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Abstract: Traditional herbal medicine (THM) is a “core” from which modern medicine has evolved
over time. Besides this, one third of people worldwide have no access to modern medicine and rely
only on traditional medicine. To date, drugs of plant origin, or their derivates (paclitaxel, vinblastine,
vincristine, vinorelbine, etoposide, camptothecin, topotecan, irinotecan, and omacetaxine), are very
important in the therapy of malignancies and they are included in most chemotherapeutic regimes.
To date, 391,000 plant and 14,000 mushroom species exist. Their medical and biochemical capabilities
have not been studied in detail. In this review, we systematized the information about plants and
mushrooms, as well as their active compounds with antitumor properties. Plants and mushrooms
are divided based on the regions where they are used in ethnomedicine to treat malignancies.
The majority of their active compounds with antineoplastic properties and mechanisms of action
are described. Furthermore, on the basis of the available information, we divided them into two
priority groups for research and for their potential of use in antitumor therapy. As there are many
prerequisites and some examples how THM helps and strengthens modern medicine, finally, we
discuss the positive points of THM and the management required to transform and integrate THM
into the modern medicine practice.

Keywords: traditional medicine; ethnomedicine; medical plants and mushrooms; cancer; anti-
neoplastic compounds; medical herbs; pharmacology; standardization; bioavailability; safety

1. Introduction

Cancer is the second greatest cause of mortality worldwide, accounting for nearly
10 million deaths in 2020 (World Health Organization, www.who.int/; accessed on 16 Febru-
ary 2022). Thus, this continuous challenge forces scientists to search for new antineoplastic
drugs and approaches, and investigate their combinations, to better fight various types
of malignancies.

Chemotherapy in combination with surgery is now the standard way to treat cancer.
We analyzed the National Institutes of Health (NIH) list of cancer chemotherapeutic drugs
(https://www.cancer.gov/about-cancer/treatment/drugs; accessed on 16 February 2022).
Twenty-six of them (Table S1) are natural compounds derived from plants, actinomycetes,
and marine organisms, or semi-synthetic derivates of these compounds. Despite the fact
that this number does not look impressive, these compounds constitute the most frequently
used drugs: doxorubicin, paclitaxel, docetaxel, etoposide, camptothecin, irino- and topote-
can, vinblastine, vincristine, and vinorelbine. They are included in most chemotherapeutic
regimes (Table S2) and have made a key impact on the chemotherapeutic cancer treatment.
The chemical manipulation of these compounds continues to create new improved drugs.

However, our planet harbors a great biodiversity with about 391,000 plant species
worldwide. These individual species produce tens of thousands of chemical compounds
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with a wide range of biological activities. Undoubtedly, dozens of them possess antineo-
plastic activity and may become important anticancer therapeutics. This assumption is
confirmed through the examples of the biological compounds already mentioned above,
which have been successfully applied to cure various types of malignancies.

On the other hand, up to 2 billion people (approximately one third of the population)
have no access to modern medicines. For instance, in high-income countries, where
comprehensive medical services are generally accessible, more than 80% of children with
cancer are cured, opposed to less than 30% in low- and middle-income countries [1]. Under
these circumstances of economic disparity, people from poor countries have no other choice
but to rely on traditional medicine, which represents empirically collected evidence over
many hundreds of years. Firstly, traditional medicine relies on the application of plants
which are reservoirs of thousands of biologically active compounds. Thus, different cultures
have adapted to use certain plants in their region to treat a spectrum of illnesses, including
malignancies.

The use of traditional medicine is beneficial not only due to a lack of access to modern
medicine, but also through sociocultural factors. The best examples are India, China,
and Japan.

The Ayurveda medical system, which has roots that are millennia old, is based on a
holistic (“whole-body”) healing system, which deals not only with the body but also with
the mind and spirit [2,3]. A part of this system is associated with medical plants. Ayurvedic
formulations are often complex and consist of several herbal-mineral ingredients, and
are governed by well-described pharmacological principles of preparation, compatibility,
and administration. With the support of the Government of India, a book in two parts—
Ayurvedic Pharmacopoeia of India (API)—has been established. Part I (Volumes 1–6) of
it contains information about natural substances (medical plants, minerals), whereas part
II contains healing formulations which can be created from the constituents described in
part I.

Ayurveda has been very popular in India for millennia and is of considerable interest
all over the world. It applies dozens of plants with strong antineoplastic properties, which
are now the focus of anticancer research [2,4].

Another example is traditional Chinese medicine (TCM). This is also a holistic body
approach, which is aimed at restoring the body’s balance and harmony between the natural
opposing forces of “yin” and “yang”, which can block the free circulation of internal
‘’qi” energy and cause disease. Traditional Chinese medicine includes acupuncture, diet,
herbal therapy, meditation, physical exercise, and massages. The material part of TCM has
partially evolved into Chinese proprietary medicine (CPM). This takes the form of a finished
product, such as a capsule, tablet, or injection, all featuring the effective ingredients for use
are documented in TCM [5]. CPM is a modern from of TCM which, due to standardization,
can be used in modern medicine [6]. China’s government strongly supports this, exports
CMP products to different countries for trials and therapy, and sets up research partnerships
with the big international pharmaceutical companies [7,8].

Originally based on traditional Chinese medicine, Japan has created its own traditional
medical system—Kampo—which has then evolved separately from TCM. Thus, Kampo
is a uniquely Japanese form of medicine. It had been Japan’s primary health care system
for over 1500 years. Despite the government approval of the Medical Care Law in 1874,
which called for the adoption of the German model of health care and legitimized only
western medical licenses, Japanese physicians continued to use and develop Kampo. Thus,
148 Kampo formulation extracts, 241 crude drugs, and 5 crude drug preparations are
reported to be officially approved by National Health Insurance system, as well as under
the Good Manufacturing Practice (GMP) Law, which was established by the government in
1987 to ensure that all Kampo products are of uniformly high quality [9]. Kampo is mainly
based on plant extracts and formulations and is prescribed in line with modern drugs to
treat various diseases including cancer and takes part in various clinical evaluations [10–16].
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All of these traditional medical systems use herbs to a large extent. Despite these three
examples, various other regions have their own medical traditions where herbs play most
important roles (the traditional medicine of Maya, New Guinea, Philippines, etc.), which
are not discussed in this paper but have been described in detail in several reviews [17–19].

Many of the herbs and formulations empirically defined over the centuries have also
proven to be effective in preclinical and clinical investigations. They affect tumor cells
both directly and through the modulation of the immune system, as well as through in-
terrupts with cellular signaling pathways, miRNAs, and metabolic pathways [20–22], etc.
We discuss here the antineoplastic properties of folk medicine plants and mushrooms;
the molecular mechanisms of their bioactive constituents; and the advantages and limita-
tions of using plants, mushrooms, and their active compounds in parallel with modern
antineoplastic drugs.

We collected information from the common databases (MEDLINE/PubMed, Google
Scholar, Web of Science, Scopus, Elsevier, SpringerLink, Wiley Online Library), as well as
from several books and dissertations, and open databases.

Below, we summarized the information about some plants and mushrooms which
have been applied by ethnomedicine to cure malignancies on five continents for a long time.
We considered their antineoplastic properties and will focus on the molecular mechanisms
of their activity. Finally, based on the data collected, we suggest two priority groups from
the selected plants, mushrooms, and their bioactive compounds, for research and potential
use in antineoplastic therapy.

2. Cancer Features Affected by Natural Drugs

There are common features of malignant cells which are well established (Figure 1) [23].
It is clear that both the genetic background, and somatic factors including cell-to-cell inter-
actions, immunity, humoral factors, microenvironmental conditions, metabolic alterations,
and others, are orchestrated during neoplasia. As a result, the altered balance in the equi-
librium between oncogenes and tumor suppressors favors malignization. This disbalance
results in uncontrolled cell division, resistance to apoptosis, metabolic rewiring, altered
interactions with the microenvironment, as well as the acquisition of the ability to migrate
and invade neighboring tissues, induce angiogenesis, evade the immune system, and
become resistant to therapeutics, etc.

The genetic background is associated with “switch-on” mutations in gene coding for
important oncogenes and “switch-off” mutations in tumor suppressors. Many known
“switch-on” mutations of oncogenes, which are frequently observed in different neopla-
sia, lead to the constant activation of signaling pathways, including phosphoinositide
3-kinase/AKT serine/threonine kinase 1 (PI3K/AKT), Kirsten rat sarcoma virus/mitogen-
activated protein kinases (Ras/MAPKs), Wnt family member 1, and others, which in turn
drive and maintain cancer development. On the other hand, “switch-off” mutations in
tumor suppressors, such as p53 (tumor protein p53), retinoblastoma (Rb), phosphatase
and tensin homolog (PTEN), von Hippel–Lindau (VHL) tumor suppressor, and CDK4
inhibitor P16-INK4 (p16INK4), turn off their functions and mitigate the ability to combat
malignization [24]. This results in the abnormalities within signaling pathway networks.

Certainly, all of the signaling pathways in our cells are involved in neoplasia develop-
ment including PI3K/AKT, the extracellular signal-regulated kinase/mitogen-activated
protein kinase (ERK/MAPK), Wnt, the Janus kinase/signal transducer and activator of
transcription (JAK/STAT), transforming growth factor beta 1 (TGF-β), Hippo (mammalian
Ste20-like 1 and 2) kinase—yes-associated protein 1 and transcriptional coactivator with
PDZ-binding motif (Hippo—YAP/TAZ), Notch, and others [25]. One of the key roles in ma-
lignant cells is occupied by the PI3K/AKT and ERK/MAPK signaling pathways. Different
biological stimuli and other signaling pathways converge on them. Thus, various growth
factors, such as the epidermal growth factor (EGF), the fibroblast growth factor (FGF), the
insulin-like growth factor (IGF), and the vascular endothelial growth factor (VEGF), bind to
and activate their tyrosine kinase receptors which induce the signal transduction following
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the involvement of PI3K/AKT and ERK/MAPK signaling [26,27]. Thereby, the inhibition
of these pathways is usually associated with the attenuation of tumor growth, migration,
invasion, as well as the induction of apoptosis which makes them desirable drug targets.
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Figure 1. Main “hallmarks” of cancer.

AKT activates the master regulator of anabolism (mTOR) and deactivates AMP-
activated protein kinase (AMPK) which is the inducer of autophagy. The inhibition of
mTOR is one of the emerging successful strategies to kill malignant cells [28]. However,
autophagy possesses a dual role in cancer. While it may contribute to cell death, it may also
have cancer promoting properties including chemoresistance [29].

AMPK and mTOR are closely related to metabolic rewiring which is another “hallmark
of cancer”. This supplies cancer cells with the materials needed for growth and provides an
adaptational plasticity to changing conditions [30–33]. As an antineoplastic strategy, the use
of metabolic inhibitors first started in the 1950s [34]. Now, their use during successful cancer
therapies is once again a hot topic for discussion. The metabolic inhibitors which have
been used clinically are methotrexate and its analogs, as well as gemcitabine, 5-fluouracil,
lonidamine, AZD3965, telaglenastat, and others [32]. Moreover, new drugs have been
designed, and preclinical and clinical studies are underway.

The balance between the expression of oncogenes and tumor suppressors is also
regulated by epigenetics [35,36]. DNA and histone methyl transferases, histone deacety-
lases, and other chromatin-modifying participants are important targets for anti-cancer
therapy [37–39].

As uncontrol growth and a resistance to programmed cell death are two major cancer
cell features, the blocking of cell division and the induction of their death are the two
key attributes of any chemotherapeutic methods. Several strategies can be implemented
for this. The first relies on DNA-damaging agents, which stop the cell cycle and induce
apoptosis (doxorubicin, cisplatin, etoposide, camptothecin, and others). Another way is
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based on mitotic poisons disrupting microtubule dynamics (paclitaxel, vinblastine, and
vincristine). One more is the application of targeted therapy—drugs which specifically
inhibit important modulators of the cell cycle and apoptosis. Some examples of them
are tyrosine kinase inhibitors (TKIs—gefitinib, lapatinib, and sunitinib [40]), inhibitors of
cyclin-dependent kinase (CDK—palbociclib, ribociclib, and abemaciclib [41]), inhibitors of
antiapoptotic proteins B-cell lymphoma 2 (Bcl-2), and myeloid leukemia cell differentiation
protein (Mcl-1—venetoclax and navitoclax) [42].

Upon cancer, the main reason of death is metastasis which disrupts the functions
of organs. The initiation of metastazing is associated with the epithelial–mesenchymal
transition (EMT). Epithelial cancer cells which underwent EMT become able to invade
surrounding tissues and blood and lymph vessels, disseminate across the body, extravasate
into new related niches, and establish secondary tumors. To create new tumor heaths,
cancer cells undergo the reverse to a EMT process—mesenchymal–epithelial transition
(MET) [43]. Today, it is suggested that malignant cells dwell in hybrid E/M state which
allows them to switch between EMT and MET if required [43,44]. The targeting invasive
and migration properties of tumor cells is very important for all chemotherapeutic regimes.

Cancer stem cells (CSCs) are a small subpopulation of cells within malignancy groups
with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted
into an animal host [45]. Generally, they are resistant to chemotherapeutics, possess tumor-
initiating and metastasis-initiating capacities, and are responsible for tumor recurrence and
development [46,47].

Immunity plays a critical role in the clearance from neoplasia. Various molecular
mechanisms make the anticancer response of immune cells ineffective, e.g., macrophages,
as well as B- and T- lymphocytes. Thus, stimulating the activity of immune system by
various mechanisms represents a very promising approach [48,49].

In this review, we aimed to focus on those plants and mushrooms, whose biological
activity in cancer treatment has been proven, and discuss the mechanisms of their action
using the knowledge of modern molecular medicine.

3. Plants from Different Continents Used in Ethnomedicine for the Treatment
of Malignancies

Ethnobotanical and ethnomedicine studies point to medical plants with certain prop-
erties. Below, we summarized data on plants with anti-neoplastic capabilities which are
implicated to heal cancer by indigenous people from five continents.

3.1. Africa

Due to its weak economic development, Africa is a continent with an elevated level of
poverty. For most people, modern methods of cancer treatment are not available, such as
chemotherapy, irradiation, and surgical resection [50,51].

The most famous example of African plant with anticancer properties is Madagascar
periwinkle plant, Catharanthus roseus G. Don (Syn. Vinca roseus Linn), which is a source of
vincristine and vinblastine. These compounds are often used to treat different malignancies
worldwide.

Approximately 45,000 plant species grow in Africa [52] with the richest species diver-
sity maximum in countries of West Sea coast from Gabon to Guinea, South African republic,
and Western Africa (spanning Kenya, Tanzania, Uganda, Ethiopia, and South Sudan) [53].

According to a number of reviews, about a hundred of plants with anti-neoplastic
properties are reported by ethnomedicine practitioners and are still used for a cancer
treatment. However, for most of them, extremely limited information about their efficiency
and selectivity in pre-clinical studies, active compounds, and molecular mechanisms of
action is currently available.

Acacia nilotica (the Fabacea family, “Egyptian mimosa”) which grows almost every-
where in Africa is widely used in traditional African medicine. It has been shown to possess
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antispasmodic, anti-inflammatory, antithrombotic, antioxidant, antidiarrheal, antibacterial,
antihypertensive, and anticancer properties [54].

The seeds of this plant are used by people to treat breast, colon, head, and neck
tumors [55]. Several in vitro and in vivo studies have demonstrated anticancer properties
of alcohol and methanol extracts derived from A. nilotica. This plant turned out to be toxic
predominantly to a breast cancer model (MCF7) than for normal liver cells [56]. Other
researches have shown anticancer activity of this plant against glioblastoma [57], colon
cancer [58], and other types of malignant cell models [55].

In vivo study has shown the significantly decreased development of solid and ascitic
tumors induced by Dalton’s ascitic lymphoma in BALB/c mice [59], as well as Helicobacter
pylori-induced colon tumors [60].

Foremost, the well-known chemicals quercetin, kaempferol, and ethyl-gallate are
thought to be associated with antitumor and other activities of A. nilotica [54,61,62]. Pyro-
gallol was also shown to be the important anticancer chemical of A. nilotica which was able
to strongly reduce colon tumors in mice models [58]. For all of these individual compounds,
the significant anti-neoplastic properties have been demonstrated.

A detailed survey of A. nilotica traditional application, phytochemistry, and pharma-
cology is presented in review [54].

Guiera senegalensis is a small shrub (the Combretaceae family) which grows in the
savannah region of West and Central Africa. It is widely used in African traditional
medicine to treat different ailments including malignancies [55,63].

A number of phenolic compounds which may mediate antitumor effects of G. senegalis
were identified: gisorhamnetin, eupatorin, alpinumisoflavone, procyanidin B3, syringin,
gallic acid, galloylquinic acid derivatives, quercetin, rhamnetin, kamferol, myricetin, (−)-
epicatechin, and alkaloid guieranone A, etc. [63,64].

Plant-derived aqueous and methanolic extracts were cytotoxic against breast can-
cer [64]. The alkaloid guieranone A isolated from G. senegalensis demonstrated cytotoxic
activity rather similar to doxorubicin against a panel of malignant cell models but not to
normal hepatocytes [65]. The authors have also demonstrated the significant inhibition
of angiogenesis. The study of silver nanoparticles derived from the leaves extract of G.
senegalensis has shown a significant antiproliferative effect on human prostate (PC3), breast
(MCF7), and liver (HepG2) cell models [66].

Thus, despite the antineoplastic activity of this plant, there are still not many studies
devoted to this subject. However, the composition of chemicals with anti-cancer properties
makes this plant perspective for cancer research.

Combretum caffrum is the Eastern Cape South African bushwillow tree. The bark
of this plant was shown to contain combretastatins—closely related stilbenes (combretas-
tatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C), and
macrocyclic lactones (combretastatins D).

Three common structural features of combtretastatins are: trimethoxy “A”-ring, a
“B”-ring containing substituents o at C3’ and C4’, and (often) an ethene bridge between the
two rings, which provides necessary structural rigidity and allows synthesis of different
derivates [67].

The most promising and frequently tested compound in preclinical and clinical tri-
als is water-soluble prodrug phospho-combretastatin A4 (CA-4P) which can be rapidly
metabolized to combretastatin A4 (CA-4). This molecule exhibits anti-tumor properties
by the attenuation of proliferation, and by targeting tumor vasculature paves [68]. It has
a similar structure to colchicine, and binds tubulin at the same site. Moreover, CA-4 is
effective against multidrug-resistant (MDR) cancer cells. A comprehensive overview of the
structure, probable mechanisms of action, and potential applications is described in this
review [68].

There are several detailed reviews systematizing the use of specific plants for the
treatment of oncology in various regions of Africa: Western Africa [51,69], Central, Eastern,
and North Africa [50], and South Africa [70–73].
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There is no doubt that Africa, with its huge plant species diversity, is fraught with
many currently unexplored plants and their biologically active compounds with strong
antitumor properties. Some other African plants and their chemicals with anti-neoplastic
activity are listed in Table 1.

Table 1. Some African plants and their compounds with anti-neoplastic activity.

Plant Active Compounds Effects References

Aristolochia ringens Triterpenes
Cytotoxic effects of root extract against several

cancer cell lines, solid tumors, and leukemia
models in vivo.

[74,75]

Beilschmiedia acuta Flavonoids, saponins,
alkaloids

Bark-derived extract inhibited proliferation and
induced apoptosis in human leukemia

CCRF-CEM cells, but was less toxic to human
normal hepatocytes AML12 cells.

[76]

Dorstenia psilurus Alkaloids, phenolic compounds,
flavonoids

Cytotoxic and anti-proliferative effects in HeLa
cancer cells; caspase 3/7 up-regulation and

induction of apoptosis in HL-60 cells.
[77,78]

Echinops giganteus Brominated oleanolide Root extract inhibited proliferation and induced
apoptosis in leukemia CCRF-CEM cells. [79,80]

Imperata cylindrica
Saponins, flavonoids

Antineoplastic activity:
arundoin, daucosterol

Cytotoxicity against the panel of cancer cells.
Root extracts induced apoptosis, increased

caspase 3/7 activity, and significant
down-regulated MMPs.

[77,81]

Piper capense Alkaloids, polyphenols,
saponins

Seeds extracts were cytotoxic for a number of
cancer cell lines. Fruits extracts induced the
shrinkage of tumor size in animal models by
inhibiting the development of VM tubes and

microvessel density.

[79,82]

Polyscia fulva Anthocyanins, flavonoids, triterpenes,
saponins

Roots extracted inhibited proliferation and
induced apoptosis in leukemia CCRF-CEM cells

via the enhanced production of ROS. It was
significantly less toxic for human normal

hepatocytes AML12 cells.

[76]

According to a review by Alves-Silva and colleagues [28], the frequency with which
different parts of the plant are used for cancer treatment: seeds (27%), hole aerial parts of
plants (23%), leaves (22%), followed by roots (8%), fruits (7%), flowers (4%), bulbs (2%),
cortex (2%), stamen (2%), rhizome (1%), hole plant mass (1%), and rinds (1%). For sure,
the long-standing ethnical knowledge about the use of specific parts of a particular plant
may reflect the distribution and amount of biologically active compounds among the plant.
As stated by the same authors, the preparation methods for consumption are as follows:
decoction (30%), grind with honey (24%), infusion (20%), brut (6%), extraction (4%), powder
(4%), oil (3%), pomade (2%), ingestion (2%), cataplasm (1%), chewing (1%), washing (1%),
mouth washing (1%), and inhalation (1%). Diverse types of preparation can be associated
with the specific assimilation of biologically active compounds required across the body for
treatment certain types of malignancies.

3.2. South America

South America is the territory of growth for about 82,000 plant species [83] which
is approximately 1.6 times more than in Africa. However, the degree of study of their
biochemical diversity and antitumor properties is similar to Africa.

Tabebuia impetiginosa (“Lapacho”, the Bignoniaceae family) is a tree with rosy or
purple flowers widely distributed among South and Central America. This is a very
important medical tree which is used to treat inflammatory diseases, bacterial and viral
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infections, snake’s venom, and cancer [84]. In Brazil, T. impetiginosa is the most used plant to
cure neoplasia. The stem bark and/or inner bark of this tree is utilized. It contains iridoid,
lignan, isocoumarin, phenylethanoid, and phenolic glycosides [85]. Naphthoquinones
lapachol and β-lapachone are the most attractive compounds from a medical point of view.

The application of both T. impetiginosa extracts and lapachone exhibits strong antipro-
liferative and cytotoxic activities [86–89] for human breast, colon, and hepatic cancer cell
models. Lapachone was sold in Brazil by the Pernambuco Pharmaceutical Laboratory
(LAFEPE) and used to cure malignancies [90].

It was shown that lapachol is a pyruvate kinase M2 (PKM2) inhibitor [91], thus quench-
ing glycolysis and anabolic capacities. PKM2 is an enzyme which branches glucose flux into
biosynthetic pathways [92,93]. β-lapachone inhibited lung metastasis in colorectal cancer
models [87]. It selectively killed NADPH quinone oxidoreductase 1 (NQO1)-overexpressing
hepatoma cells which were accompanied by ROS induction and PARP1 hyperactivation,
causing a decrease in NAD+ and ATP levels, as well as a dramatic increase in DNA double-
strand break lesions [94]. NQO1 is a prognostic marker in HCC; it was increased 18-fold in
HCC versus normal livers, and its high level predicts poor outcome [95,96].

Active studies of lapachones started in the 1960s when these compounds were isolated
from T. impetiginosa, but then were terminated due to their side effects. However, further
experiments have shown that β-lapachone, α-lapachone, and some of their synthetic
analogs are safe and are promising antineoplastic compounds (for a comprehensive review,
see [89,97]).

As an example, Rone and colleagues have created lapachone-containing ruthenium (II)
complexes which enhanced lapachone toxicity to cancer cells relative to normal cells over
100-fold. The cytotoxic effects were mediated by Aurora-B down-regulation and G2/M-
phase cell cycle arrest [98]. The other group [99] developed long-circulating lapachone
nanoparticles which remarkably prolonged its half-life in the body and increased brain
intake in order to affect glioma cells.

A number of patents cover promising synthetic derivates of lapachones. Further
chemical modifications are required to improve their safety and bioavailability. Recently,
positive results were obtained in phase I/Ib of a multi-center clinical trial (NCT02514031)
of β-lapachone with gemcitabine/nab-paclitaxel in patients with advanced pancreatic
cancer [100]. However, further insights into the molecular mechanisms of lapachone
anticancer activity are required.

Besides lapachone, furanonaphthoquinones from T. impetiginosa possess anticancer ca-
pabilities. They were the key structures required to hamper signal transducer and activator
of transcription 3 (STAT3) phosphorylation which inhibits the JAK/STAT pathway [101].

Taken together, these data demonstrate the potential of T. impetiginosa and lapachones
in cancer healing.

Aloe vera and A. arborescence (the Asphodelaceae family) are stemless or very short-
stemmed succulent plants of the genus Aloe. These species grow on several continents and
are very frequently used to treat various diseases in Brazil including rheumatism, eczema,
blood clots, diabetes, gastritis, inflammation, and malignancies.

A. vera and A. arborescence contain different biologically active secondary metabolites
including anthraquinones, dihydroisocoumarins, naphthalenes, and polyketides [102].
Anthraquinones aloe-emodin, aloin A (barbaloin), and aloin B (isobarbaloin) are especially
interesting for anticancer therapy. Extracts and individual compounds of Aloe induce
cell cycle arrest [103,104] and apoptosis [105], exhibit antiangiogenic and antimetastatic
properties [105,106], and decrease glucose flux and telomerase activity in a huge number
of studies (including both solid and blood neoplasia) [107,108]. A comprehensive review
of anticancer properties of Aloe vera, A. arborescence, and its active compounds is given
in [108].

Aloe-emodin (Ae) exerts a plethora of important pharmacological properties including
the anticancer ones (reviewed in [109]). The treatment of colorectal cancer cells with Ae
induced ER stress and the activation of key components of the PERK pathway—glucose-
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related protein 78 (GRP78) and transcriptional factor C/EBP homologous protein (CHOP)
up-regulation, protein kinase R (PKR)-like ER kinase (p-PERK), and eukaryotic initiation
factor-2α (p-eIF2α) [110]. In NSCLCs, this compound activated MAPK signaling and
inhibited Akt/mTOR pathway which led to an increase in ROS and autophagy [111].

Wang’s group have found that the AE compound is a competitive inhibitor of telom-
erase (hTERT) and a G-quadruplex structure stabilizer. In addition, Ae transcriptionally
repressed tTERT via the up-regulation of E2F1 and the down-regulation of c-myc expres-
sions [112]. G-quadruplexes are specific structures in DNA and RNA which are frequently
observed in promotors of proliferation-related genes, chromosome ends, and telomeric
regions, and are involved in transcription regulation. Due to the stability of G-quadruplexes
and their presence within most human promoters of oncogenes, and at telomeres, G4 struc-
tures are promising targets and are currently being tested as a way to block the transcription
of oncogenes and telomere elongation in cancer cells [113]. In line with this evidence, other
groups have reported that Ae and Ae-8-glucoside are G4-binding ligands, especially for
c-KIT and c-Myc oncogenes [114].

In melanoma cells, aloin down-regulates HMGB1 expression at the transcriptional
level, preventing its translocation to the cytoplasm and interaction with TLR4, which indeed
blocks HMGB1-mediated ERK activation [115]. In line with these data, in gastric cancer,
the other group has shown an aloin-mediated inhibition of HMGB1 expression and release,
as well as a HMGB1-induced activation of the Akt-mTOR-P70S6K and ERK-P90RSK-CREB
signaling pathways [116].

Finally, aloin was shown to mitigate doxorubicin-induced cardiotoxicity by reducing
proinflammatory cytokines—TNF-α, IL-1β, and IL-6 (Birari 2020) [117].

The polysaccharide acemannan exerts antitumor activity through the stimulation of
the immune system and the production of antitumor cytokines, and has been approved by
the U.S. Department of Agriculture (USDA) for treatment of fibrosarcoma in cats and dogs
(Acemanna, CarraVet Acemannan immunostimulant) [108].

Although there have been numerous in vitro and in vivo studies, the antineoplastic
potential of Aloe ssp. has not been fully studied. However, several clinical trials have
been conducted. The combined adjuvant chemotherapy which includes Aloe arborescence,
oxaliplatin, and 5-fluorouracil (5-FU), given to 240 patients with metastatic solid tumors,
significantly improved tumor regressions and 3-year survival rates [118]. Two other trials
have also indicated the potential of Aloe for anticancer therapy [119,120].

Despite the strong anticancer properties of Aloe, caution and further research is needed
before its intake. Several studies have described the potential carcinogenic effects of Ae
and aloin. Thus, Ae reportedly may have hepato- and nephrotoxicity [109] whereas aloin is
able to induce the Wnt/β-catenin pathway [121].

Capsicum frutenese is a member of the Solanaceae family which is frequently used in
South American ethnomedicine to treat cancer. Other pepper species, including C. chinensies
(Chili pepper), are also used. The spicy taste of these plants is caused mainly by alkaloid
capsaicin.

A huge number of studies have demonstrated the capsaicin-mediated anticancer
effects [122,123]. In non-small cell lung cancer (NSCLC), capsaicin inhibits vascular en-
dothelial growth factor (VEGF) expression and angiogenesis via the p53-HIF1-VEGF path-
way [124]. It was also shown that capsaicin, in combination with sorafenib, inhibited
epidermal growth factor receptor (EGFR) and PI3K/Akt/mTOR signaling [125]. This
synergic effect attenuated the growth, migration, and invasion, and also induced apoptosis,
in three hepatocellular carcinoma cell lines. In nasopharyngeal carcinoma, capsaicin extin-
guished the PI3K/Akt/mTOR pathway which induced autophagy and apoptosis [126].

It is interesting to note that Chang and colleagues [127] have shown that Ecto-NADPH
oxidase disulfide thiol exchanger 2 (ENOX2) is a direct target of capsaicin. Authors have
shown that capsaicin induces autophagy-related apoptosis in p53-mutant oral carcinoma
cells, but only autophagy-dependent cytotoxicity (without apoptosis) in cells with wild-
type p53.
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However, several contrary results have also been reported, implicating capsaicin’s
pro-cancer properties [128]. For instance, high doses of capsaicin activated AMPK, and
also induced autophagy, EMT, and chemoresistance [129]. These contradictions may
depend on various factors including both the background of the cells and experimental
conditions. While different studies report autophagy as a mechanism of capsaicin-mediated
effects [129], the opposite results can also be linked to this fundamental process. It is
already known that autophagy has a dual role in cancer, creating both pro-survival and
antineoplastic effects [29]. Autophagy is typically associated with apoptosis. However, in
other cases, it protects cancer cells from chemotherapy [130]. Arguably, the exact effects
of capsaicin may depend on whether autophagy plays a pro- or anti-survival role in
corresponding malignant cells.

Taken together, there is a possibility that capsaicin is a potential anticancer therapeu-
tic; however, due to contradictory results, more detailed studies about its properties are
required.

Some other South American plants and their compounds with anti-neoplastic activity
are listed in Table 2.

Table 2. Some South American plants and their compounds with anti-neoplastic activity.

Plant Active Compounds Effects References

Achyrocline satureioides
Achyrobichalcone,

3-O-methylquercetin, and other
flavonoids

In vitro cytotoxicity and apoptosis in
human breast cancer cells; inhibition of

c-MYC and ERK/JNK in glioma cell lines.
[82,131]

Aloysia polystachya Flavonoids

In vitro apoptosis in human colorectal
cancer cells, and a decrease in the

percentage of cancer stem cells (CSCs).
In vivo inhibition of tumor growth in

non-toxic doses.

[132]

Azorella glabra Mulinic acid, azorellane terpenoids
G0/G1 cell cycle arrest and apoptosis in
AML cell lines. A slight decrease in the

survival of non-tumor cells
[133]

Ephedra chilensis Terpens and fatty acids

IC50 of non-polar extracts for one breast
cancer and three colon cell lines was at the
level of doxorubicin; in vitro cytotoxicity

for normal colon epithelium cells was less
than doxorubicin.

[134]

Croton lechleri Taspine

Leaf extracts exhibited cytotoxic
antiproliferative effects on HeLa and SK23
cells in vitro, and antitumor effects in mice

in vivo; moderate toxicity to mice.

[135,136]

Laetia corymbulosa Corymbulosins B, C, D, E, F, G Bark extract exhibited cytotoxicity to panel
of cancer cells. [137]

Lepidium meyenii macamide and macaene fractions Macadamine displayed anticancer
activities against multiple cancer cell lines. [138]

Leptocarpha rivularis Leptocarpin Cytotoxic effects against several cancer
cell lines. [139]

Passiflora alata Flavonoids and saponins

In vitro cytotoxicity against the set of
cancer cell lines, and in vivo antitumor

activity against sarcoma S180-bearing mice
with low general toxicity.

[140]

Thevetia peruviana Thevetiaflavone, and individual
cardiac glycosides

Fruit extract exhibited cytostatic and
cytotoxic effects in cancer cell lines with

moderate toxicity to non-tumor cells.
[141]
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3.3. Asia

Asia occupies a vast territory with various climate zones which range from tropical to
arctic. It is a habitat for 100,000 plant species, many of which have been medically used in
ethnomedicine for centuries.

Cephalotaxus harringtonia (Japanese plum yew, the Cephalotaxaceae family) is an
evergreen tree up which can grow up to 10 m tall and is native to Japan. Initially, the
ethanolic extract from the seed of Cephalotaxus harringtonia showed antineoplastic activity
against mouse leukemia L-1210 and P388 cells. Several alkaloids with potential antitumor
activity were isolated from this extract and from other parts of the plant [142]. They are
identified as cephalotaxin esters: harringtonine, isoharringtonine, homoharringtonine
(HHT), and doxyharringtonine.

Clinical trials of HHT have been actively conducted in China and the USA in acute
myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) [143]. The initial data
obtained showed conflicting results; thus, interest among American scientists towards HHT
has significantly weakened, unlike their Chinese colleagues.

Meanwhile, Chinese scientists continued clinical trials with varying regimes and HHT
dosing. They carried out detailed studies and then successfully used HHT in a HAG
combination scheme (homoharringtonine, cytarabine, and G-CSF) to treat hematological
malignancies, including AML and myelodysplastic syndrome [144,145]. Thus, HHT be-
came a part of the standard AML therapy in China [143]. In 2012, the Food and Drug
Administration (FDA) approved omacetaxine—a semisynthetic purified HHT derivate
for the treatment of patients with chronic myelogenous leukemia (CML) refractory or
intolerance to two or more TKIs [146].

The mechanism of HHT and omacetaxine action is the inhibition of translation. These
compounds compete with tRNA to bind the A-site cleft in the large ribosomal subunit
which blocks elongation. Furthermore, another mechanism of HHT action in AML cells was
discovered. It has been shown that HHT directly binds the NF-κB-repressing factor (NKRF)
and arrests it in the cytoplasm, which in turn strengthens p65-NKRF interaction, thereby
attenuating the transactivation activity of p65 on the MYC gene [147]. HHT was also shown
to decrease p-JAK2, p-STAT5, and p-AKT, which suggests it may be a broad-spectrum PTK
inhibitor [148]. Thus, multiple mechanisms of HHT activity may exist.

Oldenlandia diffusa (Hedyotis diffusa) or “Snake-Needle Grass” and O. corymbose are
the annual plants widely distributed in China, Japan, and Korea. In China, this plant is
actively used in traditional medicine. Oldenlandia diffusa has analgetic, antibacterial, anti-
inflammatory, antitumor, cardiotonic, diuretic, and sedative effects on the body. Regarding
cancer, it is well known in Chinese folk medicine, primarily for the treatment of liver, lung,
and stomach malignancies [149].

O. diffusa has been extensively used as a part of adjuvant therapy for metastatic
breast cancer and gastric cancer patients in traditional Chinese medicine (TCM) with
proven efficacy [150,151]. Regarding breast cancer studies, extracts of O. diffusa possessed
cytotoxicity towards highly invasive breast cancer cells, but not towards normal cells of
different origins. It abrogates the expression of metalloproteinases (MMPs) and caveolin-
1 [152]. The extract inhibited p-ERK, p-38, NF-κB, MMP-9, and Icam-1 [153], and may also
inhibit AMPK [154].

Hedyotis diffusa contains various iridoids (asperuloside, geniposidic acid, diffusoside,
and alpigenoside), triterpenes (arborinone, ursolic acid, and oleanolic acid), flavonoinds
(quercetin, rutin, and kaempferol), athraquinones, phenolic acids (p-coumaric acid, caffeic
acid, and caffeoyl-quinic acids), and a broad spectrum of volatile oils (reviewed in [155]).
Such a diverse composition of compounds with antineoplastic properties may explain the
use of O. diffusa by Chinese people as an anticancer substance for centuries.

Feng and colleagues have demonstrated that Hedyotis diffusa extract attenuated the
phosphorylation of AKT, ERK1/2, JNK, p38, ribosomal protein S6 kinase beta-1 (p70S6K),
STAT3, and the secretion of pro-inflammatory interleukins IL-1β, IL-6, and TNF-α. Addi-
tionally, at the time, it also induced anti-inflammatory IL-4 and IL-10 [156].
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A number of studies have shown that oleanic and ursolic acids fractioned from this
plant are very important compounds due to their antitumor properties. The ursolic-acid-
mediated inhibition of the RAF/ERK, IKK/NF-κB [157], and STAT3 pathways [158] is
reported. It has also been shown that ursolic acid suppressed proliferation and induced
apoptosis in breast cancer cells, but not in non-malignant cells. Ursolic acid also repressed
metastasis in both zebrafish and mouse models via the suppression of glycolysis through
the activation of SP1/caveolin-1 signaling [159]. Another research group has demonstrated
that ursolic acid inhibited energy metabolism. It inhibited Akt which was also associated
with decreased HK2, PKM2, ATP, and lactate levels [160]. The derivate of ursolic acid
mimics glucose, and competes with it for hexokinase 2 (HK2) binding [161].

Oleanolic acid (OA), which is another bioactive component of Hedyotis diffusa, similarly
attenuates cancer development through several mechanisms [162]. In gastric cancer, OA
was shown to down-regulate glucose uptake and aerobic glycolysis through the inhibition
of YAP and HIF-1α [163], and through the induction of autophagic death by deactivating
PI3K/AKT/mTOR and ERK/p38 MAPK [164,165].

OA was shown to activate ferroptosis in Hela cells by promoting the expression
of ACSL4 [166] (Xiaofei, et al., 2021) in the purine salvage pathway. It suppressed the
purine salvage pathway (PSP), thus interfering with nucleotide synthesis. OA induced the
autophagy-dependent degradation of hypoxanthine–guanine phosphoribosyltransferase
(HGPRT) and 5’-nucleotidase (5’-NT), i.e., two enzymes of PSP [167]. The other group was
able to show that OA may suppress angiogenesis in colorectal cancer by blocking VEGFR2
signaling [168].

For medical purposes in China, Hedytois diffusa is often used in tandem with another
plant—Scutellaria barbata. This pare is a “core” of Chinese herbal medicine (CHM) which is
utilized to treat different types of tumors [151,169].

Scutellaria barbata (SB) is a perennial herb (the Lamiaceae family) living in southern
central China. This medical plant is frequently used in TCM to cure malignancies, inflam-
mation, infection, cirrhosis, etc. Among the chemical compounds identified, there are:
flavonoids (scutellarein, scutellarin, carthamidin, isocarthamidin, wogonin, naringenin,
apigenin, hispidulin, eriodictyol, and luteolin), diterpenoids (scutellones, scuterivulactones,
barbatins, and scutebarbatines), and volatile oils (linalool, α-terpineol, thymol, and globu-
lol) [155]. Flavonoids (scutellarein, scutellarin, and carthamidin) are thought to be the main
compounds that are responsible for anticancer properties of SB.

BZL101 is an orally specified aqueous SB extract which has been extensively studied
for the treatment of metastatic breast cancer. It provokes cell cycle arrest, apoptosis [170],
inhibition of glycolysis, and OXPHOS [171].

Scutellarein inhibited the enhancer of zeste homolog 2 (EZH2), increased the ex-
pression of its target forkhead box protein O1 (FOXO1), and reduced tumor growth and
metastasis [172]. Moreover, in HCC, scutellarein increased the level of PTEN—a negative
regulator of Akt signaling pathway [173].

Another flavonoid compound—scutellarin—mitigates colitis-derived colorectal cancer
by inhibiting the Wnt/β-catenin signaling pathway [174]. In gastric cancer cells, this
compound up-regulates PTEN, which attenuates p-PI3K and EMT [167].

Extracts of this plant reduced p-STAT3, the expression of cyclin D1 and CDK4 [175], as
well as the Wnt/β-catenin signaling pathway [176]. It may also attenuate the PI3K/AKT
pathway, inhibit ABC transporters, and restore susceptibility to 5-FU [177].

Thus, the combination of O. diffusa and S. barbata extracts displays proven anti-
neoplastic capacity and involves multiple mechanisms acting in a synergistic way. The
study of a combination of extracts or individual compounds of these plants is a promising
area of anticancer research.

The power of plants to fight cancer is exhaustively represented by traditional Chinese
medicine (TCM) and Indian Ayurveda.
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3.3.1. Traditional China Herbal Medicine

The herbal part of TCM relies on the application of a cocktail consisting of several
herbs, used in the treatment of complex diseases such as cancer. It has at least 2000 years of
history. According to Chen and colleagues, Chinese Pharmacopoeia (2015 edition) counted
25 formulations with antineoplastic properties [178].

Traditional personal medicine (TPM) is the improved and more standardized kind
of TCM application. TPM includes herbal medicines in traditional Chinese medicine,
modernized into a ready-to-use form (such as tablets, oral solutions, or dry suspensions),
as opposed to herbs that require cooking (hot water extraction).

The benefit of TCM formulas in the therapy of various neoplasms is based on multiple
components, which can target multiple signaling pathways, providing synergistic therapeu-
tic effects. Plants described in the earlier section are often the components of various TCM
formulations. The analysis of a number of TCM formulas uncovered the mechanisms of
their antitumor activities and enumerates their bioactive anticancer compounds [178–181].

Wu and colleagues have analyzed the application of the top 15 TPMs and modern
western drugs according to the frequency of their use in a particular type of malignancy
and the cost per patient [5]. This statistical analysis has shown that TPMs are used with
about the same frequency as western therapeutics, whereas the cost per patient was lower
for TPMs. It is interesting to note that different TPMs can be applied to treat certain types of
malignancy with varying frequencies. Moreover, TPMs are often applicated in combination
with western medicines [5]. The most frequently used antineoplastic formulations are given
in Table 3 with brief descriptions.

Table 3. Some frequently used traditional Chine’s formulations for a cancer treatment.

Clinical
Formulation Composition Type of Cancer Effects References

Aidi Injection

Mylabris Phalerata,
Astragalus Membranaceus,

Panax Ginseng,
Acanthopanax Senticosus

Different solid
tumors,

gynecologic
tumors

Suppression of proliferation,
migration, invasion, angiogenesis, and

metastasis. Decreased p-PI3K and
Bcl-xL in liver cancer cells. Induction

of apoptosis.
In Clinic: improved overall survival,

the quality of life, and the
effectiveness of chemotherapy.

[182–184]

Fufangkushen
Injection

Sophora flavescens,
Heterosmilacis Japonica

Different solid
tumors

Reduced proliferation, tumor growth,
and TRPV1-ERK phosphorylation;

decreased IFN-γ, IL-6, and KC levels
in S-180 sarcoma. Induced apoptosis

via up-regulation of caspase-3 and Fas
in esophageal carcinoma.

In Clinic: improved the quality of life
and the effectiveness of chemotherapy.

[185,186]

Kanglaite injection Coix lacryma-jobi

Non-small cell
lung cancer,

colorectal cancer,
pancreatic cancer

In vitro suppressed cell growth and
induced apoptosis via up-regulation

of p53, Fas, and caspase-3. In vivo
down-regulation of the

PI3K/Akt/mTOR signaling pathway,
and tumor growth suppression.

[187,188]

Kushen injection Sophorae Flavescentis, Radix,
Smilacis Glabrae Rhixoma

Different solid
tumors

Immunomodulatory activity via
regulation of macrophages and CD8+

T cells, TNFR1, NF-κB p65, and
MAPK p38.

[189]
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Table 3. Cont.

Clinical
Formulation Composition Type of Cancer Effects References

Qing-Dai
Baphicacanthus cusia,

Polygonum tinctorium, Isatis
indigotica

Acute
promyelocytic

leukemia

Down-regulation of NF-κB, Iap1, Iap2,
Bcl-2, BCL-xL, cyclin D1, and c-Myc;

inhibition of angiogenesis by reducing
JAK/STAT3, VEGFR2, ERK 1/2,

Ang-1, PDGFB, and MMP2.
Immunomodulatory activity through

impact on CD4+ CD25+ Treg cells.

[190]

Tien-Hsien

Cordyceps sinensis,
Oldenlandia diffusa, Indigo
Pulverata Levis, Polyporus

umbellatus, Radix Astragali,
Panax ginseng, Solanum

nigrum, Pogostemon cablin,
Atractylodis Macrocephalae

Rhizoma, Trichosanthes
Radix, Clematis Radix,
Margarite, Ligustrum

lucidum, Glycyrrhizae Radix

Acute
promyelocytic

leukemia, breast
cancer

Down-regulation of DNMT1, cyclin A,
cyclin B1, p-AKT, Bcl-2, Akt/mTOR,

Stat3, and ERK; induction of p21, p15,
and apoptosis. Suppression of

angiogenesis, metastasis, and tumor
growth. Radiosensitization and

immunomodulatory activity.

[191–193]

Zeng-Sheng-Ping

Sophora tonkinensis,
Polygonum bistorta, Prunella
vulgaris, Sonchus brachyotus,

Dictamnus dasycarpus,
Dioscorea bulbifera

Alimentary tract
cancer; oral, lung,

and bladder
cancer

Inhibition of EGFR and Notch
signaling.

In Clinic: slowed down tumor growth
and increased overall survival.

[194–196]

3.3.2. Ayurvedic Medicine

Ayurveda, translated from Sanskrit, meaning “life knowledge”, is an ancient Indian
traditional medical system which has been practiced for more than 5000 years and is still
applied now by many cultural tribes in Indian sub-continent. Ayurvedic medicine is a
unique holistic approach where herbal medicines, special diets, yoga, relaxation methods,
and lifestyle management are key strategies for curing various chronic diseases such as
diabetes, cancer, cardiovascular, neurological disorders, and many others.

As reported by Kuruppu and colleagues, between 70 and 80% of people in India,
Nepal, and Shri Lanka practice this medical system [197]. Ayurveda attracts attention in
other regions and countries, including the USA and Europe, as an alternative medical way
for health recovery and maintenance [198,199].

About 1700 medical substances of herbal, animal, and mineral origin give birth to
40,000 different formulations for internal consumption and hundreds for external applica-
tion (Sujatha, et al., 2021).

Ayurveda is supported by the government of India through the Ayurvedic Pharma-
copoeia of India (API). This is a unique book divided in two parts. Part I (volumes 1–6)
contains information about medical plants and their substances, whereas part II contains
formulations from compounds described in part I. All in all, 450 medical herbs are listed in
this book.

Bhandari and colleagues reported about 10 formulations which are readily available in
the Indian market to cure neoplasia [200]. Thus, Ayurveda accounts a few dozen plants with
anticancer properties [2,197,201]. Some of them have been also used in TCM and elsewhere,
so they were described earlier. Several other very important anticancer ayurvedic plants
are discussed below.

Withania somnifera (WS, “ashwagandha” or “winter cherry”, the Solanaceae family)
is an annual evergreen shrub which grows in India, the Middle East, and in some African
regions. This is a very important Ayurvedic plant which is used as an energy balancer, and
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to cure arthritis, anxiety, insomnia, bronchitis, male disfunctions, etc. Ashwagandha is also
sold in western markets as a food supplement to increase energy and endurance [202].

The main biologically active chemical constituents of WS are alkaloids (isopelletier-
ine, anaferine, cuseohygrine, anahygrine, etc.), steroidal lactones (withanolides and with-
aferins), and saponins [203]. The extracts of Ashwagandha selectively killed cancer cells
and inhibited xenograft’s growth [204,205] through mitochondria-dependent apoptosis
and G2/M cell cycle arrest. In other studies, extracts of WS suppressed the growth of
malignant cell models and xenografts of breast, prostate, lung, gastrointestinal cancer,
glioma, etc. This was associated with the down-regulation of p-AKT, VEGF, MMP-2,
ERKp44/42 [206], cyclin D1, NF-kB, HSP-70, and NCAM, bcl-xl [207], as well as the reacti-
vation of FOXO3a/Par4 [208]. The antineoplastic activity of WS is significantly associated
with the presence of steroidal lactone whithaferin A.

A large number of studies have demonstrated the pleiotropic whithaferin-A-mediated
down-regulation of cancer. This affects many characteristics of malignant cells (reviewed
in [209,210]).

Withaferin A and withanone were able to attenuate EMT, driven by TNF-α and TGF-β
in NSCLC cell lines H1299 and A549 [211]. Withaferin A inhibited glycolysis and complex
III of the respiratory chain in breast cancer mouse models, indicating that it can interfere
with metabolic rewiring in neoplasms [212]. A couple of studies reported that withaferin A
can effectively target cancer stem cells (CSCs) [213,214].

Bearing in mind the safety and antitumor properties of Withania somnifera (Ashwa-
gandha), its active constituent withaferin A should be studied in detail regarding therapeu-
tical usage.

Curcuma longa (“Tumeric”, the Zingiberaceae family) is a flowering plant, which is
native to South Asia, India, and Indonesia. Its roots and rhizomes are widely used as a
spice named “turmeric” which is a key ingredient in curry. This plant helps to reduce
inflammation, hepatic and neurodegenerative disorders, metabolic syndrome, obesity, and
other illnesses.

The major biologically active constituents of turmeric are diarylheptanoids, which
occur in a mixture of dubbed curcuminoids (curcumin, desmethoxycurcumin, and bis-
desmethoxycurcumin) that generally amount to approximately 1–6% of the plant by dry
weight [215]. In addition, C. longa is another species of the Curcuma genus that contains a
diverse composition of volatile (zingiberone, tumerone, and atlantone) compounds with a
set of biological activities, including anticancer activity (reviewed in [216]).

However, the main pharmacological activity of C. longa is attributed to curcumin [217].
Curcumin acts through the modulation of multiple signaling pathways. It is known to
inhibit the activity of transcriptional factors (STATs, Notch-1, NF-κB, PPAR-γ, WTG-1,
and β-catechin), growth factors (FGF, VEGF, TGF-β1, TF, CTGF, and EGF), a number of
receptors and kinases (EGFR, HER-2, CXCR4, MAPK, ERK1/2, RAK, PKA/B/C, Bcr-Abl,
JNK, and IKK), and pro-survival proteins (Survivin, Mcl-1, Bcl-xL, cIAP-1, cIAP-2, and
Bcl-2) [218,219].

Curcumin down-regulates cyclooxygenase (COX-2), EGFR, and ERK1/2 in lung and
pancreatic cancer [220]. A number of literature sources report that curcumin activates
autophagy in various malignancies, including melanoma, pancreatic [221] and gastric
cancer [222], and glioma [223]. It may also target CSCs in esophageal carcinoma [224], hepa-
tocellular carcinoma [225], and glioma [223]. Curcumin makes cancer cells more vulnerable
to chemotherapeutic agents (doxorubicin, paclitaxel, 5-fluorouracil, and cisplatin) [226–229]
and radiotherapy [230,231].

Zingiber officinale is a widely known plant because its whole rhizome—ginger—is
widely used as a spice and in folk medicine. Its healing effects extend to diseases of the
gastrointestinal tract, as well as the broncho pulmonary system.

Ginger is rich in phenolic compounds including gingerols (6-gingerol, 8-gingerol, and 10-
gingerol), shogaols, paradols, quercetin, zingerone, gingerenone-A, and 6-dehydrogingerdione.
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Moreover, ginger contains bioactive volatile oils. Its terpene compounds are zingiberene,
β-bisabolene, α-curcumene, α-farnesene, and β-sesquiphellandrene [232,233].

There is a lot of evidence which shows the potential of ginger to prevent and sup-
press tumors, especially gastrointestinal cancer (GI). Ginger extracts and its individual
constituents allow the multitargeted influence on cancer cells affecting Bcl2, p38/MAPK,
EGFR, VEGF, AKT, ERK1/2, etc. [234].

In vivo studies have shown that ginger extract reduced NF-κB and TNF-α expres-
sion in rat livers with induced cancer [235]. Furthermore, 6-shogaol inhibits JAK2 and
c-Src kinases [236], interleukin (IL)-6-induced STAT3, and TNF-α-induced NF-κB activa-
tion [237]. Zingerone and its derivates synergistically suppressed TGF-β-induced EMT and
the invasion of hepatocellular carcinoma [238].

In addition, 6-shogaol reduced breast CSCs (CD44 + CD24−) and killed spheroids.
This was associated with reduced Notch and its targets Hes1 and cyclin D1, and induced
autophagy-based cell death [239].

In mice bearing Ehrlich carcinoma, the administration of doxorubicin in combination
with ginger extract reduced the tumor volume and increased the survival rate by activating
the AMPK pathway and reducing the cyclin D level [240]. In addition, both ginger extract
and its isolated constituencies were shown to overcome methotrexate [241] and dodetaxel
resistance [242] in AML and prostate cancer.

A more detailed description of ginger effects on the properties of various malignancies
types is reviewed in [232,243,244].

Boswellia serrata and other Boswellia species are very important ayurveda plants
which have been used for centuries to treat chronic ailments—arthritis, inflammatory
bowel disease, diabetes, asthma, cancer, and others.

This plant is the source of “Frankincense”, which is oleo gum resin extracted from the
Boswellia species. Frankincense is a mixture of essential oils, polysaccharides, and resin
acids. It contains a number of different types of boswellic acids (BAs) which are pentacyclic
terpenoids. The main ones are: α- and β-BA, acetylated α- and β-BAs (ABA), 11-keto-β-BA
(KBA), and 3-O-acetyl-11-keto-β-BA (AKBA) [245,246].

Essential oils are represented by α-thujene, α-terpineol, eudesmol, verbenene, thujone,
pinocarveol, etc. [247,248]. Both BAs and volatile oils are responsible for Boswellia’s
antineoplastic properties [246].

A number of studies have shown the anticancer properties of frankincense [249]. A
study on the cytotoxicity of oleo gum resin fractions revealed anticancer activity at the IC50
levels even lower than for doxorubicin and 5-fluouracil [250].

An in vivo study has demonstrated that frankincense suppressed melanoma in C57BL/6
mice with no detrimental effects on body weight; observable histopathologic differences in
the brain, heart, liver, and kidney tissues; and hematological biochemical parameters [251].
The cytotoxicity was associated with a decreased Bcl2/BAX ratio.

A number of papers are devoted to the anticancer properties of BAs and their natural
variants [246]. They down-regulate NF-kb and STAT3 [252,253], MAPK, AKT, ERK1/2, and
other key signaling mediators.

As a possible mechanism of activity, Shen and colleagues [254] have shown that
BAs may induce epigenetic alterations by modulating DNA methylation. The authors
have shown that, in CRC cell lines, there was a modest increase in genome-wide DNA
demethylation. This resulted in the re-expression of SAMD14 and co-suppressor genes
SMPD3, as well as in the inhibition of DNMT activity. In line with this evidence, Mazzio
and colleagues [255] have carried out transcriptomic profiling of TNBC MDA-MB-231
cells treated with Boswellia serrata or 3-O-acetyl-B-boswellic acid. They found that this
treatment elicits the activation of several key components of the PERK pathway (unfolded
protein response (UPR))—PERK, CHOP, GADD34, and ATF3), the induction of tumor
suppressor genes and mTOR inhibitors (e.g., sestrin 2 (SESN2)), and Tribbles homolog
3 (TRIB3). On the contrary, this treatment inhibited the hyaluronan binding (CEMIP) of
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oncogenes, transglutaminase 2 (TG2), and SRY box 9 (SOX9) which was associated with
cell death induction.

Taken together, Boswellia serrata and BAs possess significant antineoplastic effects. BAs
are considered to be excellent structures to develop lead compounds which may also be
conjugated with other therapeutic drugs [256]. Numerous semisynthetic BAs have been
developed with very good cytotoxicity [257].

The phase 1 clinical trial on Boswellia (which is the extract from frankincense) for
breast cancer primary tumors (NCT03149081) is ongoing and intends to assess its influence
on markers of proliferation, angiogenesis, and apoptosis.

Plants of the genus Xanthium (the Asteraceae family) are sources of bicyclic sesquiter-
pene lactone xanthatin. Several species, including Xanthium strumarium, have been used as
medical plants in Ayurveda, Chinese, and other traditional Asian medical systems.

In triple negative breast cancer MDA-MB-231 cells, xanthatin decreased the catalytic
function of topoisomerase II, which led to GADD45γ up-regulation and arrested cells in
the G2-M state [258]. Using the same breast cancer cell model and mouse xenografts, other
authors have shown that xanthatin inhibits vascular endothelial growth factor receptor
2 (VEGFR2), reducing VEGF-stimulated angiogenesis, microvessel density, and tumor
growth [259].

In A549 cells (NSCLCs), xanthatin disrupted NF-κB signaling and induced p53,
which resulted in G2-M arrest and the activation of the intrinsic apoptotic pathway [260].
Xanthatin also suppressed NSCLC by diminishing STAT3 and GSK3β transcription fac-
tors [261,262].

Through its application to child retinoblastoma cell models and zebrafish xenografts,
Yang and colleagues have shown that xanthatin targets polo-like kinase 1 (PLK1), mediating
G2-M cell cycle arrest and apoptosis [263]. In colon cancer cells, xanthatin similarly stopped
cells in G2-M. It elevated ROS, autophagy, and apoptotic response [264], while suppressing
glycolysis and mTOR signaling [265].

Xanthatin induced the cell death of glioma cell lines and xenografts via the elevation
of endoplasmic reticulum (ER) stress-related proteins, including glucose-regulated protein
78 C/EBP-homologous protein (CHOP) [266].

In this way, xanthatin is very interesting in terms of antitumor therapy.
In general, many Asian plants are known with neoplastic properties described in

reviews [267–270]. In addition, other plants and their active substances with emerging
antitumor activities have recently been identified [271,272], which indicates that there are
many such plants that have not yet been discovered.

Other major medical plants traditionally used in ayurveda for cancer healing are
described in the excellent review [2].

3.4. Europe

Hypericum perforatum (HP, St. John’s wort, SJW, the Hypericaceae family) is a flowering
plant native to Europe and Asia. It was also introduced to North and South America, South
Africa, and Australia. HP is still used in folk medicine and now is commercially grown
in different countries. It is effective in the treatment of anxiety and depression which is
mediated by inhibiting the uptake of monoamine neurotransmitters (serotonin, dopamine,
noradrenaline, GABA, and L-glutamate) [273]. HP is effective against inflammation and
urinary cystitis.

The pharmacological properties of Hypericum perforatum are associated mainly with
hyperforin (HPF) and hypericin, which usually present in a total hydro-alcoholic HP extract
concentrations ranging between 1 and 5% and 0.1 and 0.3%, respectively [274]. Other HP
constituents are hyperoside, rutin, quercetin, catechin polyphenols, acylphloroglucinols,
and naphthodianthrones [275].

HP extracts and hyperforin decrease the inflammation by suppressing 5-lipoxygenase
(5-LO), cytochrome c oxidase subunit I (COX-1) activity [276], and prostaglandin PGE2
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production [277]. It also reduces ROS [278] and genotoxic stress [279]. These, and other,
properties of HP protect from carcinogenesis [274].

In multiple studies, both HP extracts and hyperforin have demonstrated antineoplastic
activity against different types of malignancies. They attenuated cell growth, angiogene-
sis, and metastases, while inducing apoptosis (reviewed in [274]). Hyperforin inhibited
EGFR/ERK/NF-κB [280] and AKT [281] signaling pathways. It suppressed antiapoptotic
proteins Bcl-2 and Mcl-1 [282]; reduced the production of angiogenic chemokines CXCL8
and CCL2 [283]; and decreased metalloproteasis MMP2, MMP9, elastase, and cathepsin,
which are important for migration and invasiveness [284].

It is interesting to note that the mechanism of hyperforin’s antineoplastic activity is
thought to be associated with its protonophor properties. Due to a low ∆pH between inter-
cellular space and cytosol in non-cancer cells, protonofor hyperforin does not significantly
change their intracellular pH. At the same time, the ∆pH of cancer cells is much higher
because of the acidic extracellular space and more basic cytoplasm. In this case, hyperforin
induces the increased H+ influx which leads to cytosol acidification and interferes with
biochemical processes in malignant cells [274,285].

The analysis of 87 HP samples which were collected from 14 countries concluded
that there was limited chemical variability [286]. In view of HP’s inclusion in European
Pharmacopeia and standardization opportunities, it can be considered a potential anti-
neoplastic substance.

Betula pubescens (BP, syn. Betula alba, the Betulaceae family), commonly known as
white birch, is native and abundant throughout northern Europe and northern Asia. Its
bark contains betulinic acid (BA)—a lupane-type pentacyclic triterpenoid saponin.

In tumor cells, BA activates the mitochondrial pathway of apoptosis. It permeabilized
the outer mitochondrial membrane, and also induced cytochrome c release and caspase
activation [287].

Several signaling pathways are shown to be affected by BA [288]. It dampens STAT3
and HIF-1α which reduce angiogenesis. BA augments the MAPK/p38 and JNK signaling
pathways [289]. Guo and colleagues have shown that mTOR signaling was targeted
by BA which initiated apoptosis [290]. In turn, another group has demonstrated that BA
suppressed p-AKT and mTOR while inducing autophagy [291]. Apparently, this autophagic
response can mitigate BA-induced mitochondria-dependent cell death [292].

In breast cancer cells, BA attenuated glycolysis and respiration [293]. It is important to
note that BA attenuates the expression of multidrug resistance proteins P-gp, BCRP, and
ABCB5, hence decreasing chemotherapeutic resistance mediated by mutant EGFR [294].

To improve the water solubility and antineoplastic activity of BA, different research
groups are currently working on the synthesis of its soluble derivatives [295].

Glycyrrhiza glabra (GG, “Liquorice”, the Fabaceae family) is an herbaceous perennial
legume flowering plant native to Europe, Western and Central Asia, Siberia, and Northern
Africa. This plant was used in folk medicine in ancient Egypt, Rome, Greece, and China,
and has been included in Ayurveda.

GG has a rich biochemical composition as 400 compounds were isolated from this plant.
The most important among them are triterpenoid glycyrrhizin; saponin glycyrrhizic acid;
the flavonoids liquiritin and isoliquiritin; and the isoflavones glabridin and hispaglabridins
A and B [296]. This set of chemicals mediate a huge number of beneficial pharmacological
properties, including antitussive, expectorant, antimicrobial, anticoagulant, and memory-
enhancing activity, as well as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective,
immunomodulator, and antineoplastic capabilities.

Regarding the antineoplastic properties of GG, isoliquiritigenin (2′,4′,4-trihydroxychalcone,
ISL) is one of the most important compounds extracted from licorice roots. ISL displays a
suite of antitumor properties [297]. In lung cancer cell models, ISL inhibited proliferation
by interfering with AKT/mTOR [298] and FAK/Src signaling pathways [299]. Src family
kinase (SFK) transmits signals from integrins, growth factors, and G protein-coupled
receptors to AKT/mTOR, MAPK/ERK, and Hippo signaling pathways. Src/FAK mediates
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modifications in the actin cytoskeleton and focal adhesion complexes, facilitating migration
and invasion [300]. In renal carcinoma cells, ILS down-regulates Jak2/STAT3 and MDM2
ubiquitin ligase. MDM2 possesses oncogenic properties, i.e., the main negative regulator of
the p53 tumor suppressor [301], as well as through various p53-independent ways [302,303].
ISL treatment of melanoma cells decreased miR-301b and recovered its target leucine-
rich repeats and immunoglobulin-like domains 1 (LRIG1) which down-regulates tumor
growth [304].

In silico docking experiments suggest that ISL can possibly directly target VEGF-
2, both wild-type and double-mutant (L858R/T790M) EGFR, 78-kDa glucose-regulated
protein (GRP78), sirtuin 1 (SIRT1), COX-2, and Ikkb [297].

Besides ILS, other compounds of GG (glycyrrhizin, glycyrrhizinic acid, etc.) possess
antineoplastic activities (reviewed in [297]). This, together with the safety of GG, which
is proven by centuries of use, makes this plant a very promising candidate for anticancer
therapy studies.

Silybum marianum (SM, “milk thistle”, the Asteraceae family) is a biennial herb, 30 to
200 cm tall with red-to-purple-colored flowers. Its native distribution area includes the
Mediterranean Sea coast, the coast of southeast England, Iran, and Afghanistan. How-
ever, this plant was introduced to other continents and was cultivated due to its medical
properties.

SM is important for medicine as a source of silymarine, which is the standardized
extract from the thistle milk seeds, containing at least seven flavonolignans (silybin A,
silybin B, isosilybin A, isosilybin B, silychristin, isosilychristin, and silydianin) and one
flavonoid (taxifolin). Symilarin accounts for 65–80% of SM seeds. Its compounds provide
the main SM pharmacological activity. The important pharmacological activity also has
silybinin which is a semi-purified fraction of silymarin, consisting of a mixture of two
diastereoisomers, silybin A and silybin B, in an approximate 1:1 ratio [305].

Silymarine possesses hepatoprotective (chronic hepatitis B and C, alcoholic hepatitis,
fatty liver disease, and cirrhosis), antidiabetic, anti-ischemic, and skin-protective properties,
as well as others [306]. In the oral cancer models, sylimarin induced the extrinsic apoptotic
pathway, decreased tumor volumes, and prolonged mouse lifespan [307]. In human
colorectal cancer cells, silymarin may down-regulate the Wnt signaling pathway through
β-catenin proteasomal degradation and TCF4 transcriptional inhibition [308].

Silibinin also possesses anticancer activities: the inhibition of proliferation, migration,
and metastasis; angiogenesis; and the induction of apoptosis due to the down-regulation of
EGFR, Akt, MAPK, and Wnt signaling pathways [309,310]. Silibinin suppressed the growth
of human gastric cancer cells by down-regulating MAPK signaling. In the TNBC cell line
MDA-MB-231, this compound also reduced the TGF-β-mediated expression of fibronectin
and metalloproteinases MMP2, MMP9, and metastasis in xenograft models [311]. In hepa-
tocellular carcinoma models, the combination of silibinin with sorafenib was demonstrated
to down-regulate Akt-STAT3 signaling, anti-apoptotic proteins (Bcl-2 and Mcl-1), and
stemness-related proteins (homeobox transcription factor (NANOG)) and Krueppel-like
factor 4 (Klf4) [312].

Several studies have demonstrated that silymarin is safe for humans and is tolerated
even at a high dose of 700 mg three times a day for 24 weeks (reviewed in [313]). This
obstacle, in light of its anti-neoplastic and hepatoprotective capabilities, as well as the
presence of standardization, makes silymarin the excellent candidate for cancer treatment,
especially for hepatocarcinoma.

Some other European plants and their compounds with anti-neoplastic activity are
listed in Table 4.
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Table 4. Some European plants and their compounds with anti-neoplastic activity.

Plant Biologically Active
Compounds Effects References

Allium sativum

Allicin, alliin, diallyl disulfide, diallyl
trisulfide, Z-ajoene, S-allyl cysteine,

S-propargyl-L-cysteine, S-allyl
cysteine

Multiple anticancer effects and known
molecular mechanisms of both crude extracts
and individual compounds. Suppression of

angiogenesis and migration in vivo.

[314]

Arctium lappa Arctigenin, lappaol F, stigmasterol
ß-sitosterol

Suppression of growth, invasion, and
migration of cancer cell lines. Inhibition of

hippo-signaling pathway. Reduction in
tumor growth in vivo.

[315–317]

Centaurea solstitialis Solstitialin A Cytotoxic and cytostatic effects in a panel of
cancer cell models [276,318]

Ebenus boissieri
Antiproliferative and cytotoxic effects in

human breast, cervical, and lung cancer cell
lines. Induction of TNF-α expression.

[319–321]

Rosmarinus officinalis Carnosol, carnosic acid, sageone,
rosmarinic acid

Multiple antineoplastic effects in vitro and
in vivo with known molecular mechanisms,

including epigenetic regulation.
[322]

Menyanthes trifoliata Betulinic acid, syringic acid, ellagic
acid, rutin, chlorogenic acid

Cell cycle G2/M arrest and apoptosis in
grade IV glioma. No toxicity to normal

human astrocytes.
[323]

Vitis vinifera Viniferin, resveratrol Multiple anticancirogenic and antineoplastic
effects with known molecular mechanisms. [324,325]

Viscum album

Iscodor, helixor A, lectins (ML-I,
ML-II, and ML-III), viscotoxins,

polysaccharides, phenolic
compounds

Cytostatic and cytotoxic effects in vitro and
in vivo. Immunomodulatory activity and

reduction in cancer-related fatigue in clinical
studies. Helixor A and Iscador are used in

Europe as adjuvants in cancer therapy.

[326,327]

3.5. North America

Panax quinquefolius (PQ, Panax americanus, the Araliaceae family) is a perennial
herbaceous plant 30–100 cm high with a thick tuberous rhizome. It mainly grows in the USA,
in the wooded areas of Maine and Missouri, and in Canada, in the provinces of Ontario,
British Columbia, and Quebec. It is known that various Indian peoples took decoctions
and infusions from the ginseng root to treat ulcers, asthma, and various inflammatory eye
diseases, as well as to increase fertility levels. PA is a close relative of Panax ginseng which
is the most widely used ginseng in China, Korea, and Japan. These plants have similar
pharmacological properties.

According to the FDA, ginsengs are generally recognized as safe (GRAS) plants,
and their inhibitory effects on malignant tumors have been widely accepted in the USA
and Europe [328]. Ginseng is characterized by the presence of ginsenosides, which are
ginsengs triterpenes saponins (Rx), considered to be the main bioactive compounds of
ginseng. They are also metabolized by the gut microbiota to undergo sequential de-
glycosylation and are finally converted to prosaposin or sapogenins within the human
body. Based on the structure of aglicon, Rx may be divided into five types: panaxatriol
saponin, protopanaxadiol, protopanaxatriol, oleanolic acid, and ocotillol types [329].

Various ginsenosides have demonstrated anticancer properties in vitro and in vivo
following the inhibition of cell cycle, angiogenesis, and the induction of apoptosis in
different types of malignancies [328,330].

Ginsenoside Rg3 reduced colon carcinoma in HCT116 cells, whereas its derivate
20(S)-protopanaxadiol effectively attenuated NF-κB, JNK, and MAPK/ERK signaling path-
ways [331]. Other ginsenosides, Rb3, R1, and Rc, bound Hsp90α, suppressing the activity
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of SRC and PI3K kinases. This led to the inactivation of Akt and ERK pathways and lung
cancer suppression [332]. In patient-derived xenograft mouse models and glioblastoma
stem cell lines, ginsenosids Rg3 and Rh2 suppressed cell viability and the self-renewal
capacity of GSCs via the inhibition of the Wnt/β-catenin signaling pathway [333]. In
pancreatic cancer in vitro and in vivo models, Rg3 treatment reduced the levels of vasculo-
genic mimicry, matched with the decrease in VE-cadherin, EphA2, MMP-2, and MMP-9
mRNA [334].

The structure–activity relationships of ginsenosides and the molecular mechanisms of
their actions are summarized in the following review [335]. According to literature data
surveys, Rh1, Rh2, and Rg3 have strong anti-cancer activities. Because of a number of
biologically active compounds identified, as well as FDA-reported safety concerns, Panax-
standardized plant material and ginsenosides are promising candidates for anti-neoplastic
adjuvant therapy.

Some other North American plants and their compounds with anti-neoplastic activity
are listed in Table 5.

Table 5. Some others North American plants and their compounds with anti-neoplastic activity.

Plant Biologically Active
Compounds Effects References

Aristolochia foetida β-sitosterol, stigmasterol, and
other compounds

Apoptosis in MCF-7 cancer cells with less
toxicity to non-tumor cells. [336]

Asimina triloba Acetogenins

Extracts from different parts of plant
suppressed proliferation; induced apoptosis

in AGS and HeLa cells; inhibited
inflammatory makers NO, TNF-α, IL-6, and

iNOS (inducible nitric oxide synthase).

[337]

Capraria biflora Biflorin
Different anticancer effects in a number of

tumor cell lines. Inhibition of c-MYC
expression.

[338,339]

Echinacea purpurea Echinacoside, alkylamides

Reduced proliferation, increased level of
ROS, caspase 3 activity, and apoptosis in

human lung cells. Inhibition of
Wnt/β-catenin pathway.

Immunomodulatory activity in vivo.

[340,341]

Sanguinaria canadensis Sanguinarine, chelerythrine,
berberine

Cytotoxic and antiproliferative effects in
melanoma and child ALL cell lines.

Induction of apoptosis by cIAP1, cIAP2, and
XIAP suppression in pre-ALL cell lines.

Sanguinarine and berberine binds
G-quadruplex in oncogenes and telomeres.

[342–344]

3.6. Australia

Although Australia is a habitat for more than 21,000 plant species, there is extremely
limited information about their medical use by indigenous peoples. There is especially
little data on their anti-neoplastic properties. The well-known example is Eremophila
galeata (EG, the Scrophulariaceae family), a flowering shrub which is endemic to Western
Australia. This plant has a long history of use in medicine by indigenous peoples because
of its valuable pharmacological properties [345].

Petersen and colleagues identified that the crude extract prepared from EG leaves
significantly sensitized HT-29 cells to SN-38—a modern topoisomerase I inhibitor. One of its
major compounds, the 5,3′,5′-trihydroxy-3,6,7,4′-tetramethoxyflavone, strongly suppressed
the breast cancer resistance protein (BCRP/ABCG2) [346] which belongs to the family of
ATP-binding cassette proteins. BCRP mediates multidrug resistance and promotes an efflux
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of such potent drugs, such as methotrexate, irinotecan, topotecan, sorafenib, gefitinib, and
doxorubicin, from cancer cells [347].

Some other medical Australian plants with anticancer properties are listed in Table 6.
Thereby, Australian plants are extremely unstudied to date in terms of antitumor properties.

Table 6. Some other Australian plants and their compounds with anti-neoplastic activity.

Plant Active Compounds Effects References

Terminalia ferdinandiana
Tannins, flavonoids: gallic acid,
ellagic acid, lutein, hesperitin,

kaempferol, luteolin, and quercetin

Antiproliferative and proapoptotic activity in
cancer cell lines. No toxicity to human
dermal fibroblasts and shrimp Artemia

franciscana bioassay.

[348,349]

Tasmannia lanceolata

Phenolic acids: coumaric acid,
chlorogenic acid. Flavonoids:

quercetin, quercetin 3-rutinoside, and
anthocyanin (cyanidin

3-rutinoside)

Cytotoxicity to different cancer cell models
with non-significant effects on normal colon,

stomach, and intestine cells.
[350]

Davidsonia pruriens Anthocyanin compounds, flavanoids
Significant cytotoxicity to a panel of cancer
cell models and low toxicity in the Artemia

nauplii bioassay.
[351,352]

Elaeocarpus angustifolius Not identified
Significant cytotoxicity to Hela and Caco-2
cell models and low toxicity in the Artemia

nauplii bioassay.
[352]

Pittosporum angustifolium Alcaloids, saponins
Antiproliferative effects of 7 saponins with
IC50 values in a range of 1.74–34.1 µM for

MCF7, HaCaT, LN18, and 5637 cancer cells.
[353]

4. Mushrooms

About 2.2–3.8 million fungi exist on our planet, including 14,000 mushroom species [354].
Interest in mushrooms as a medical supply is rooted in the mists of time and prevails to
these days. Mushrooms are used in the traditional medicine of China, Ayurveda, East
Asia, Europe, South America, etc. A number of mushroom species are implicated as
food supplements to improve health in different regions, including the USA and Europe.
Several big company sale food supplements contain, or are fully derived from, mush-
rooms. For instance, iHerb (USA, California, www.iherb.com; accessed on 30 March 2022),
Fungi Perfecti (USA, Olympia, www.fungi.com; accessed on 30 March 2022), Ommush-
rooms (USA, Carlsbad, www.ommushrooms.com; accessed on 30 March 2022), Terezia
(Czech Republic, Praha, https://www.terezia.eu/en/; accessed on 30 March 2022), Real-
mushrooms (Canada, Roberts Creek (BC), www.realmushrooms.com/; accessed on 30
March 2022), Time Health (UK, www.timehealth.co.uk; accessed on 30 March 2022), Zipvit
(UK, Staffordshire, https://www.zipvit.co.uk/; accessed on 30 March 2022), Hangzhou
Molai Biotech Co., Ltd. (China, Hangzhou, https://phytonutri.en.made-in-china.com;
accessed on 30 March 2022), and Shaanxi Shineherb Biotech Co., Ltd. (China, Shaanxi,
www.shineherb.en.made-in-china.com; accessed on 30 March 2022) are among them. The
main mushrooms which are explored by humans as beneficial for health are reishi, cordy-
ceps, turkey tail, maitake, lion’s mane, chaga, and others.

Nowakowski and colleagues have summarized 92 mushroom species with antineoplas-
tic activity, which could be effective against 38 various cancers [355]. Mushrooms display
a great number of secondary metabolites with different biological activities [356–358]. In
addition, these metabolites are different from secondary metabolites of plants. Regarding
cancer healing, mushroom and fungi, in general, as well as their biochemical diversity, are
almost fully unexplored to date.

Below, we give some examples of mushrooms that possess antitumor properties and
have been used in traditional medicine.

www.iherb.com
www.fungi.com
www.ommushrooms.com
https://www.terezia.eu/en/
www.realmushrooms.com/
www.timehealth.co.uk
https://www.zipvit.co.uk/
https://phytonutri.en.made-in-china.com
www.shineherb.en.made-in-china.com
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Lentinula edodes is a mushroom that grows in East Asia. It is known as “Xianggu” in
China and “Shiitake” in Japan. The mushroom has been used as food and in traditional
Chinese medicine for at least 2000 years. It possesses analgesic, tonic, and antiparasitic
activities [359].

Preclinical studies have identified that shiitake has immunostimulating, antibacterial,
antiviral, hepatoprotective, antimutagenic, antihypercholemic, and anticancer properties
due to the content of lentin, lignin, and erytadenine in the fruiting body [359].

Among others, shiitake chemical composition includes polysaccharides, polysaccha-
ropeptides, lectinss, and lentinan, the last of which is especially focused on the medical
attributes of this mushroom [355].

The polysaccharide lentinan (1,3 beta-D-glucan), when isolated from shiitake, has
shown strong antitumor properties. There are studies demonstrating the existence of the
direct cytotoxic effects of shiitake extracts on cancer cells in parallel with minimal impact
on non-malignant cells. One group reports the direct apoptotic effects of shiitake mycelia
extracts on human hepatocellular carcinoma cells with minimal toxicity to normal rat
cells [360]. Other researchers have shown the direct cytotoxic effects of fruit bodies, but not
mycelia extract, on MCF7 cells, with far less significant cytostatic effects on fibroblasts [361].

In several in vitro studies, the synergistic effects of lentinan with docetaxel, paclitaxel,
and cisplatin on proliferation and apoptosis have been shown. Lentinan sensitized lung
cancer cells to paclitaxel through ROS-TXNIP-NLRP3 inflammasome and ASK1/p38MAPK
signaling pathways [362]. It also sensitized bladder cancer to gemcitabine [363] and gastric
cancer cells to docetaxel and cisplatin [364]. Lentinan increased the sensitivity of HepG2
hepatoma cells and xenograft H22-bearing mice to oxaliplatin, which was associated with
NF-kb, STAT3, and surviving suppression [365].

One more application may be doxorubicin-conjugated lentinan nanoparticles, which
increased cytotoxicity for breast cancer while decreasing it for human normal cells [366].

The direct antitumor activity of water-extracted polysaccharide on cancer cells has
also been demonstrated using athymic nude mice and human colon cancer cells [367]. In
this model, lentinan-induced ROS mediated both TNF-α and mitochondria-dependent
apoptosis.

Nevertheless, the main mechanism of the lentinan-mediated anticancer response is
proposed to be associated with the stimulation of the immune system. Different mecha-
nisms are suggested to be responsible for this. The modulation of the TLR4/dectin1-MAPK
and Syk-PKC-NFκB signaling in immune cells is reported. In patients with digestive
cancer, lentinan removed the dominant state of Th2 which restored Th1-Th2 lympho-
cyte (Tregs) balance [368–371]. Th1 cells possess antitumor activity and produce IFN-γ
and IL-12, whereas Th2 is characterized by IL-4 and IL-10 production and may promote
malignization [372,373].

In clinical concentrations, lentinan down-regulated PD-L1 which enhances the effi-
ciency of adaptive immunity.

Lentinan decreased the granulocytes–lymphocytes (G/L) ratio in gastric cancer pa-
tients opposed to those who have only received chemotherapy, and prolonged their sur-
vival [374]. The G/L ratio (neutrophil–lymphocyte ratio) is suggested as a prognostic
marker, and is associated with an increased tumor progression, invasion, and shortened
survival in different types of malignancies including gastric cancer [375,376]. Solid tumors
express granulocyte colony-stimulating factor (G-CSF) which induces the proliferation of
leukocytes (neutrophils) and myeloid-derived suppressor cells (MDSCs). Both of them
suppress the proliferation of lymphocytes and lymphocyte-activated tumor cells killing
those which favor malignization [377]. Lentinan was shown to decrease the G-CSF serum
level and inhibited MDSCs via a CARD9-NF-κB-Ido pathway which may be responsible
for a decrease in the G/L ratio and partially responsible for anticancer properties [378,379].

Wang and colleagues reported that the addition of lentinan to the combination therapy
of vinorelbine and cisplatin in a cohort of 73 patients with NSCLC resulted in an approxi-
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mately two-fold increase in NKT-cells [379]. This was accompanied by the shift of Tregs
status from Th2 to Th1, in accordance with the elevation of IFN-γ, TNF-α, and IL-12.

In China and Japan, lentinan was used as an adjuvant therapeutic drug. The meta-
analysis of 650 gastric cancer patients has shown that lentinan significantly increased their
survival and was mostly effective in patients with lymph node metastasis [380]. Lentinan
also increased the lifespan of patients with hepatocellular carcinoma [381] and improved
the quality of life of patients with unresectable pancreatic cancer [382].

Zhang and colleagues reported about 9500 cancer patients who were treated with
lentinan for a period of 12 years [371]. A number of studies demonstrated that lentinan
improved a patient’s survival rate, seemingly irrespective of the tumor type [374,383].

Nevertheless, the mechanisms of this phenomenon are not fully understood today. In
summary, shiitake and lentinan are valuable for cancer treatment, but further intensive
studies of their antineoplastic mechanisms with possible side effects and limitations are
required, as well as well-designed clinical trials.

Ganoderma lucidum (Gl) is a mushroom that grows on plum trees in many Asian
countries. It is commonly known as “Reishi” in Japan and “Ling-zhi” in China. In tra-
ditional Chinese medicine, reishi has been called the “mushroom of immortality” or the
“spirit plant” and has been actively used to prevent cardiovascular diseases; strengthen the
immune system; and cure neurological afflictions, allergies, and liver disorders for many
centuries [384]. Moreover, reishi is a part of adjuvant therapy of cancer and diabetes.

As in the case of shiitake, reishi suppresses tumor cells both directly and through
fine-tuning of the immune system. Severe combined immunodeficient (SCID mice) cells,
bearing human inflammatory breast cancer cells, when treated with Gl extract, significantly
reduced tumor growth and weight, accompanied with the attenuation of Ki-67, vimentin, p-
ERK1/2, Akt, and mTOR (as well as its targets p70S6K and eIF4G) [385]. The in vitro model
has also proven the reishi-mediated suppression of protein synthesis and proliferation,
whereas it was not toxic to non-tumor breast MCF10A cell lines [386]. The Gl extract was
able to attenuate lamellipodia formation, thus inhibiting the motility of MDA-MB-231
breast cancer cell lines. This was associated with a reduction in Rac kinase activity, as well
as p-FAK (Tyr925), Cdc42, and c-Myc expression [387].

Different compounds with medical properties have been identified in reishi extracts.
Although the plethora of them may be responsible for antitumor activity, ganoderic acid
(GA) and Ganoderma lucidum polysaccharides (GLPs) are proposed to be the most important
of them [388]. The antineoplastic activity of reishi is manifested as both direct cytotoxicity
to cancer cells or indirect cytotoxicity through the stimulation of the immune system [389].

GA is a natural triterpenoid whose molecular structure is similar to steroid hormones
and has multiple isoforms [390]. It is proposed that GA targets several receptors (IGFR-1,
VEGFR-1 and -2, and ER) [391] and is shown to inhibit the PI3K/Akt/mTOR pathway [392],
induce DNA damage [393], down-regulate MMP-2 and -9 [394], and affect other oncogenic
activities [388].

Ganoderma lucidum polysaccharides (GLPs) are considered to be the main antitumor
compound of reishi [389,395]. GLP inhibited autophagic flux in colorectal and gastric
cancer cells [396,397] and suppressed “aerobic glycolysis” (the Warburg effect) [398]. It
down-regulated vimentin and EMT-associated TF Slug, and also inhibited the JAK/STAT5
pathway, motility, and the invasion of ovarian cancer cells [399]. Water-soluble glucose-
enriched Gl polysaccharide attenuated the activation of EGFR and Akt, suppressed oral
cancer cells, and sensibilized them to cisplatin, while protecting normal human oral epithe-
lial cells from cisplatin-mediated cytotoxicity [400].

The major antitumor activity of GLP occurs through the modulation of the immune
system [401]. GLP increased the proliferation and differentiation of B-lymphocytes, the
activity of T-lymphocytes, and their IFN-γ production [402]. It increased several-fold the
number of natural killer (NK) cells [403], and also increased the granulocyte–macrophage
colony-stimulating factor (GM-CSF), the granulocyte colony-stimulating factor (G-CSF),
and the macrophage colony-stimulating factor (M-CSF) [404].
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Zhang and co-authors developed gold GLP composite nanoparticles which activated
dendritic cells, promoted the proliferation of T killers and Tregs in splenocytes, elevated
the percentage of CD4+/CD44+ memory T cells, and reduced tumor weight and metastasis
in the 4T1 breast cancer mouse cell model [405].

GLP may be a promising prebiotic substance for the treatment of colorectal cancer.
Using a mouse model of inflammatory colorectal cancer, Guo and colleagues reported that
GLP treatment normalized dysbiosis; improved the gut barrier function; and suppressed
IL-1β, iNOS, COX-2, and macrophage infiltration [406].

A randomized double-blind placebo-controlled study has shown beneficial effects
for healthy volunteers upon Gl intake in terms of hepatoprotective and antioxidant ac-
tivity [407]. An evaluation of 120 breast and lung cancer patients whose treatment was
supplemented or not with Gl revealed the reverse correlation between Gl intake and
immunosuppressive factors COX2 and TGF-β1 and positive correlation with anticancer
IL-12 [408].

In conclusion, reishi is a safe non-toxic plant, and has been utilized as an alternative
adjuvant in the therapy of cancer patients without obvious toxicity. It acts in synergy with
antineoplastic drugs and is used clinically to treat various malignancies [389]. It deserves
more attention as a potential adjuvant.

Grifola frondosa, commonly known as maitake, is an edible and medicinal mushroom
that grows in Asian regions, especially in China, India, Japan, Korea, and some European
countries. It has been used for centuries in traditional medicine for different purposes. The
anticancer properties of this mushroom are especially attractive.

Several bioactive polysaccharide fractions could be separated from Gf: D-fraction,
MD-fraction, X-fraction, Grifolan, MZ-fraction, and MT-α-glucan, which possess different
biological activities [409]. For medical usage, in most cases, the so-called “D-Fraction” is
prepared via extraction from fruit bodies. In this way, D-fraction is a standardized form
of protein-bound β-glucans (proteoglucans) extracted from the fruit bodies of maitake. It
predominantly contains β-D-glucans with β-(1→6) main chains and β-(1→4) branches, as
well as more common β-(1→3) main chains and β-(1→6) branches [410].

It was shown that in the MDA-MB-231 TNBC cell line, D-fraction favored apoptosis,
decreased motility, increased E-cadherin protein levels and β-catenin membrane localiza-
tion, and reduced activity of MMP-2 and MMP-9 [411,412]. In the corresponding xenograft
mouse model, D-fraction also inhibited tumor growth and metastasis.

The inhibitory effect was associated with the cell cycle arrest, diminished motility,
and induced apoptosis. D-fraction suppressed hepatoma cells both in vitro and in vivo,
which was associated with PI3K/AKT attenuation and an autophagy increase [413]. The
Konno group demonstrated the strong synergistic cytotoxicity of D-fraction combined with
vitamin C on prostate and renal cancer cells [414,415].

However, numerous studies have shown that the key ability of maitake to affect
tumors is hidden in the stimulation of the immune system. Both the innate and acquired
immunities are affected by D-fraction. In BALB/C mice, D-fraction blocked more than
60% of breast cancer development and prevented oncogenesis in 26%, with regards to
control animals [416]. The other group has shown a long-term immunity activation in
MM46-bearing C3H/HeN mice which was associated with an increase in TNF-alpha,
IFN-gamma, and macrophage-derived interleukin (IL)-12, as well as the activity of NK
cells [417]. Furthermore, D-fraction combined with vitamin C increased the percentage of
CD4 + CD8 + T-cells, B-cells, and Treg cells, and also elevated IL-2, IL-12p70, TNF-α, and
IFN-γ levels in Heps-bearing mice [418].

In B16 melanoma and colon-26 carcinoma mice, maitake-derived α-glucan (a highly
α-1,6-branched α-1,4 glucan, YM-2A) elevated the antitumor immune response through
the up-regulation of INF-γ-expressing CD4+ and CD8+ T-cells in the spleen and INF-γ-
expressing T-CD8+ cells in tumor-draining lymph nodes. Moreover, orally administered
YM-2A increased the expression of the MHC class II and CD86 on dendritic cells and the
MHC class II on macrophages in Peyer’s patches [419].
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The meta-analysis of pre-clinical data revealed that Gf usage upon cancer treatment
significantly inhibited tumor growth, and, on the contrary, improved remission rates, and
also increased CD4+ and CD8+ T cell percentages, as well as IL-2, IL-12, and TNF-α [420].

Maitake-derived polysaccharide-based drugs were subjected to clinical trials. The
Japan group reported cancer regression in about 58.3% of liver cancer patients, 68.8% of
breast cancer patients, and 62.5% of lung cancer patients [421]. At the same time, there was
only a 10–20% improvement for leukemia, stomach cancer, and brain cancer patients. In
another investigation, D-fraction increased NK cell activity, attenuated metastatic progress,
and improved the expression of tumor markers in all examined patients [422].

In China, a maitake-derived polysaccharide-based drug was approved by the State
Food and Drug Administration (SFDA) in 2010 [423].

Strong antitumor properties and the safety of its use place maitake at the top of
biological organisms which should be studied with respect of neoplasia.

Cordyceps sinensis (CS) and Cordyceps militaris (CM) are important mushroom
species for China and Korea. Both of them are entomopathogenic fungi which parasitize on
the larvae of moth caterpillars. However, these mushrooms can be cultivated in a variety
of media, including silkworm pupae, rice, and liquid nutrition. They have been used in
Chinese medicine because of their anti-inflammatory, anti-microbial, immunostimulant,
and antineoplastic properties [424]. The known bioactive compounds of these mushrooms
are cordycepin, cordycepic acid, ergothioneine, lovastatin, and polysaccharides [425,426].

In the 4T1 orthotopic xenograft breast mouse model, an extract of Cs inhibited tumor
growth and promoted macrophage polarization toward the M1 phenotype [427]. Cm
extract was shown to suppress KRAS-driven colorectal cancer by attenuating the RAS/ERK
pathway [428]. Another study reported that the Cm extract overcame cisplatin resistance
in NSCLC cell lines when proteomic profile analysis revealed H-Ras down-regulation [429].
Other authors have demonstrated that its extract down-regulated hedgehog signaling in
NSCLCs via TCTN3 inhibition and GLI1 nuclear translocation suppression [430].

The main pharmacologic activity of CS and CM is attributed to cordycepin. This is 3-
deoxyadenosine, which has a similar structure to adenosine but lacks the 3′-hydroxyl group
of the ribose moiety [431]. Adenosine receptors are in the family of G-protein-coupled
receptors, which are found in almost all human body tissues and organs. Specific ligands,
agonists, or antagonists activate these receptors which modulate tumor growth via a range
of signaling pathways [432].

Cordycepin is suggested to act through ADORA2 and ADORA3 receptors. It has
been shown that the cordycepin-mediated activation of ADORA3 inhibits growth and
induces apoptosis in bladder cancer and murine B16 melanoma, which can be associated
with glycogen synthase kinase-3β activation and cyclin D 1 suppression [433–435]. In
the HCC model, cordycepin suppressed focal adhesion kinase (FAK) activation which
plays an important role in angiogenesis [436,437]. Cordycepin down-regulates PI3/AKT,
MAPK/ERK, β-catenin, bcl-2, and cdk2, and also induces JNK, caspase-3 and -9, and PARP
cleavage in renal, colon, bladder, lung, breast, prostate, glioblastoma cancer, and leukemia.
This compound inhibited cell cycle, motility, invasion, and vascularization, while inducing
apoptosis (reviewed in [431,438]). One more mechanism has been proposed for cordycepin
neoplastic activity. It activates death receptors (DRs) which induce extrinsic apoptotic path-
ways [439,440]. With respect to the testicular cancer mouse model, cordycepin suppressed
FGFs/FGFRs pathways, ERK1/2, Rb/E2F1, cell cycle, and tumor growth [441].

Cordyceps acid diminished lung cancer development in nude mice which was associ-
ated with the inhibition of the Nrf-2/HO-1/NLRP3/NF-κB pathway in tumor tissue [442].

Like other mushrooms discussed, Cordyceps possess immunomodulatory effects. It is
assumed that this effect is mainly attributed to polysaccharides. The mushroom is able to
increase the production of interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, and IL-12, as well as
the tumor necrosis factor (TNF)-α, and also induce the phagocytosis of macrophages and
mononuclear cells [443–445]. Thus, cordyceps are able to strengthen the immune system,
which is an additional bonus for cancer therapy.
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A cordyceps sinensis-derived polysaccharide provoked apoptosis and autophagy in
human colon HCT1166 cells, which were associated with Akt, mTOR inhibition, and AMPK
and ULK1 activation [446].

Ergothioneine is a diet-derived amino acid which exhibits antioxidant, cytoprotec-
tive, and other activities beneficial to human health [447]. It likely enters the cells by
binding the solute carrier family 22, member 4 (SLC22A4), which is an organic cation
carrier. Although there is not enough information about the role of ergothioneine in human
physiology, there are strong evidences about its protective properties in our organism [447].
Ergothioneine mitigated oxaliplatin-induced peripheral neuropathy in rats (Nishida 2018),
provoked necroptosis in colorectal cancer cells [448], and favored adjuvant vaccine cancer
immunotherapy by suppressing the function of tumor-associated macrophages [449]. The
blood level of ergothioneine was negatively associated with the risk of cardiometabolic
disease and mortality [450], as well as chronic peripheral neuropathy upon colorectal cancer
chemotherapeutic treatment [451].

Like reishi, shiitake, chaga, and maitake, the natural Cordyceps-derived products are
manufactured and commonly sold as healthy food products.

Chaga (Inonotus obliquus, the Hymenochaetaceae family) is a plant parasitic fungus,
predominantly widespread in Russia and in the countries of Northern Europe. Chaga
penetrates into the trunks of various tree species through wounds in the bark, but its main
host is birch. Chaga has been used in folk medicine, especially in Russia, Baltic countries,
Korea, China, and Japan. As a medical plant, it was first mentioned by Hippocrates [359].

Different types of Chaga extracts have demonstrated their antineoplastic properties in
both in vitro and in vivo models (reviewed in [452]).

Chaga contains biologically active polysaccharides, hispidin analogues, melanins,
ergosterol, sesquiterpenes, triterpenoids, and benzoic acid derivates. Eighty-six of them are
listed with the examples of their antineoplastic properties in [452].

In the Lewis lung mice carcinoma model, the extract of chaga decreased the size of
tumors by 60%, and, in parallel, reduced the number of metastatic nodules [453].

In the orthotopic 4T1 mouse mammary cancer model, chaga extract induced au-
tophagy, as well as LCIII and AMPK phosphorylation [454]. Authors have also shown
that both inotodiol- and trametenolic-acid-enriched fractions displayed cytotoxicity. Tra-
mentolic acid was shown to decrease the expression and activity of P-gp, which reverted
multidrug resistance in breast cancer cells [455].

Inonotus obliquus polysaccharides (IOPSs) are considered to be very important bio-
logically active compounds derived from this mushroom. Their hypoglycemic, antioxi-
dant, anti-inflammatory, and neuroprotective properties, among others, have been identi-
fied [456].

The intraperitoneal administration of IOPSs at a dose of 30 mg/kg/day led to 4.07-fold
increase in the survival rate of B16F10-implanted mice. Moreover, the authors reported that
approximately 67% of the initial number of mice survived with no tumor incidence after 60
days of feeding. At the same time, no cytotoxic IOPS activity was observed for both normal
and cancer cells in vitro. Thus, the authors suggested that the anti-cancer effects of endo-
polysaccharides are associated with immunostimulation [457]. However, another study has
shown that Inonotus polysaccharides directly activate autophagy through LKB1/AMPK,
which provoked MMP loss as well as the down-regulation of glycolysis and respiration,
and subsequently elicited the death of lung cancer cells both in vitro and in allograft tumor
models [458].

Other bioactive compounds from chaga are hispidin, hispolon, inotodiol, and syringic
acid. They were shown to reduce proliferation, invasion, migration, and angiogenesis.
On a molecular level, these bioactive compounds attenuated the expression of MMPs and
antiapoptotic proteins that, in turn, were mediated by onco-associated signaling pathways:
TNF-alpha signaling, Nox/ROS/NF-kB/STAT3, PI3K/AKT, and ERK1/2 [452,459,460].
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Inotodiol is lanostane triterpenoid with anticancer properties. It down-regulated
β-catenin, c-Myc, and cyclin D1 in breast cancer [461] and suppressed the migration and
invasion of ovarian cancer cells through a p53-dependent mechanism [462].

Hispolon is a natural polyphenol compound with antidiabetic and anti-inflammatory
activities which may also kill cancer cells through multiple mechanisms (reviewed in [463]).
Hispolon attenuated STAT3 signaling, and also induced S-phase arrest and mitochondria-
dependent apoptosis in prostate cancer cells [464]. In melanoma cells, it compromised the
activities of mitochondrial respiration complexes I and IV, i.e., the level of Bcl-2, and also
increased ROS, nitrite, and lipid peroxide levels [465]. Regarding breast cancer, hispolon,
on the contrary, attenuated ROS levels, ERK activity, and the expression of Slug, there-
fore reversing EMT (Zhao 2016). In another study, hispolon degraded cathepsin S in an
autophagy-dependent way which suppressed metastasis [466].

Polyketide hispidin exerts a variety of beneficial properties and may help to reduce can-
cer, metabolic syndrome, cardiovascular, neurodegenerative, and viral diseases (reviewed
in [467]). Hispidin induced the microtubule and depolymerization induced lysosomal
membrane permeabilization, which resulted in the death of cancer but not normal cell
lines [468]. Moreover, it synergized with gemcitabine to inhibit pancreatic cancer stem
cells [469].

Thus, like the well-known Asian medical mushrooms, chaga also has strong antineo-
plastic properties, both in vitro and in vivo.

Despite the fact that chaga is not as well known as reishi, shiitake, or maitake, and
thus was not found associated with any clinical trials, the biodiversity of chaga-derived
compounds with strong antineoplastic activities makes this mushroom noteworthy. Ad-
ditionally, it should be kept in mind as a potential anticancer substance, and therefore
warrants further studies.

A number of several mushroom-derived compounds are known today with anti-
neoplastic properties and are of primary interest for cancer investigation. These include
various mushroom polysaccharides such as lentinan, D-fraction of Grifola frondose, Tram-
etes versicolor-derived PSK, gandoderic acid, grifolin, cordycepin, illudin-S, antroquinonol,
hispidin, hispolon, inotodiol, theanine, phellinulin A, atractylenolide I, phellifuropyranone,
meshimakobnol A, and meshimakobnol B (Tables 7 and 8).

Table 7. Others mushrooms and their compounds with strong anti-neoplastic activity.

Mushroom Active Compounds Effects References

Agaricus subrufescens (“mushroom
of the sun”)

β-glucans (β-(1–3) linked
backbone with (1–6) linked side

branches); ergosterol

Pre-clinic: various immune stimulatory response.
Clinic: increased activity of natural killer (NK) cells,
and improved quality of life; increased number of

plasmacytoid dendritic cells (DCs), Tregs, IL-5, and
IL-7 in the blood.

[470–472]

Phellinus linteus

Polysaccharides, hispolon,
phellinulin A, atractylenolide I,

phellifuropyranone,
meshimakobnol A, and

meshimakobnol B

Pre-clinic: down-regulation of PI3K/AKT, ERK1/2,
NF-kB Snail and Twist, cyclin D1 and -E, MMP-2 and

-9, TGF-α; increased p53, p21, p27, and Bax;
suppression of pancreatic CSCs.

In clinic: Disease-free and overall survival of
pancreatic cancer patients after tumor resection.

[469,473,474]

Hericium erinaceus (Lion’s mane)
4-chloro-3,5-dimethoxybenzoic

methyl ester, erinacine A, herierin
III, herierin IV, and erinacerin G

The epigenetic regulation of FasL and TRAIL;
sustained phosphorylation of FAK/AKT/p70S6K

and the PAK1 pathways; generation of ROS;
apoptosis via activation of JNK, p300, and NFκB p50;

increased expression of TNFR, Fas, and FasL.

[475–478]

Trametes versicolor (Turkey tail)
Protein polysaccharide

beta-glucan β-1,4 main chain with
β-1,3 and β-1,6 side chains (PSKs)

In clinic: PSK, including adjuvant
immunochemotherapy, significantly prolonged
5-year survival and disease-free rate for patients

with gastric and colorectal cancer; slows progression
of advanced non-small cell lung cancer.

[479,480]
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Table 8. Selected plants, mushrooms, and their active compounds in the order of their priority to
study anticancer capabilities. The priority was suggested based on the available information about
the anti-neoplastic efficacy and safety in preclinical and clinical studies.

High Priority

Plants Mushrooms Individual Compounds

Cephalotaxus harringtonia, Oldenlandia diffusa,
Scutellaria barbata, Curcuma longa,

Xanthium ssp.,
Zingiber officinalis, Hypericum perforatum,

Glycyrrhiza glabra, Silybum marianum, Panax
americanus and P. ginseng, Aloe vera and A.
arborescence, Tabebuia impetiginosa, Viscum

album, Allium sativum, Vitis vinifera,
Rosmarinus officinalis, Echinacea purpurea,

Sanguinaria canadensis

Lentinula edodes (Shiitake),
Ganoderma lucidum (Reishi), Grifola

frondosa (Maitake),
Cordyceps sinensis and C. militaris,
Agaricus blazei, Trametes versicolor,

Phellinus linteus

Quercetin, kaempferol, ginsenosides
(especially Rg3), silibinin, isoliquiritigenin,

(−)- epicatechin, oleanolic acid, ursolic acid,
hyperforin, hypericin, xanthatin, curcumin,

withaferin A, withanone, scutellarein,
scutellarin, homoharringtonine and its

semi-synthetic derivates, chlorogenic acid,
caffeic acid, carnosol, rosmarinic acid,

resveratrol, iscodor, helixor A, shogaol,
boswellic acids, hispolon, lentinan,

cordycepin, echinacoside, and myricetin

Secondary priority

Betula pubescens, Eremophila galeata,
Combretum caffrum, Acacia nilotica, Guera
senegalis, Tasmannia lanceolata, Davidsonia

pruriens,
Elaeocarpus angustifolius, Pittosporum

angustifolium, Terminalia ferdinandiana,
Aristolochia ringens, Beilschmiedia acuta,
Dorstenia psilurus, Aristolochia ringens,
Beilschmiedia acuta, Dorstenia psilurus,

Echinops giganteus, Imperata cylindrica, Piper
capense, Polyscia fulva, Achyrocline satureioides,

Aloysia polystachya, Azorella glabra, Ephedra
chilensis, Croton lechleri, Laetia corymbulosa,

Lepidium meyenii, Leptocarpha rivularis,
Passiflora alata, Thevetia peruviana, Menyanthes
trifoliata, Ebenus boissieri, Centaurea solstitialis,
Arctium lappa, Capraria biflora, Asimina triloba,

Aristolochia foetida

Hericium erinaceus (Lion’s mane),
Inonotus obliquus (Chaga)

Gallic acid, combrestastatins, pyrogallol,
betulinic acid, guieranone B, harringtonine,
isoharringtonine, and doxyharringtonine,

aloe-emodin, aloins, leptocarpin, macamide
and macaene, corymbulosins,

taspine, mulinic acid, achyrobichalcone,
3-O-methylquercetin, arctigenin, lappaol F,
solstitialin A, sageone, biflorin, acetogenins,
β-sitosterol, stigmasterol, sanguinarine,

gandoderic acid, grifolin, illudin-S, lapachol
and β-lapachone, carthamidin, carnosic acid,
hispidin, inotodiol, syringic acid, p-coumaric
acid, caffeoyl quinic acids, viniferin, lectins

(ML-I, ML-II, and ML-III) from Viscum
album

The antitumor activities of Grifola frondosa (Maitake) polysaccharide are reported in a
meta-analysis based on preclinical evidence and quality assessment.

5. Why Should Medical Plants and Mushrooms Be Used Today?

At its core, modern western medicine has evolved from the folk medicine of different
regions around the world over the past few centuries. As stated earlier, the most frequently
used anti-neoplastic therapeutics came from live organisms (Tables S1 and S2, Supple-
mentary Materials). Regarding pharmaceuticals, in the process of its evolution, modern
medicine has created a certain set of drugs with a known efficacy, safety, side effects, and
known molecular targets. However, it lost a wide profile of pharmacological activity of the
plant extracts’ initial biological crude material.

Anticancer therapeutics from plants remain extremely important and are still in use
to treat various types of neoplasia. They include mitotic poisons from Pacific yew Taxus
brevifolia—paclitaxel (Taxol®) and its semi-synthetic dodetaxel (Taxotere®); vinca alkaloids
from Madagascar periwinkle (Catharanthus roseus L.)—vinblastine (Velban®), vincristine
(leurocristin, Oncovin®) and their semi-synthetic derivate vinorelbine (Navelbini®); topoi-
somerase I inhibitors, i.e., semi-synthetic analogs of camptothecin from Camptotheca
acuminata—irinotecan (Camptosar®) and topotecan (Hycamtin®); topoisomerase II inhibitor—
etoposide (VP-16, Toposar®), which is a semi-synthetic derivative of 4’-demethylepipodophyllotoxin
from Podophyllum peltatum; and omacetaxine (Synribo®)—a semi-synthetic derivate of
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homoharringtonine from Cephalotaxus harringtonia. These drugs occupy the majority of
existing chemotherapeutic schemes.

These examples illustrate the importance of plant-derived chemotherapeutics. How-
ever, even today, despite being seemingly irrelevant due to a wide assortment of synthetic
anticancer drugs, interest in studies of natural compounds from plants and fungi is con-
stantly increasing according to PubMed statistics (Figure 2). It is interesting to note that,
although fungi or their active compounds are not clinically used in the western world
today, their known safety and use in clinical practice in China and Japan can lead to an
increase in studies on their antineoplastic capabilities. These mushrooms are represented
by shiitake, maitake, reishi, and others, and act mainly through the stimulation of the
anti-tumor immune system.
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One of the actual strategies used to develop anticancer drugs is the search for agents
which are capable of simultaneously inhibiting several signaling pathways. A large amount
of clinical data highlights that the highly selective inhibition of only one of the signaling
pathways in the tumor cell usually leads to a limited response. Another significant problem
of targeted therapy is the rapid acquisition of resistance by tumor cells due to the prolifer-
ation of cell clones bearing mutations that abolish the effects of the targeted drug. Thus,
multitargeted therapy is considered a promising approach.

Based on the examples of plants and mushrooms described above, the anticancer
activity of their extracts is attributed to the plethora of biologically active compounds with
a number of biological activities. Thus, different compounds may target simultaneously
different cellular processes resulting in synergistic effects. In light of this, there may be
benefits from sharing them with known strong antineoplastic therapeutics in adjuvant
or neoadjuvant therapy. The published data of many in vitro and in vivo experiments
described here point to the fact that plant and mushroom substances with anticancer
properties often increase susceptibility to genotoxic drugs.

In terms of safety and predictability, the usage of individual compounds for therapy is
much better than the plant extract, which is a complex mixture of primary and secondary
metabolites. However, the well-known phenomenon states that the pharmacological
activities of many bioactive constituents are much weaker than those of the corresponding
herbal extracts. Upon separation and purification from herbal extracts, the pharmacological
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effects of many bioactive constituents diminish or even disappear [481,482]. In practice, the
pharmacokinetics (AUC values) between some herbal extracts and their pure constituents
may differ up to 130 times. This phenomenon depends a lot on the pharmacokinetic
synergies during intestinal absorption. This means that additional constituents of plant
and mushroom extracts increase solubility, reduce first-pass elimination mediated by drug-
metabolizing enzymes and drug efflux transporters (ABC transporters), and enhance the
membrane permeability of enterocytes (reviewed in [482]).

For instance, in the Hypericum perforatum (St. John’s) extract, the co-existing constituent
hyperoside increased the water solubility of the active compound, hypericin, by 400-
fold [483]. The antimalaria agent, artemisinin, which is one of the most important natural
drugs, is a substrate of cytochrome P450 enzymes. Artemisia annua extract co-occurs
with arteannuin B, which inhibits hepatic cytochromes P450 and doubles the peak serum
concentration of artemisinin in vivo [484].

There are evidences that coexisting compounds may change the solubility and bioavail-
ability of their active constituents via the formation of natural nanoparticles, greatly modi-
fying their pharmacological activities [482,485,486].

Another important point is associated with a strong deterioration in the health of
patients undergoing chemotherapy. In this case, all of the medical plants and mushrooms
described here can significantly improve the physical and mental health of patients due to
the anti-inflammatory, hepatoprotective, cardioprotective, immunomodulatory, anxiolytic,
and metabolism-normalizing properties. The simultaneous use of plant- and mushroom-
derived medical substances along with chemotherapy may ameliorate its toxic impact on
normal tissues.

Finally, standardized herbal medicine can be more cost-efficient than most other
synthetic compounds.

Based on the information discussed in this review, we divided medical plants, mush-
rooms, and their active compounds into two priority groups for research and potential of
use in antitumor therapy. This priority is suggested based on the available literature on
their anti-neoplastic efficacy and safety in preclinical and clinical studies (Table 8). The
chemical structures of active compounds with their sources are demonstrated in Figure S1.

6. Limitations of Using Plants and Mushrooms as Medicine
6.1. Bioavailability

Despite the promising antineoplastic activity of several natural herbs and mushrooms,
their translation to human studies is limited due to their low bioavailability.

First of all, this is based on poor water solubility. This is a problem limiting the
efficiency and application of compounds with significant antineoplastic properties in both
animal and human studies. Curcumin, resveratrol, quercetin, hypericin, ursolic acid,
silybin, pterostilbene, berberine, betulinic acid, and other valuable compounds are among
them [487].

Besides solubility, other reasons affecting bioavailability include an increased intestine
metabolism (by both microbiota and enterocytes), absorption and intestinal efflux (the
activity of P-gp and other ABC transporters), and the activity of liver drug-metabolizing en-
zymes. The drug-metabolizing system consists of phase I and phase II drug-metabolizing
enzymes which are cytochromes (CYPs), especially CYP3A4, and UDP glucuronosyl-
transferases (UGTs), primarily UGT1A1 and 2B1 [482]. These enzymes are active in both
hepatocytes and enterocytes.

In preclinical and clinical investigations, curcumin, quercetin, resveratrol, and other
promising natural compounds with anticancer properties have displayed problems with
the dissolvement into gastrointestinal fluids, permeability across the intestinal epithelium,
and “first-pass” metabolism due to the aforementioned molecular limitations which greatly
reduce oral bioavailability [488]. To challenge this, chemical modifications of natural
molecules can be carried out to improve them. However, after chemical modifications, this
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molecule will not be natural anymore, but rather will become a new compound, which will
require new exhaustive preclinical studies.

As an alternative, several approaches have been used including nanoparticle formula-
tions, phytosomes, and the use of bioenhancers [488].

To increase bioavailability, self-microemulsifying drug delivery systems (SMEDDSs)
are frequently formulated [489]. SMEDDS are isotropic mixtures of oils, surfactants, or (al-
ternatively) co-surfactants and co-solvents [488,490]. To avoid drug precipitation, SMEDDS
are supplied with hydrophilic polymers, such as polyvinylpyrrolidone and hydroxypropyl
methylcellulose. The use of SMEDDSs significantly improved the stability, effectiveness,
and Cmax and AUC values of curcumin, quercetin, and resveratrol [490].

Another way to improve the bioavailability of natural compounds is the application
of phosphatidylcholine complexes, called “phytosomes” [487,488,491]. Their effectiveness
has been demonstrated regarding silibinin. In prostate cancer patients, phytosomes were
able to increase the Cmax of silibinin by up to 100 uM, with an average concentration of
1.2 uM at the end of the trial [492,493].

Phytosomes loaded with quercetin and scorpion venom peptides were able to target
breast cancer cells [494]. Thymoquinone-loaded phytosomes exhibited cytotoxic effects in
the lung cancer cell line [495].

Taken together, the application of a nanoparticle delivery system is considered as one
of the most important ways to improve the bioavailability of herbal therapeutics (reviewed
in [487,496,497]).

Piperine is a commonly used “bioenhancer” for many herbal products marketed in
the USA [488,498]. This compound inhibits both CYP3A4 and P-glycoprotein. As reported,
other inhibitors of CYP and UGT isoforms are α-mangostin, magnobol, peppermint oil,
grapefruit juice (naringin), lysergol, chrysin, ginger extract, pterostilbene, silybin, gallic
acid ester, genestein, and others (reviewed in [499]).

However, as stated in the previous subsection, one more option to address the chal-
lenge with bioavailability is to use herbal and mushroom extracts where a mixture of
naturally co-occurring constituents promote the bioavailability and strong pharmacological
properties of active compounds.

6.2. Safety

Undoubtedly, two key advantages of modern western medicine are the known profiles
of efficacy and safety. International agencies including the Food and Drug Administration
(FDA) and the Europe Medicine Agency (EMA) require at least one trail with control phase
III significant results to launch a substance into clinics [500]. However, in some cases, drugs
which are not approved by the FDA and EMS can be registered in certain countries.

There is a widespread belief that herbal medicine is safe and non-toxic. Despite the
fact that herbal medicines are widely considered to be of a lower risk compared to synthetic
drugs, they are not completely free from the possibility of toxicity or adverse effects. Thus,
herbal and mushroom pharmacological products should be accurately and exhaustively
managed.

Several reasons for the unsafety of herbal and mushroom medicine can be recognized:
“intrinsic” and “external” toxicities, wrong indication, and herb–drug interactions [501].

“Intrinsic” toxicity is determined by the toxicity of some plants and mushrooms at a
normal therapeutic dosage or in overdose. Herbal extracts represent a mixture of dozens of
constituents with multiple pharmacological properties. Moreover, active compounds in
the form of natural extracts frequently display synergistic effects. As stated by Paracelsus,
‘’Everything is poison, everything is medicine; either effect is determined by the dose”. Even
medical plants well-known for being safe for centuries may have serious adverse effects.
For instance, it was recently reported that aloe–emodin and aloin—two principle active
components of Aloe vera—may have hepato- and nephrotoxicity [109] and may even induce
the Wnt/β-catenin pathway which may be associated with potential carcinogenesis [121].
Moreover, there are media stories (e.g., https://www.bbc.com/news/stories-45971416;
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accessed on 20 February 2022) and scientific reports [502–504] about serious hepatotoxicity
in people who consumed excessive amounts of green tea or used its extract as a food
supplement. The green-tea-induced hepatotoxicity occurs due to the excessive consumption
of (−)-epigallocatechin-3-gallate (EGGG). Its consumption safety level was determined by
the European Commission [503,505].

“External toxicity” is associated with the possible environmental pollution of herbal
sources with heavy metals, pesticides, and poisons.

As herbal and mushroom extracts are composed of a complex mixture of biologically
active constituents, their intake in parallel with the usage of conventional drugs may result
in herbal–drug interactions. Herbal–drug interactions display the synergistic or additive
actions of herbal products with conventional medications as a result of overlapping affinities
for common receptor sites. They may affect different physiological processes (the induction
and inhibition of drug-metabolizing enzymes and ABC transporters, the alteration of
gastrointestinal functions, and the modulation of the effects of antipsychotic therapeutics)
which needs to be taken into account (reviewed in [506]).

All of these issues are addressed by complex investigations and through the pro-
cedure of standardization of manufacturing, ranging from pharmacological studies on
human physiology to the precise monitoring of the herbal source quality, as well as the
quantification of active and marker compounds.

6.3. Standardization

Besides safety, there is another closely related problem. The chemical composition
of plants and mushrooms may vary depending on the genetic background and growth
conditions. A major source of distrust towards the use of plants in modern medicine is the
impossibility of the full standardization of plant material.

Standardization refers to all the information and activities aimed at developing and
establishing requirements and control to ensure minimum quantitative and qualitative
variations of active biochemicals in a herbal product. This is archived through assurance
practices applied to agricultural and manufacturing processes [507]. Thus, standardization
guarantees the content of one or more active constituents and marker compounds. This is
closely associated with both efficiency and safety. It includes the evaluation of chemical
constituents present in a herbal drug. This may involve the quantification of individual
compounds of interest or chemical groups (total phenolics, total triterpenic acids, total
alkaloids, and tannins). Standardization may use multiple marker-based fingerprint pro-
files [508]. The step-by-step standardization procedure, from primary culturing to the
finished herbal product, is described in another review [509].

Whether the substance is synthetic or natural, the standardized procedure of its
preclinical studies should be followed. Recently, the FDA adopted an ICH guideline on the
nonclinical evaluation of anticancer drugs, including 41 questions and answers aimed at
providing additional clarity about oncology drug development [369].

7. Overcoming Limitations to Integrate Folk and Modern Medicine

To integrate folk and modern medicine, standardization is required to be highly
developed. Although this is by far a difficult obstacle, there are well-known examples of
successful standardization approaches.

China is an upper–middle-income country with the second largest world economy
(https://www.worldbank.org/en/country/china/; accessed on 26 March 2022). However,
in China, both western modern medicine and TCM are officially used today, alone or in
combination. One of the reasons is that TCM has proven its effectiveness for 2000 years.
Now, China’s government strongly supports TCM (in the form of CPM), exporting its
products to different countries for trials and therapy, and setting up a research partnership
with the big international pharmaceutical companies such as Novartis or Astrazeneca,
displaying global ambitions [7] (http://www.news.cn/english/2021-10/03/c_13102247
91.htm; accessed on 26 March 2022). The fears of western medicine are related both to
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the concern about the safety profile, and a possible reduction in the monopoly currently
held by large pharmaceutical corporations. Various aspects such as economic and political
components, fears, and real examples of insecurity (both related to efficacy and a lack of
evidence in various clinical trials) intertwine and both contribute to and hinder TCM’s
application in developed countries [8]. Nevertheless, TCM actively continues to develop
its niche in the modern world’s pharmacology.

In China, the standardization of TCM was set as one priority area to become the
standard specification of international traditional medicine, with a lot of TCM standards
established [510]. Thus, as demonstrated by China, it is possible to improve traditional
medicine like this.

Thus, the standardization of plants and for anticancer clinical trials is also possible.
Standardized medical substances derived from herbal sources are applied in different
regions of the world. For instance, there are drops, syrups, and tablets used against
coughs, which are derived from various companies including Kodelak™ (Moscow, Russia),
Herbion™ (Burlington, ON, Canada), Dabur Honitus™ (New Delhi, India), Dr. Müller
Syrups™ (Hradec Králové, Czech Rebublic), and Naturactive™ (Boe, France), etc.

Moreover, there are standardized dietary supplements which are manufactured by
large world-class companies such as Solgar™ (Leonia, NJ, USA), Himalaya™ (Bangalore,
India), NOW™ (Bloomingdale, IL, USA), and others, in accordance with developed stan-
dardized protocols. Some of these supplements are consumed worldwide and are derived
from plants and mushrooms with strong antineoplastic properties described in this review:
Silybum marianum (thistle), Withania somnifera (Ashwagandha), Plumbago zeylanica (Chi-
trak), Boswellia serrata (Boswellia extract), Curcuma longa (turmeric-based supplements),
Panax gingseng (different supplements), Glyzzhiriza glabra (licorice), Hypericum perforatum
(St. John’s wort), Zingiber officinale (ginger), Agaricus blazei (Andosan™, Oslo, Norway),
etc. A plausible experimental approach to test the antineoplastic therapeutic properties of
these plants and mushrooms can be exerted by using the corresponding supplements in
preclinical experiments on animal tumor models. The quality control, standardized consti-
tution, and orally available form can create good opportunities to credibly evaluate their
anticancer potential, safety, and other possible beneficial effects on health. It is important
to analyze the potential synergy between such supplements and conventional anticancer
therapeutics. Taking into account that the bioavailability of active compounds is usually
several-fold higher in the form of a herbal or mushroom extract (due to the co-existing
constituents), the usage of dietary supplements derived from standardized extracts is very
promising.

As was reported earlier, a mixture of naturally co-occurring constituents promotes
the bioavailability and strong pharmacological properties of active compounds. Thus, the
use of plant and mushroom medical products derived from their standardized extracts
may also significantly increase the bioavailability of active compounds without additional
manipulations.

One more interesting approach to bring herbs and mushrooms into modern medicine
is the concept of “medical food based on certain herbs and mushrooms” [511,512]. In
theory, food supplementation with anticancer herbs and mushrooms (e.g., shiitake, reishi,
etc.) may help to prevent and reduce tumor growth. Chen and colleagues fed mice with
gastric cancer with six medical edible plants used in TCM and observed the suppression
of neoplastic growth through several molecular mechanisms [512]. All of the plants used
possess well-known anticancer properties.

This new approach seems to be promising but requires more experimental data to
confirm its efficiency.

8. Conclusions and Future Perspectives

Summarizing the information discussed above, we would like to highlight several
points that should help implement traditional herbal medicine in current medicine:
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− To date, a lot of information about a number of plants and mushrooms, and their indi-
vidual bioactive compounds with well-documented antitumor properties, has been
accumulated. Their respective full-scale multi-level studies should be top priorities.

− Despite there being a lot of investigations on the anticancer properties of a certain
plant using tumor cell models, only a limited number of studies have been carried
out with implication of control non-tumor cell models and subsequent animal studies.
As the next step, comprehensive studies on their effectiveness, toxicity to non-cancer
cells, and animal tissues in various doses are required to authorize natural-derived
extracts and individual compounds into the next pre-clinical or clinical investigation.

− Progress in standardization is highly required to transform anecdotal folk herbal
medicine into modern molecular pharmacology with clear mechanisms of action. This
process includes investments into big programs regarding investigations, monitoring,
and certifications of manufacturing the final product.

− On the examples of etoposide, irino- and topotecan, vinorelbine, docetaxel, and
omacetaxine, the development of semi-synthetic derivates of newly identified natural
compounds with significant anticancer properties may improve their characteristics
and lead to new antineoplastic drugs.

− The study of a synergistic interaction of isolated natural compounds and crude plant-
and mushroom-derived extracts with widely used anticancer therapeutics should
help define the right dosage and compatibility between the natural and synthetic
therapeutics.

− Natural compounds may sensitize tumors for modern therapeutics and be effective in
adjuvant and neoadjuvant therapy.

− There is a variety of standardized dietary supplements from plants and mushrooms
with presumable antineoplastic properties produced by large world-class companies.
The important approach is to test their antitumor potential using animal models,
especially in combination with relevant modern therapeutics.

− The pharmacological effects of active compounds are much higher in herbal extracts
than in pure compounds due to co-existing constituents which may provide the phar-
macokinetic synergy during intestinal absorption and the ‘’first-path” metabolism.

− Folk medicine may point to certain plants or mushrooms with highly potent anti-
cancer properties and bioactive compounds. Herewith, the cooperation between
cancer researchers and ethnobotanists or ethnomedicine specialists can benefit the
development of new therapeutics.

To conclude, a systematic approach in studying the traditional herbal medicine is
required to successfully integrate this unique knowledge into modern molecular medicine.
This combined knowledge that encompasses both the empirical and theoretical approaches
may provide a window of opportunities to facilitate the development of new chemothera-
peutic strategies to treat malignancies.
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