybrid G at the active site in all complexes (for the three targets), stabilized the
system, resulting in lower residue fluctuations and lower RMSD values in the production
phases of the complexes when compared to the APO forms.

The computational techniques described, when employed in a hierarchical process,
enabled the selection of molecules with proper stereo-electronic requirements for an affinity
towards the three targets, and suggest that molecular hybrid “G” bears the potential to be
a triple inhibitor of those enzymes. Future steps involve the synthesis and evaluation of
biological activity for validation of our triple inhibitor model. Finally, our findings suggest
a multi-target molecule for the treatment for Alzheimer’s disease, which can ultimately
lead to an increased quality of life for affected patients.
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Abbreviations
The following abbreviations are used in this manuscript:

ACh Acetylcholine
AChE Acetylcholinesterase
BChE Butyrylcholinesterase
AD Alzheimer’s disease
APP Amyloid precursor protein
BASE-1 β-secretase 1
CADD Computer-aided drug design
CG Conjugate gradient
CNS Central nervous system
MD Molecular dynamics
RMSD Root mean square deviation
RMSF Root mean square fluctuation
ROC Receiver operating characteristic
SD Steepest descent
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