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Supplementary Materials 

Synthesis procedures 
 

PVP has been produced via high-pressure (HP) thermally-initiated free-radical 

polymerization (FRP) according to the procedure previously reported by some of us (0.01-

0.15 wt% of AIBN) [1]. In this work, a similar methodology (0.5 wt% of AIBN) was used for 

PVP-OH except that 2-isopropoxyethanol (100 wt% in respect to monomer) was added to act 

as a solvent and a chain transfer agent. The polymerization process was conducted at p=250 

MPa, T=60 0C within 3h (see Scheme S1). PVP-OH sample was purified by vacuum 

evaporation, followed by chloroform dissolution and precipitation in cold diethyl ether. 

Purification using a chloroform-diethyl ether solvent system was repeated four times. The 

resulting precipitate was collected by filtration and dried over vacuum to a constant mass.  
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Scheme S1. Synthetic pathway for the production of PVP-OH.  

NMR analysis 

The PVP-OH structure has been confirmed by 1H and 13C NMR analysis (⁓ 40 mg 

in 0.8 mL deuterium oxide). VP conversion was calculated from 1H NMR spectrum (CDCl3) 

registered for the sample taken from the reaction mixture by comparing the integral areas of 

the protons of the VP (1H, δ=7.11 ppm) in reference to the methylene protons peaks adjusting 

to the lactam ring of both VP and PVP (8H, δ=1.85-2.55 ppm). As demonstrated in Figure 

S1a (1H NMR, D2O), despite the signals assigned to PVP that is δ=1.42-1.84 (2H, -CH2-CH-, 

the main chain); δ=1.80-2.08 (2H, -CH2-CH2-CH2-); 2.10-2.52 (2H, -CH2-C=O); 3.42-3.90 

(1H, -CH2-CH-,  the main chain); 2.90-3.40  (2H, -CH2-N-), also the hydroxyl-chain-end –

CH2OH signal at δ=2.56 can be visible. Referring, in turn, to the 13C NMR analysis (see 

Figure S2a among the signals characteristic for PVP, that is δ=179.5 ppm (C=O), δ=42.5-48.5 

ppm (CH2-CH-, the main chain), δ=33.9-37.7 ppm (-CH2-CH-, the main chain), δ=31.8-32.9 

ppm (O=C-CH2-CH2-CH2-N-), δ=19.2 ppm (-CH2-CH2-CH2-), a weak signal at 62.02 ppm 

assigned to hydroxyl-chain-end has appeared (CH2OH). Moreover, it should be added that 

commercial PVPs can also be terminated with the hydroxyl group due to the presence of the 

water as a polymerizing medium and H2O2 initiator. This situation was observed, for example, 

in commercial PVP Mn=10.0 kg/mol [2]. Notably, this peak has not been visible in both the 
1H and 13C NMR spectra of the commercial PVP K90, see Figure S1b and Figure S2b, 

respectively. We previously reported a similar result for the self-synthesized PVP in bulk [1]. 
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Figure S1. 1H NMR spectra (D2O) of (a) self-synthesized PVP-OH, and (b) commercial PVP K90. 

 

Figure S2. 13C NMR spectra (D2O) of (a) self-synthesized PVP-OH, and (b) commercial PVP K90. 
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13C NMR assignments of triad and tetrad stereosequences  

          The PVP microstructure (tacticity) has been evaluated from the 13C NMR analysis 

performed in D2O. According to previous reports, the intensities of the different peaks were 

determined by peak deconvolution [3,4]. Note that D2O solvent was applied due to more 

clearly separated signals than those visible in CDCl3. The expanded carbonyl region allowed 

us to determine triad sequences (see Figure 2, main manuscript). In addition, based on the 

report [4], we thoroughly evaluated tetrad sequences from the β-methylene signals. As shown 

in Figure S3, the PVP K90 sample is dominated mainly by the r-centred tetrads (mrm, mrr), 

and such a phenomenon was previously reported for PVP prepared in aqueous solution [5]. In 

turn, PVP samples synthesized in bulk HP thermally-initiated methodology show similar 

tetrads sequences (irrespective of their Mn) on those reported for PVP K90, but with slightly 

higher content of isotactic fractions. This effect can directly result from the compression of 

the polymerizing mixture. More interesting, the PVP-OH sample, although prepared in a HP 

solvent-assistant FRP methodology, is mainly dominated by isotactic fractions with a 

relatively high content of syndiotactic ones, which, as we assume, can be a result of 

simultaneous action of both internal and external factors as a polar solvent and high-pressure, 

respectively.  
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Figure S3. The content of tetrad fractions determined from β-methylene protons (13C NMR, D2O). 
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Size exclusion chromatography (SEC) analysis  
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Figure S4. SEC traces of different PVPs used as matrices for FL (DMF+ 10mmol LiBr). 
 

As shown in Figure S4, all self-synthesized PVPs obtained by the high-pressure methodology 

reveal symmetric and monomodal peaks shape demonstrate greater control over the 

polymerization process concerning the atmospheric pressure methodology. Moreover, in the 

case of the commercial PVP K90 sample, a high low-molecular-weight tail can be visible, 

proving the relatively high content of low Mn fraction in the synthesized sample. Dispersities 

of PVP K90 (Mn=109 kg/mol), PVP (Mn=190 kg/mol), PVP (Mn=90 kg/mol), and PVP-OH 

(Mn=190 kg/mol) took values Đ=1.78, Đ=1.86, Đ=1.47, Đ=1.63, respectively. 

 Non-isothermal calorimetric data 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure S5. DSC curves obtained for binary mixtures of FL with PVPcomm. (a), PVP Mn=90 kg/mol 
(b) and PVP-OH Mn=190 kg/mol (c). Thermograms were measured with the indicated heating rates. 
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Figure S6. The relative degree of crystallinity obtained from Equation (4) at different 𝜙, presented as 
a function of temperature (a). Time dependence of crystallization degree determined by transforming 
the temperature scale into the time scale using Equation (5) (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure S7. The relative degree of crystallinity versus time for binary mixtures of FL with 10 wt% of 
PVPcomm. (a), PVP Mn=90 kg/mol (b) and PVP-OH Mn=190 kg/mol (c). The solid lines represent 
double Avrami fits. 
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Infrared data 
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Figure S8. ATR-FTIR spectra of amorphous (red) and crystalline (black) FL samples presented in the 
high- and low-frequency ranges (3600-2600 cm-1 and 1800-400 cm-1, respectively).  
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Figure S9. A comparison of the FTIR spectra of neat FL (black), PVP (red) as well as FL-polymer 
binary mixtures with 10% content of the excipient (blue) at 293K in the high- and low-frequency 
ranges (left and right, respectively). 
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